ON FREE GROUPS OF THE VARIETY $\mathbf{A N}_{2} \wedge \mathbf{N}_{2} \mathbf{A}$

BY

CHANDER KANTA GUPTA ${ }^{(1)}$
Introduction. Let R be a commutative ring with unity and let $M(R)$ be the multiplicative group of 4×4 triangular matrices $\left(a_{i j}\right)$ over R, where a_{11} is a unit element of R and $a_{i i}=1$ for $i=2,3,4$. If $\mathbf{V}\left(=\mathbf{A N}_{2} \wedge \mathbf{N}_{2} \mathbf{A}\right)$ denotes the variety of groups which are both abelian-by-class-2 and class-2-by-abelian, then it is routine to verify that $M(R) \in \mathbf{V}$. Here we prove the following,

Theorem. Let $F(\mathbf{V})$ denote the free group of finite or countable infinite rank of the variety \mathbf{V}. Then for a suitable choice of $R, F(\mathbf{V})$ is embedded in $M(R)$.

Notation and preliminaries. Unless otherwise specified, we follow the notation of Hanna Neumann [2]. In particular, if x, y, z, \ldots are elements of a group G, then we write $[x, y]=x^{-1} y^{-1} x y ;[x, y, z]=[[x, y], z] ;[x, y ; u, v]=[[x, y],[u, v]]$. We write $\gamma_{m}(G)$ for the m-th term of the lower central series of G and $\gamma_{m} \gamma_{n}(G)$ for $\gamma_{m}\left(\gamma_{n}(G)\right)$. Let F_{m} be the free group of rank m freely generated by x_{1}, \ldots, x_{m}; and let $H=\gamma_{2} \gamma_{3}\left(F_{m}\right) \cdot \gamma_{3} \gamma_{2}\left(F_{m}\right)$. If $w \in \gamma_{2} \gamma_{2}\left(F_{m}\right)$, then w can be written as

$$
w=\prod_{1 \leq i<j \leq m}\left[u(i, j),\left[x_{i}, x_{j}\right]\right] \bmod H
$$

where $u(i, j) \in \gamma_{2}\left(F_{m}\right)$ and contains no factor $\left[x_{i}, x_{j}\right]^{ \pm 1}$.
Let $P=\{(i, j) \mid 1 \leq i<j \leq m\}$ and define $(i, j)<(k, l)$ if either $i<k$ or if $i=k$ and $j<l$. Using P as an index set we can rewrite $w \in \gamma_{2} \gamma_{2}\left(F_{m}\right)$ as

$$
\begin{equation*}
w=\prod_{(i, j)=(1,2)}^{(m-1, m)}\left[u(i, j),\left[x_{i}, x_{j}\right]\right] \bmod H, \tag{1}
\end{equation*}
$$

where

$$
u(i, j)=\prod_{(r, s)>(i, j)}\left[x_{r}, x_{s}\right]^{\delta(r, s)} v(i, j)
$$

with $\delta(r, s) \in Z$ and $v(i, j) \in \gamma_{3}\left(F_{m}\right)$.
Proof of the theorem. Let $Z G$ denote the integral group ring of the free abelian group G freely generated by $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$; and denote R to be the polynomial ring $Z G[\Lambda]$, where $\Lambda=\left\{\lambda_{i, i-1}^{(k)} \mid i=2,3,4 ; k=1,2, \ldots\right\}$ is the set of independent and

[^0]commuting indeterminates which also commute with every element of $Z G$. For each $k=1,2, \ldots$; let
\[

\left\langle x_{k}\right\rangle=\left[$$
\begin{array}{llll}
\mathbf{x}_{k} & 0 & 0 & 0 \tag{2}\\
\lambda_{21}^{(k)} & 1 & 0 & 0 \\
0 & \lambda_{32}^{(k)} & 1 & 0 \\
0 & 0 & \lambda_{43}^{(k)} & 1
\end{array}
$$\right] .
\]

Consider the multiplicative subgroup $M^{*}(R)$ of $M(R)$ generated by $\left\langle x_{k}\right\rangle$'s for $k=1,2, \ldots$. In what follows we shall show that $M^{*}(R)$ is isomorphic to $F / \gamma_{2} \gamma_{3}(F) \cdot \gamma_{3} \gamma_{2}(F)$. For this purpose we take x_{1}, x_{2}, \ldots as a free set of generators for the free group F and define the natural homomorphism φ of F onto $M^{*}(R)$ by $x_{k} \varphi=\left\langle x_{k}\right\rangle$. We proceed to show that the kernel of φ is $\gamma_{2} \gamma_{3}(F) \cdot \gamma_{3} \gamma_{2}(F)$. If $w=x_{i_{1}}^{\varepsilon_{1}} \ldots x_{i_{l}}^{\varepsilon_{l}}\left(\epsilon_{i} \in\{1,-1\}\right)$ is a word in F, then we define

$$
\begin{equation*}
\langle w\rangle=\left\langle x_{i_{1}}\right\rangle^{\varepsilon_{1}} \ldots\left\langle x_{i_{l}}\right\rangle^{\varepsilon_{l}} . \tag{3}
\end{equation*}
$$

To facilitate calculations in $M^{*}(R)$, we introduce mappings $\alpha_{i j}(4 \geq i \geq j \geq 1)$ of F into R be defining

$$
\begin{equation*}
\alpha_{i j}(w)=i j \text {-entry of }\langle w\rangle . \tag{4}
\end{equation*}
$$

Thus we have,

$$
\begin{align*}
& \alpha_{11}(w)=\mathbf{w}, \alpha_{i i}(w)=1 \text { for } i=2,3,4, \alpha_{i, i-1}\left(x_{k}\right)=\lambda_{i, i-1}^{(k)}, \tag{5}\\
& \alpha_{i j}\left(x_{k}\right)=0 \text { for } i-j \notin\{0,1\}
\end{align*}
$$

and using matrix multiplication we compute

$$
\begin{align*}
\alpha_{21}\left[w_{1}, w_{2}\right]= & \left(-1+w_{2}\right) \alpha_{21}\left(w_{1}\right)-\left(-1+\mathbf{w}_{1}\right) \alpha_{21}\left(w_{2}\right), \\
\alpha_{32}\left[w_{1}, w_{2}\right]= & 0=\alpha_{43}\left[w_{1}, w_{2}\right], \\
\alpha_{31}\left[w_{1}, w_{2}\right]= & \left(-1+w_{2}\right) \alpha_{31}\left(w_{1}\right)+\left(1-\mathbf{w}_{1}\right) \alpha_{31}\left(w_{2}\right)+\left(1-w_{2}\right) \alpha_{32}\left(w_{1}\right) \alpha_{21}\left(w_{1}\right), \\
& +\left(\mathbf{w}_{1}-1\right) \alpha_{32}\left(w_{2}\right) \alpha_{21}\left(w_{2}\right)+\mathbf{w}_{1} \alpha_{32}\left(w_{1}\right) \alpha_{21}\left(w_{2}\right) \\
& -\mathbf{w}_{2} \alpha_{32}\left(w_{2}\right) \alpha_{21}\left(w_{1}\right), \tag{6}\\
\alpha_{42}\left[w_{1}, w_{2}\right]= & \alpha_{43}\left(w_{1}\right) \alpha_{32}\left(w_{2}\right)-\alpha_{43}\left(w_{2}\right) \alpha_{32}\left(w_{1}\right), \\
\alpha_{41}[u, v]= & \alpha_{42}(u) \alpha_{21}(v)-\alpha_{42}(v) \alpha_{21}(u) \text { for } u, v \in \gamma_{2}(F) .
\end{align*}
$$

From (6), it follows in particular that $\alpha_{i j}(w)=0$ for all $w \in \gamma_{2} \gamma_{3}(F) \cdot \gamma_{3} \gamma_{2}(F)$ and as remarked in the introduction $\gamma_{2} \gamma_{3}(F) \cdot \gamma_{3} \gamma_{2}(F)$ is contained in the kernel of φ. Moreover, using (6) we note that

$$
\begin{align*}
\alpha_{41}\left(w_{1} \ldots w_{k}\right) & =\sum_{i=1}^{k} \alpha_{41}\left(w_{i}\right) \text { for } w_{1}, \ldots, w_{k} \in \gamma_{4}(F) \\
\alpha_{42}\left(w_{1}^{\varepsilon_{1}} \ldots w_{k}^{\varepsilon_{k}}\right) & =\sum_{i=1}^{k} \epsilon_{i} \alpha_{42}\left(w_{i}\right) \text { for } w_{1}, \ldots, w_{k} \in \gamma_{2}(F) \tag{7}
\end{align*}
$$

and

$$
\alpha_{42}\left[x_{r}, x_{s}\right]=\lambda_{43}^{(r)} \lambda_{32}^{(s)}-\lambda_{43}^{(s)} \lambda_{32}^{(r)} .
$$

To complete the proof of the theorem we assume that w is a word in the kernel of $\varphi\left(\right.$ i.e. $\alpha_{i j}(w)=0$ for $\left.4 \geq i>j \geq 1\right)$ and proceed to conclude that $w \in \gamma_{2} \gamma_{3}(F) \cdot \gamma_{3} \gamma_{2}(F)$. Since w involves only finitely many symbols, we may assume that $w \in F_{m}$, where F_{m} is freely generated by x_{1}, \ldots, x_{m}. Now $\alpha_{21}(w)=0$, together with the fact that the matrix $\left[\begin{array}{ll}\mathbf{x}_{k} & 0 \\ \lambda_{21}^{(k)} & 1\end{array}\right]$ forms a part of the matrix $\left\langle x_{k}\right\rangle$ for $k=1,2, \ldots$; it follows by a well known theorem of Wilhelm Magnus [1] that $w \in \gamma_{2} \gamma_{2}\left(F_{m}\right)$ and by (1), we may assume that w can be written as

$$
w=\prod_{(i, j)=(1,2)}^{(m-1, m)}\left[u(i, j),\left[x_{i}, x_{j}\right]\right] \bar{w},
$$

where

$$
u(i, j)=\prod_{(r, s)>(i, j)}\left[x_{r}, x_{s}\right]^{\delta(r, s)} v(i, j)
$$

with $\delta(r, s) \in Z, v(i, j) \in \gamma_{3}\left(F_{m}\right)$ and $\bar{w} \in \gamma_{2} \gamma_{3}\left(F_{m}\right) \cdot \gamma_{3} \gamma_{2}\left(F_{m}\right)$.
Now, we have

$$
\begin{array}{rlrl}
0 & =\alpha_{41}(w)=\sum_{(i, j)}^{(m-1 . m)} \alpha_{(1,2)}[u 1 \\
\left.\alpha_{41}(i, j),\left[x_{i}, x_{j}\right]\right] & & \text { by (7) } \\
& ={ }_{(i, j)=(1,2)}^{(m-1, m)}\left\{\alpha_{42}(u(i, j)) \alpha_{21}\left[x_{i}, x_{j}\right]-\alpha_{42}\left[x_{i}, x_{j}\right] \alpha_{21}(u(i, j))\right\} & & \\
& =\sum_{(i, j)=(1,2)}^{(m-1, m)}\left\{\left(\sum_{(r, s)>(i, j)} \delta(r, s) \alpha_{42}\left[x_{r}, x_{s}\right]\right) \alpha_{21}\left[x_{i}, x_{j}\right]-\alpha_{42}\left[x_{i}, x_{j}\right] \alpha_{21}(u(i, j))\right\} & \text { by (7) }
\end{array}
$$

(since $\alpha_{42}(v(i, j))=0$ by (6))

$$
\begin{aligned}
& =\sum_{(i, j)=(1,2)}^{(m-1, m)}\left\{\left(\sum_{(r, s)>(i, j)} \delta(r, s)\left(\lambda_{43}^{(r)} \lambda_{32}^{(s)}-\lambda_{43}^{(s)} \lambda_{32}^{(r)}\right)\right) \alpha_{21}\left[x_{i}, x_{j}\right]\right. \\
& =\sum_{(i, j)=(1,2)}^{(m-1, m)} \lambda_{43}^{(i)} \lambda_{32}^{(j)} \mu(i, j)-\lambda_{43}^{(j)} \lambda_{32}^{(i)} v(i, j),
\end{aligned}
$$

where

$$
\mu(i, j), v(i, j) \in Z G\left[\lambda_{21}^{(k)}, k=1,2, \ldots\right] .
$$

Since $\lambda_{i j}^{(k)}$'s are independent, it follows that $\mu(i, j)=0=v(i, j)$ for all $(i, j) \in P$. Let (i, j) be the least element of P for which $u(i, j) \notin \gamma_{2} \gamma_{2}\left(F_{m}\right)$. Then since $\mu(i, j)=$ $-\alpha_{21}(u(i, j))$, we have $\alpha_{21}(u(i, j))=0$ which again by the theorem of Magnus implies that $u(i, j) \in \gamma_{2} \gamma_{2}\left(F_{m}\right)$, contrary to the choice of $u(i, j)$. Thus, each $u(i, j)$ in the representation of w lies in $\gamma_{2} \gamma_{2}\left(F_{m}\right)$ and it follows that $w \in \gamma_{2} \gamma_{3}(F) \cdot \gamma_{3} \gamma_{2}(F)$ as was required.

Remark. If $w=x_{i_{1}}^{\varepsilon_{1}} \ldots x_{i_{l}}^{\varepsilon_{l}}$ is an arbitrary word in F, then we can effectively compute $\alpha_{21}(w)$. Since R has a solvable word problem we can decide whether or not 3-с.м.в.
$\alpha_{21}(w)$ determines 0 . If $\alpha_{21}(w)=0$, we effectively compute $\alpha_{41}(w)$ and decide whether or not $\alpha_{41}(w)=0$. If $\alpha_{21}(w) \neq 0$, then w is not in $F^{\prime \prime}$, and hence not in $\gamma_{2} \gamma_{3}(F) \cdot \gamma_{3} \gamma_{2}(F)$. If $\alpha_{21}(w)=0$ and if $\alpha_{41}(w) \neq 0$, then w is not in $\gamma_{2} \gamma_{3}(F) \cdot \gamma_{3} \gamma_{2}(F)$. Thus, as a consequence to the proof of the theorem, we have

Corollary. $F / \gamma_{2} \gamma_{3}(F) \cdot \gamma_{3} \gamma_{2}(F)$ has a solvable word problem.

References

1. Wilhelm Magnus, On a theorem of Marshall Hall, Ann. of Math. 40 (1939), 764-768.
2. Hanna Neumann, Varieties of groups, Springer-Verlag, New York, 1967.

University of Manitoba,
Winnipeg, Manitoba

[^0]: Received by the editors March 3, 1970.
 $\left.{ }^{(}{ }^{1}\right)$ Work done in part during the Summer Research Institute of the Canadian Mathematical Congress held at the Univ. of British Columbia, Vancouver, 1969.

