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Abstract

We show that the complete symmetric digraph DK, n>5, can be decomposed into each of
the four oriented pentagons if and only if n=0 or 1 (mod 5).
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1. Introduction

Hung and Mendelsohn (1973) have found a necessary and sufficient condition for
the partitioning of the set of arcs of a complete symmetric digraph into each of the
two oriented triangles. In a recent paper, Harary and others (1978) have considered
the same problem for each of the four oriented quadrilaterals. In doing so they
have made strong use of the fact that each orientation of a triangle and quadri-
lateral is self-converse. Also, Harary and others (1967) had earlier shown that the
only graphs for which every orientation is self-converse are the two smallest
complete graphs K; and K, and the three smallest cycles Cy (the triangle), C, (the
quadrilateral) and C; (the pentagon). The object of this paper is to settle the one
remaining case, that is, to find necessary and sufficient conditions so that the set
of arcs of a complete symmetric digraph can be partitioned into each of the four
oriented pentagons shown in Figure 1.
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12 353

https://doi.org/10.1017/51446788700012313 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700012313

354 Brian Alspach, Katherine Heinrich and Badri N. Yarma [2]
2. Definitions

For the definitions of graph, digraph and other related elementary concepts, we
refer to Behzad and Chartrand (1971) or Harary (1969). We shall use the same
notations as used in the above books. We shall denote the complete symmetric
digraph with n vertices by DK,,. A digraph is said to be self-converse if it is iso-
morphic to its converse. The union G, UG, of two graphs G, and G, is a graph with
V(G,UGy) = V(G u V(Gy) and E(G, L Gy) = E(Gy) U E(G). For a connected graph
G, nG denotes the graph with » components each of which is isomorphic to G. The
Join Gy+ G, of two graphs G, and G, is their union G; U G, together with all edges
joining the vertices of V(G,) with the vertices of V(G,). It is easy to see that

Kn+K, = Km+n = KmUKnUKm,n

with the vertex set of the complete bipartite graph K|, , chosen appropriately.

Given a graph G and graphs H,, H,, ..., H,, if there exists a partition of E(G)
such that the resulting subgraphs of G are isomorphic to H,, H,, ..., H,, we say that
the graph G has been decomposed into the graphs H, H,, ..., H,. In particular, if
every H;, i = 1,...,s, is isomorphic to some graph H, the decomposition of G is
called an isomorphic factorization of G and we write H|G. If G cannot be iso-
morphically factored into graphs isomorphic to H, we write H Y G.

The following known results shall be used.

THEOREM 2.1. C;|K,,, n25, if and only if n=1 or 5 (mod 10).
THEOREM 2.2. For any odd n> 3, K,, can be decomposed into 3-cycles and 5-cycles.

THEOREM 2.3. For any n>2, K,, —I, where I is a 1-factor of K,,, can be decom-
posed into 3-cycles and S-cycles.

Theorem 2.1 was proved by Rosa and Huang (1975) and independently proved
by Bermond and Sotteau (1977). Theorem 2.2 is proved by observing that K,, can
be decomposed into triangles when n=1 or 3 (mod6) as is well known. When
n=>5 (mod6), it was shown by Wilson (1974) that K, can be decomposed into
triangles and exactly one K;. The K; can be decomposed into two 5-cycles.
Theorem 2.3 then follows quickly from the same results by deleting a vertex not
contained in a K and all edges incident with the vertex. The resulting graph has
even order, contains a l-factor from the triangles that contained the deleted
vertex, and the remaining edges can be partitioned into triangles and 5-cycles.
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3. Preliminary results

Throughout the rest of the paper A4;, 4,, A3 and A, denote the four orientations
of C; as shown in Figure 1.

THEOREM 3.1. If A;| DK,,, i = 1,2,3,4, then n=0, 1, 5 or 6 (mod 10).

ProoF. Fori = 1,2, 3,4, 4;| DK, implies that 5|n(n— 1), that is, n=0 or 1 (mod 5)
or equivalently n=0, 1, 5 or 6 (mod 10).
Since each oriented C; is self-converse, we have the following results.

LemMa 3.2. If C;| K,,, then A;| DK, for i =1, 2, 3 and 4.
Theorem 2.1 together with Lemma 3.2 give the following result.
THEOREM 3.3. If n=1 or 5 (mod 10), then A;| DK, fori=1, 2, 3 and 4.

The cases when n=0 or 6 (mod 10) are dealt with in Section 4. We now prove
some lemmas to be used in that section.

LeMMA 3.4. C5| K; 55

PROOF. Let {uy, uy, us, uy, us}, {04, Vs, U3, Uy, 05} and {wy, wy, wy, wy, w;} be the three
sets of independent vertices of K;55. The following gives a decomposition of
K55 into C’s. Five of the Cy’s are

U D UsUsWally; UgVaUy Uy Wally; UgUglUy WolslUs; UyUy WU Wally; Uy Us Wiy Wyl

The rest then are obtained by rotating u; into v; into w; into w; for i = 1,2,3,4,5in
the above 5-cycles.

Define a graph I as follows: V(I') = J%_, V; such that |V;| = 5 for each i = 1, 2,

i=1
3, 4, 5 and the edge set of I consists of exactly all possible edges between vertices
of V;and V4, i = 1,..., 5, where the subscripts are taken modulo 5. In the notation

of Harary (1969), I' is the composition C;[K;] of the graphs C; and K.
Lemma 3.5. G| T

ProoOF. Let
Vi ={ay,a5,a3,a4,a5}, Vp = {by, by, by, by, b},

Vs ={c1,¢0,€3,€4,65}, Vo= 1{dy,dy,d3,dy,d5},

Vs = {ey, €5, 3, €4, €5}
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Following is a decomposition of I' into Cg’s where all subscripts are taken modulo
Sandi=1,2,3,4,5.
a;b;c;d;e;a;

;b1 Ciiadiizeiia Qg
;b 9Ciiadi 648,
a;b;13¢169;19€1412 95
;b4 Ciisdi19 €516 %

LeMMA 3.6. C; isomorphically factors the n-partite graph Ky 5 where n is odd.

Proor. With the n-partite graph K5 5, we can associate a complete graph K,
with each vertex of K, corresponding to anindependent set of vertices of the n-partite
graph and an edge of K,, corresponding to all the edges between two independent sets
of vertices in the n-partite graph. Since nis odd, by Theorem 2.2 K, can be decomposed
into 3-cycles and 5-cycles. Under the correspondence between K, and the n-partite
graph, this implies that K, 5 5 can be decomposed into factors that are either K55
or I'. The result then follows from Lemmas 3.4 and 3.5.

COROLLARY 3.7. For each i =1,2,3,4, A;| DK, 5 the directed n-partite graph
with n odd.

LeMMA 3.8. A;| DKq for i =1,2,3,4.

ProoF. Let abedea be a 5-cycle. Henceforth, we agree to write the four orienta-
tions of it as
Aysa>b>c<d—se«a, Ay a>b>c>d-re<a,

Ay:a>b—>c—>d<e<a, Ay a>b>c>dre—>a.

Let V(DKg) = {uy, iy, tg, uy, s, tig}. We list below the decomposition of DKj
into each A;. The direction of an edge is as given by the cycle at the top.

Aiia>b>c<d>e<a Ay a>b->c>d<e<«a

Uy Uz Uy U5 Ug Uy Uy Ug U Uy Uz Uy
Uy Ug Uz Uy Uty Uy Uz Uy Ug Us Uy
Ug Uy Us Uy Uy Ug Ug Uy Uz Uy Uy Ug »
Ug Uy Uy Uz Uz Ug Ug Uz U Uy U Ug
Uy Ug Ug U3 U Uy Uy Uy Uz Ug Uy Up
Ug U Uy Uy Uy Ug Uy Us Ug Up Uy Uy
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Ag:a»b—>c>dse<a Ay:a>b->c>d>e—sa

Ug Us Uy Uz Uy Ug Uy Ug Ug Uy Ug Uy
Uy Uy Us Ug Uy U Ug Us Uy Uy Ug Ug
Uy Ug Uy Uy Us Uy Uy Uy Ug Uy Uy Uy
Uy U5 Uy U Ug Uy Uy Uy Uy Ug Uy Ug
Uy Uy Uy Uy Uz Uy Ug Uy Uy Uy Uz Ug
Us Uy Uy Uy Uz Uy Uy Us Uy Ug Uy Uy

LEMMA 3.9, 4;| DK,y for i = 1,2,3,4.

ProOOF. We write
Ko =K+ Ky = KgUK UK 4.

Let V(Kg) = {ug, 4y, g, tg, 4y, s} and V(K = {v,, vy, v5,0,}. The two independent
sets of vertices of K, g are V(Kg) and V(K,). By Lemma 3.8, we know each of A;| DK
for i =1,2,3,4. This leaves the graph K;UK,q. It can be decomposed into the

FIGURE 2

graph of Figure 2 and the following four Cg’s: w0 0,U3058;, UV U U3
Uy, Uy Uy Uy Up Uy Uy aNd 1y 044 V30514, Since each A; is self-converse, A,;|DC; for
i=1,2,3,4. Thus, the proof is complete if we decompose DH, where H is the
graph in Figure 2, into each of the four 4;’s.
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For A, we have
Uy—> Uy < Vg < Us—> Vg <— Uy, Ug<—Vp<Vg—>Us<—Vg—> Uy, Up—> Vg < Dy < Us—> Vg <y
and
Up <= Uy = Uy <~ Uy = Uy = Uy,
For 4, we have
Ug—> Uy < Vg < Us < Vg —> Uy, Ug—> Vg4 Vy<Ug<Vg—> Uy, Ug—> Vg < Uy < U< Vy~> Uy
and
Uy —> Uy < Dy < U < Uy —> Uy,
For A; we have
Vg—> Us—> Vg —> Uy —>Vy <Vg, Uy=>Us—>Vg—>Up~>Vy<Vy, Uy—>Us—>Vy—>Uy—>Vg<1)

and
vz'_>u5—>vl'—>u0")v4(—v2.

Finally, for A, we have the 5-cycles

UgVy VgUs Vally, UgDyUyUsUgly, UgUgDyUgUstly and g0, Vg tls Uy Ug.

4. Main results
THEOREM 4.1. If n=6 (mod 10), 4;| DK, for i = 1,2,3 and4.
PROOF. Let n = 10k +6. We write
Ky = Kiorvs = Ksrrna = [k +1) K+ K JUK; 5, 5
=(2k+ 1)KL K;5, 5

where the vertex set of the complete multipartite graph K;5 4 is chosen appro-
priately. The result then follows from Corollary 3.7 and Lemma 3.8.

THEOREM 4.2. If n=0 (mod 10) and n#20, then A;| DK, for i = 1,2,3and4.

Proor. The result has been proved for n = 10 in Lemma 3.9. So let n = 10k
with k> 2. We write

K, = Ko = kK19U Kig9,...10-
In view of Lemma 3.9, it suffices to show that A;| DKyg,0 10 for i = 1,2,3,4. With
Ki6,10,..10 We can associate a graph K, — I, where I is a 1-factor of K, as follows.

Let V; = {uf, 4, ..., uiy}, 1 i<k, be the maximal independent subsets of vertices in
Kioe,...20- Then let S; = {if,u4, ..., 48} and Sy, = {uf, i, ..., ulg} for i=1,2,...,k.
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We define V(Kyy) = {Sy, Sa, ..., So} and S; adjacent to S; if and only if j#i+k or
i#j+k. Notice that the edges S; S, for 1<i<k form a 1-factor for Ky as just
defined.

By Theorem 2.3, Ky, —1I can be decomposed into 3-cycles and 5-cycles. This
amounts to the fact that the k-partite graph Kqy .50 €an be decomposed into the
factors K; 55 and I'. The result then follows from Lemmas 3.4 and 3.5.

THEOREM 4.3. A;| DKy, for i = 1,2,3,4.

PROOF. We write Ky, as Kyy = 2K;U K919 With the vertex set of the complete
bipartite graph chosen appropriately. We shall show that A;| D(KyoU Kyg4o) for
i =1,2,3,4. This together with Lemma 3.9 will prove the result. Let the vertex
set of the two Kjo's be {uy, s, ..., thyo} and {vy, v, ..., vye}. Then KjoU Kjpyo can be
decomposed into the graph A shown in Figure 3 and twenty-five disjoint 5-cycles

V1

Ve

FIGURE 3
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as follows:
. . ’. . ",
C:uy, 03, Uy, Vg, U, tty; C'2 sy, Vg, Un, Vg, U5, 1y5 C7 0 Uy, Vg, Uy, Vg, Uy Uy

and
ok C,o*C" (1<k<9) and @*C" (1<k<d),
where ¢ = (12...10) is a cyclic permutation of the ten subscripts and subscripts

are taken modulo 10.

We show next that 4;| DA for i = 2,3, 4, by listing the copies of A,, 43 and A4,
respectively in the decomposition of DA. This together with the fact that each
A; (i =1,2,3,4) is self-converse shall prove the result for i = 2, 3 and 4.

Ay: a—>b—>c>d<e<«a a->b->c—>d<e<a
Ug Vg Uy Up Uy Ug Vg Uy Uy Uy U3 Ug
Vg Up Ug Uy Ugg Ug Uy Ug Uy Us Uyp Uy
Ug U5 Uy Uy Ug Uy U7 Dy Ug Vg Ug Up
Uy U7 Uy Vg Uyg Vg V5 Uy Uy Vg Uy Ug

Asg:a>b—>c>d-e<«a a->b>c—>dre<a
Vg Uy Vg Ug Uy Uy Uy Uy Vg Uz Uy Uy
Ug Vg Dy Vg Vg Uy U U5 Uy Vg Uy Uy
U Uy U5 U9 U3 Uy Uy Ug Vg Vg U7 Uy
Uig Ug Uy U7 Uy Uy Uy Us Uy Ug Vg Uy

Ay a»>b—>c—>d>e—->a a->b>c>d>e—a
Dy Uy Uy Uy Uy Uy Uy Uy Uy U3 Uy Uy
Up Ug Uyo Uy Ug Vg Uy Uy U5 Uy Vg U4
Ug Uy Vg Ug Uyg Vg U5 Vyo Ug Uy Uy U
Ug Ug Usg Uy U7 U3 Ug Uy U Uy Uy Ug

Now to show that 4, | D(K;U Kygy), let H be a graph defined by
H=A-C*+C'+¢*C",

where C* is the 5-cycle v, vg, U39, Uy, Ug, 0. Then K;yU Ky 34 can be decomposed into
the graph H and twenty-four disjoint 5-cycles: C*, C, C”, ¢*C, ¢*C’' (1<k<9),
@*C", ¢*C” and ¢ C".
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Since A, is self-converse, it is enough to show that 4,| DH. We list below the
copies of A4, in the decomposition of DH.

Ayiasb>c<d>e<a a->b—sc<«d>e<a
U Uy Uy Vg Uy U5 Ug Uy Vg Uy Uy Ug
Vg Vg Vg Uy Vg U3 Uy U; Uy Ug U Uy
Uy Vg Ug U9 U5 Uy Uy V5 Uy U; U3 Uy
Ug Uy Vg U7 Vg Ug Uy Vg U; Dy U5 Dy
Uy Dy Uy Uy Vg Us Us Uy U U3 Uy U

Finally, the results of the Theorems 3.1, 3.3, 4.1, 4.2 and 4.3 can be put together
into a single theorem,

THEOREM 4.4. A;| DK, n>5, for i = 1,2, 3 or 4 if and only if n=0 or 1 (mod 5).

The above theorem can also be proved using results and techniques in the survey
paper by Bermond and Sotteau (1975). The proof in our paper is elementary and
easily éxtended to other values for the cycle length.
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