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Abstract In this paper we consider the existence and multiplicity of positive solutions of a nonlinear
elliptic boundary-value problem with nonlinear boundary conditions which arises in population dynamics.
While bifurcation problems from lines of trivial solutions are studied, the existence of bifurcation positive
solutions from infinity is discussed. The former will be caught by the reduction to a bifurcation equation
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1. Introduction and main results

In this paper we consider the following nonlinear elliptic eigenvalue problem:

−∆u = λ(m(x) − u)u in D,

∂u

∂n
= λb(x)g(u) on ∂D.

⎫⎬
⎭ (1.1)

Here D is a bounded domain of R
N , N � 2, with smooth boundary ∂D, λ is a positive

parameter, m ∈ Cθ(D̄) is a sign-changing, Hölder-continuous function with exponent 0 <

θ < 1 on the closure D̄, b ∈ C1+θ(∂D) satisfies b � 0 and b �≡ 0 on ∂D, g ∈ C1+θ([0, δ])
for any δ > 0, and n is the unit exterior normal to ∂D.

It is well known (cf. [5,6]) that problem (1.1) originates from population dynamics.
Here the unknown function u denotes the steady state of the density of a population
diffusing at rate 1/λ, and m(x) represents the growth or decay rate. Our boundary
condition of the form above may suggest, from an ecological point of view, that if the
species in the interior of D walks toward and reaches the boundary ∂D, then it returns
to the interior with some reaction according to b(x)g(u).

If u ∈ C2(D̄) is a solution of (1.1) for some λ > 0, then we call a pair (λ, u) a solution
of (1.1). A solution (λ, u) of (1.1) is called positive if u > 0 in D.
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Our fundamental assumption for g is that

g(0) = g′(0) = 0. (1.2)

Then any positive solution (λ, u) of (1.1) satisfies u > 0 in D̄ by using the strong max-
imum principle and the boundary point lemma (cf. [12]). Moreover, problem (1.1) has
two trivial solution lines; one is {(λ, 0)}, and the other is {(0, c) : c is a constant} (simply
{(0, c)}), which bifurcates from {(λ, 0)} at (λ, u) = (0, 0).

First we study bifurcation of positive solutions from {(λ, 0)} for (1.1). Let γ1(λ) be a
unique principal eigenvalue of the linearized eigenvalue problem

−∆ϕ = λm(x)ϕ + γ(λ)ϕ in D,

∂ϕ

∂n
= 0 on ∂D.

⎫⎬
⎭ (1.3)

Here a principal eigenvalue is characterized by having a positive eigenfunction. When∫
D

m dx < 0, there exists a unique positive number λ1(m) such that γ1(λ1(m)) = 0,
whereas γ1(λ) < 0 for all λ > 0 when

∫
D

m dx � 0 (see [1]). In fact, if (λ, 0) is a
bifurcation point for (1.1), then γ1(λ) = 0 (see [2]), that is, λ = 0, λ1(m). Here it is
understood that λ1(m) = 0 if

∫
D

m dx � 0.
In the linearized case of our boundary condition at u = 0, that is, in the Neumann case

∂u/∂n = 0, it is well known (cf. [2]) that problem (1.1) has a unique positive solution uλ

for every λ > λ1(m) and no positive solution for any 0 < λ � λ1(m). When
∫

D
m dx � 0,

Hess [8] characterizes the limiting behaviour of the unique positive solution uλ as λ ↓ 0
by the assertion that uλ →

∫
D

m dx/|D| in C(D̄) as λ ↓ 0, where |D| denotes the volume
of D. When

∫
D

m dx < 0, it can be verified by use of the local bifurcation theory due to
Crandall and Rabinowitz [7] that the bifurcation of positive solutions can occur to the
right at (λ1(m), 0).

Also, in case (1.2) it is easy to check that the local bifurcation theory is applicable
both at (λ, u) = (0, 0) and at (λ1(m), 0) whenever

∫
D

m dx �= 0. In fact, by applying it
especially at (λ, u) = (0, 0), we can show that if (λ, u) is a solution of (1.1) near (λ, u) =
(0, 0), then (λ, u) is on {(λ, 0)} ∪ {(0, c)}. For this reason we restrict our consideration
to the case

∫
D

m dx = 0.
Since λ � 0 is outside the scope of this paper, we call (λ, u) = (0, 0) a bifurcation point

to the right for (1.1) if there exist positive solutions (λj , uλj ) of (1.1) that satisfy λj ↓ 0
and uλj

→ 0 in C(D̄) as j → ∞.
Now the following result gives a complete description in the analytic case of g for the

possibility that (λ, u) = (0, 0) is a bifurcation point to the right.

Theorem 1.1. Suppose
∫

D
m dx = 0, and suppose g is analytic at u = 0 with g(0) =

g′(0) = 0. If either

(a)

g′′(0) <
2|D|∫

∂D
b dσ

, (1.4)

or
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(b)

g′′(0) =
2|D|∫

∂D
b dσ

, (1.5)

0 is a zero of g(u) − (|D|/
∫

∂D
b dσ)u2 of order k0 � 3, and g(k0)(0) < 0,

then (λ, u) = (0, 0) is a bifurcation point to the right for (1.1). Otherwise, this is not the
case.

Remark 1.2. Indeed, the assertion of Theorem 1.1 that (λ, u) = (0, 0) is a bifurcation
point to the right for (1.1) implies that there exist a constant ε > 0 and analytic functions
λ(·) : (−ε, ε) → R, v1(·) : (−ε, ε) → X, where X = {v ∈ C2+θ(D̄) :

∫
D

v dx = 0},
satisfying

λ(0) = 0,

λ(α) > 0 for 0 < α < ε,

v1(0) = 0,

such that (λ, u) = (λ(α), α(1 + v1(α))) is a positive solution of (1.1) for each 0 < α < ε.
Moreover, if (λ, u) is a positive solution of (1.1) for λ > 0 and ‖u‖C2+θ(D̄) both small
enough, then (λ, u) = (λ(α), α(1 + v1(α))) for some 0 < α < ε (cf. [7, Theorem 1.7]
and [9, Theorem 2.2.1]).

The proof of Theorem 1.1 will be carried out by the reduction of (1.1) to a bifurcation
equation in R

2, following the Lyapunov and Schmidt procedure, and by the analysis of
the bifurcation equation around (λ, u) = (0, 0) by means of the implicit function theorem
and the Morse lemma.

Now, the following result is a generalization of Theorem 1.1 to the Hölder class of g.

Corollary 1.3. Suppose
∫

D
m dx = 0, and suppose for some δ > 0 that g ∈ C1+θ([0, δ])

is non-negative and g(0) = g′(0) = 0. If

lim sup
u↓0

g(u)
u2 <

|D|∫
∂D

b dσ

(
respectively,

|D|∫
∂D

b dσ
< lim inf

u↓0

g(u)
u2 � ∞

)
, (1.6)

then (λ, u) = (0, 0) is (respectively, is not) a bifurcation point to the right for (1.1). Here,
dσ is the surface element of ∂D. In a critical case such as

g(u) =
|D|∫

∂D
b dσ

u2 + h(u), where lim
u↓0

h(u)
u2 = 0,

(λ, u) = (0, 0) is (respectively, is not) a bifurcation point to the right for (1.1) whenever
we can take some integer k � 3 such that

−∞ � lim sup
u↓0

h(u)
uk

< 0
(

respectively, 0 < lim inf
u↓0

h(u)
uk

� ∞
)

. (1.7)
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Remark 1.4. Indeed, the assertion of Corollary 1.3 that (λ, u) = (0, 0) is a bifurcation
point to the right for (1.1) implies that there exists a positive solution (λ, uλ) of (1.1)
for any λ > 0 small (simply for 0 < λ 	 1) and uλ → 0 as λ ↓ 0 in C2+θ(D̄) by the
standard elliptic regularity.

For nonlinearity of the form g(u) = up, p > 1, Corollary 1.3 can tell us exactly about
the possibility of the bifurcation to the right at (λ, u) = (0, 0), as follows.

Example 1.5. Put 1 < p < q, c1 > 0, c2 ∈ R, and g(u) = c1u
p + c2u

q. The origin
(λ, u) = (0, 0) is a bifurcation point to the right for (1.1) either if p > 2, if p = 2 and
c1 < |D|/

∫
∂D

b dσ, or if p = 2, c1 = |D|/
∫

∂D
b dσ and c2 < 0. Otherwise, this is not the

case.

Corollary 1.3 is proved by the method of super and subsolutions, based on the results
in the analytic case. Here the hypothesis that g is non-negative for u > 0 small must be
used.

Next we study secondary bifurcation of positive solutions from the line {(0, c)} for
(1.1), where g(u) = up, p > 1:

−∆u = λ(m(x) − u)u in D,

∂u

∂n
= λb(x)up on ∂D.

⎫⎬
⎭ (1.8)

For a constant c > 0 we call (0, c) a secondary bifurcation point for (1.8) if there exist
positive solutions (λj , uλj ) of (1.8) that satisfy λj ↓ 0 and uλj → c in C(D̄) as j → ∞.
To characterize secondary bifurcation points for (1.8) it is necessary to consider zeros of
the function

φ(t) =
∫

D

m dx − t|D| + tp−1
∫

∂D

b dσ, t > 0,

see (4.1) in § 4.
Now we state the following theorem.

Theorem 1.6.

(I) Assume that
∫

D
m dx > 0. Either if 1 < p < 2, or if p = 2 and |D| >

∫
∂D

b dσ, then
problem (1.8) has a unique secondary bifurcation point (0, c1), where c1 is a unique
zero of φ. Either if p = 2 and |D| �

∫
∂D

b dσ, or if p > 2 and |D| < mp

∫
∂D

b dσ,
then there is no secondary bifurcation point for (1.8). Here mp is a positive constant
given by

mp = (p − 1)p−1
(

m̄

p − 2

)p−2

,

where m̄ =
∫

D
m dx/|D|. Finally, if p > 2 and |D| > mp

∫
∂D

b dσ, then prob-
lem (1.8) has exactly two secondary bifurcation points (0, c1) and (0, c2), c1 < c2,
where c1 and c2 are two zeros of φ.

(II) Assume that
∫

D
m dx < 0. Either if p > 2, or if p = 2 and |D| <

∫
∂D

b dσ, then
problem (1.8) has a unique secondary bifurcation point (0, c1), where c1 is a unique
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zero of φ. Either if p = 2 and |D| �
∫

∂D
b dσ, or if 1 < p < 2 and |D| > mp

∫
∂D

b dσ,
then there is no secondary bifurcation point for (1.8). Finally, if 1 < p < 2
and |D| < mp

∫
∂D

b dσ, then problem (1.8) has exactly two secondary bifurcation
points (0, c1) and (0, c2), c1 < c2, where c1 and c2 are two zeros of φ.

(III) Assume that
∫

D
m dx = 0. If p �= 2, then problem (1.8) has a unique secondary

bifurcation point (0, c1), where c1 is a unique zero of φ, whereas there is no sec-
ondary bifurcation point for (1.8) if p = 2 and |D| �=

∫
∂D

b dσ.

Remark 1.7.

(1) Indeed, for (0, cj), j = 1, 2, respectively, of Theorem 1.6 it will be verified that
there exist a constant λ̄j > 0 and a continuous function u(·) : [0, λ̄j) → C2+θ(D̄)
satisfying u(0) = cj , such that (λ, u) = (λ, u(λ)) is a positive solution of (1.8) for
each 0 < λ < λ̄j . Moreover, if (λ, u), λ > 0, is a positive solution of (1.8) near
(λ, u) = (0, cj), then (λ, u) = (λ, u(λ)) for some 0 < λ < λ̄j .

(2) If
∫

D
m dx = 0, p = 2 and |D| =

∫
∂D

b dσ, then some positive answers to the sec-
ondary bifurcation problem can be obtained by adding certain assumptions. How-
ever, the answers seem to be implicit or not plain, which is the reason why this
case is not mentioned.

The critical value |D|/
∫

∂D
b dσ appearing in Corollary 1.3 (cf. Example 1.5) seems

to be interesting from an ecological point of view. To explain this, we consider (1.8)
with the condition that N = 2, p = 2,

∫
D

m dx = 0 and b ≡ 1. We can then show that
problem (1.8) has a minimal positive solution (λ, uλ) if there exists a positive solution.
This is based on the construction of subsolutions that are small enough (see Lemma 3.3).
So, Theorems 1.1 and 1.6 characterize the limiting behaviour of the minimal positive
solution (λ, uλ) as λ ↓ 0. Indeed, let νD = |D|/|∂D| be the ratio of the area of D to the
length of its boundary ∂D. As λ ↓ 0, Theorems 1.1 and 1.6 assert that uλ → 0 if νD > 1,
that uλ → c1 if we add some certain assumptions to the condition νD = 1, as mentioned
in Remark 1.7 (2), and that there is no minimal positive solution (λ, uλ) that is bounded
in 0 < λ 	 1 if νD < 1. This suggests that when the volume |D| is given, the longer
the length of ∂D becomes, that is, the more complicated its shape gets, the more uλ

grows up as the diffusion rate d = 1/λ goes to infinity. This is due to the acceleration of
the inward flux of population owing to the nonlinear effect on ∂D, essentially caused by
the diffusion rate becoming high. More specifically, letting D be a disc with radius r, we
may have that the smaller r becomes, the larger uλ becomes when λ ↓ 0.

Finally, we study the existence of large positive solutions (λ, uλ) of (1.8) which become
unbounded as λ ↓ 0, distinguished both from the bifurcation positive solutions to the
right at (λ, u) = (0, 0) and from the secondary bifurcation positive solutions as stated
above. If

∫
D

m dx = 0 and |D| >
∫

∂D
b dσ, then Theorem 1.1 tells us (see (1.6)) that

problem (1.8) with p = 2 admits a positive solution (λ, wλ) for 0 < λ 	 1 and wλ → 0 in
C(D̄) as λ ↓ 0. Moreover, there is no secondary bifurcation point for the problem from
Theorem 1.6 (III).
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Figure 1. Bifurcations to the right and from infinity at λ = 0.

Now, the following result asserts that problem (1.8) has a second positive solution
which grows up to infinity as λ ↓ 0.

Theorem 1.8. Let N = 2 or 3. Assume
∫

D
m dx = 0. If |D| >

∫
∂D

b dσ, then prob-
lem (1.8) with p = 2 has a positive solution (λ, uλ) for 0 < λ 	 1 such that uλ > wλ,
where wλ is the first positive solution, as above. Moreover, we have

uλ → ∞ in C(D̄) as λ ↓ 0 (1.9)

(see figure 1).

Theorem 1.8 is inspired by Ambrosetti, Brezis and Cerami [4], who consider some semi-
linear Dirichlet problems with a combined type of concave and convex nonlinearities, in
which, based on the first positive solution obtained by means of the super and subsolution
method, the existence of a second positive solution is verified by using the mountain-pass
theorem. Meanwhile, we prove Theorem 1.8 by considering the corresponding constrained
minimization problem.

The case
∫

D
m dx = 0 implies that the operator −∆ − λm(x) is non-coercive, that is,

the principal eigenvalue γ1(λ) of (1.3) is negative. On the other hand, for the coercive
case, or the case

∫
D

m dx < 0 (see [1]), problem (1.8) has at least one positive solution
for any 0 < λ < λ1(m) by using a variational technique whenever 2 � p < N/(N − 2)
and N = 2, 3 (see [11, Theorem 3]). In particular, if p = 2 and |D| �

∫
∂D

b dσ, then
problem (1.8) has neither bifurcation to the right at (λ, u) = (0, 0) due to the local
bifurcation theory, nor secondary bifurcation from Theorem 1.6 (II). Consequently, the
positive solution (λ, uλ) constructed by Pflüger will satisfy (1.9) in this case.

Section 2 is devoted to the Lyapunov and Schmidt reduction of (1.1) to a bifurcation
equation, in preparation for the proofs of Theorems 1.1 and 1.6. In § 3 we prove Theo-
rem 1.1 and Corollary 1.3. Theorems 1.6 and 1.8 are proved in §§ 4 and 5, respectively.
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2. Reduction

In this section we assume that nonlinearity g is sufficiently smooth on [0,∞). The stan-
dard argument provides us with the orthogonal decomposition L2(D) = R ⊕ V of the
usual Lebesgue space, where

V =
{

v ∈ L2(D) :
∫

D

v dx = 0
}

,

and the projection Q : L2(D) → V is of the form

v = Qu := u − 1
|D|

∫
D

u dx.

If u is a solution of (1.1), then we have, by means of Q,

−∆v +
λ

|D|

∫
∂D

bg(α + v) dσ = λQf(x, α + v) in D,

∂v

∂n
= λbg(α + v) on ∂D,

⎫⎪⎪⎬
⎪⎪⎭

(2.1)

λ

(∫
D

f(x, α + v) dx +
∫

∂D

bg(α + v) dσ

)
= 0, (2.2)

where u = α + v ∈ R ⊕ V and f(x, u) = m(x)u − u2.
To solve (2.1) in the Hölder space C2+θ(D̄), we put

X =
{

v ∈ C2+θ(D̄) :
∫

D

v dx = 0
}

and introduce a nonlinear mapping F : R × R × X → Z as

F (λ, α, v) =
(

−∆v +
λ

|D|

∫
∂D

bg(α + v) dσ − λQf(x, α + v),
∂v

∂n
− λbg(α + v)

)
,

where

Z =
{

(φ, ψ) ∈ Cθ(D̄) × C1+θ(∂D) :
∫

D

φ dx +
∫

∂D

ψ dσ = 0
}

.

By condition (1.2) we have the Fréchet derivative Fv(0, c, 0)v = (−∆v, ∂v/∂n) of F

at (λ, α, v) = (0, c, 0), where c � 0 is a constant. Banach’s closed-graph theorem per-
mits Fv(0, c, 0) to be isomorphic. By virtue of the implicit function theorem, the set
F (λ, α, v) = 0 consists of a C1-function v = v(λ, α) in a neighbourhood of (λ, α) = (0, c),
satisfying v(0, c) = 0. By the substitution of v(λ, α) for (2.2) we obtain the bifurcation
equation

λ

(∫
D

f(x, α + v(λ, α)) dx +
∫

∂D

bg(α + v(λ, α)) dσ

)
= 0.

To sum up, in order to consider the set of non-trivial solutions of (1.1) near (λ, u) = (0, c),
it suffices to study the equation

Φ(λ, α) :=
∫

D

f(x, α + v(λ, α)) dx +
∫

∂D

bg(α + v(λ, α)) dσ = 0 (2.3)

near (λ, α) = (0, c).
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3. Bifurcation to the right

Proof of Theorem 1.1. This section is devoted to the proofs of Theorem 1.1 and
Corollary 1.3. First we prove Theorem 1.1, where we need (2.3) with c = 0. It should be
remarked that since g is analytic at u = 0, the function v is also analytic at (λ, α) = (0, 0)
by the regularity argument on the implicit function theorem (see [13]). It follows that Φ

is also analytic at (λ, α) = (0, 0).

Lemma 3.1. Let v = v(λ, α) be the analytic function in some neighbourhood of
(λ, α) = (0, 0), as given in the case c = 0 in § 2. Then we have

v(λ, 0) = 0 for all λ close to 0, (3.1)

and the following partial derivatives of v are obtained:

∂jv

∂λj
(0, 0) = 0 for all j � 1, (3.2)

∂jv

∂αj
(0, 0) = 0 for all j � 1, (3.3)

vλα(0, 0) = w1, (3.4)

where w1 is a unique solution, in X, of the Neumann problem

−∆w = m in D,

∂w

∂n
= 0 on ∂D.

Proof. The proof is due to simple and direct calculations. As seen above, problem (2.1)
is uniquely solvable near (λ, α, v) = (0, 0, 0) by v = v(λ, α). Problem (2.1) with (λ, α) =
(λ, 0) is

−∆v(λ, 0) +
λ

|D|

∫
∂D

bg(v(λ, 0)) dσ = λQf(x, v(λ, 0)) in D,

∂v(λ, 0)
∂n

= λbg(v(λ, 0)) on ∂D.

⎫⎪⎪⎬
⎪⎪⎭

(3.5)

Since g(0) = 0, (3.5) admits v(λ, 0) = 0. Hence assertion (3.1) has been verified. Asser-
tion (3.2) is straightforward from (3.1). Assertion (3.3) is clear from (2.1).

Finally, we verify (3.4). Differentiate (2.1) with respect to λ and then α, and we obtain

−∆vλα = − 1
|D|

∫
∂D

b{g′(α + v)(1 + vα) + λ(g′′(α + v)(1 + vα)vλ + g′(α + v)vλα)} dσ

+ Q[fu(x, α + v)(1 + vλ) + λ(fuu(x, α + v)(1 + vα)vλ + fu(x, α + v)vλα)]

in D,

∂vλα

∂n
= b{g′(α + v)(1 + vα) + λ(g′′(α + v)vλ + g′(α + v)vλα)} on ∂D.
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Since g′(0) = 0, vλ(0, 0) = 0 from (3.2), fu(x, 0) = m, and Qm = m from
∫

D
m dx = 0,

we see that

−∆vλα(0, 0) = m in D,

∂vλα(0, 0)
∂n

= 0 on ∂D.

From the fact that vλα(0, 0) ∈ X, it follows that vλα(0, 0) = w1. The proof of this lemma
is complete. �

From (3.2) we note that the solution u(λ, α) = α + v(λ, α) associated with the zero
(λ, α) of Φ near (λ, α) = (0, 0) is positive if and only if α > 0. Indeed, by the analyticity
of v, condition (3.2) gives

u(λ, α) = α + v(λ, α)

= α(1 + terms of order k � 1) as (λ, α) → (0, 0),

as desired. As a result of this fact we have the following proposition.

Proposition 3.2. (λ, u) = (0, 0) is a bifurcation point to the right for (1.1) if and
only if (λ, α) = (0, 0) for Φ is as well.

From Lemma 3.1 we can derive

Φλ(0, 0) = Φα(0, 0) = Φλλ(0, 0) = 0,

Φλα(0, 0) =
∫

D

|∇w1|2 dx,

Φαα(0, 0) = −2|D| + g′′(0)
∫

∂D

b dσ.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.6)

This is due to the direct computations

Φλ =
∫

D

fu(x, α + v)vλ dx +
∫

∂D

bg′(α + v)vλ dσ,

Φα =
∫

D

fu(x, α + v)(1 + vα) dx +
∫

∂D

bg′(α + v)(1 + vα) dσ,

Φλλ =
∫

D

{fuu(x, α + v)(vλ)2 + fu(x, α + v)vλλ} dx

+
∫

∂D

b{g′′(α + v)(vλ)2 + g′(α + v)vλλ} dσ,

Φλα =
∫

D

{fuu(x, α + v)(1 + vα)vλ + fu(x, α + v)vλα} dx

+
∫

∂D

b{g′′(α + v)(1 + vα)vλ + g′(α + v)vλα} dσ,

Φαα =
∫

D

{fuu(x, α + v)(1 + vα)2 + fu(x, α + v)vαα} dx

+
∫

∂D

b{g′′(α + v)(1 + vα)2 + g′(α + v)vαα} dσ.
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From (3.6) we derive the Taylor expansion of Φ at (λ, α) = (0, 0) as

Φ(λ, α) = λα

∫
D

|∇w1|2 dx + 1
2α2

(
−2|D| + g′′(0)

∫
∂D

b dσ

)
+ terms of order k, (3.7)

where k � 3 and w1 is not a constant, that is,
∫

D
|∇w1|2 dx > 0. This implies that the

Morse Lemma (cf. [10, Theorem 3.1.1]) can be applied to (3.7). Eventually, if (1.4) is
satisfied, then the bifurcation to the right for Φ occurs at (λ, α) = (0, 0), whereas there
is no zero (λ, α), λ > 0, of Φ near (λ, α) = (0, 0) if g′′(0) > (2|D|)/

∫
∂D

b dσ.
In the critical case (1.5) it follows from (3.7) that

Φ(λ, α) = λα

∫
D

|∇w1|2 dx + terms of order k, (3.8)

where k � 3. By direct calculations we derive from (3.2) that

∂jΦ

∂λj
(0, 0) = 0 for all j � 1.

Hence, by the analyticity of Φ, assertion (3.8) implies that Φ(λ, α) = αΦ1(λ, α), (λ, α) →
(0, 0), with

Φ1(λ, α) = λ

∫
D

|∇w1|2 dx + terms of order k, (3.9)

where k � 2. Since
∫

D
|∇w1|2 dx > 0, the implicit function theorem gives us that the set

Φ1(λ, α) = 0 consists of an analytic function λ = λ(α) near α = 0 such that λ(0) = 0,
λ′(0) = 0 and

λ′′(0) = − (Φ1)αα(0, 0)
(Φ1)λ(0, 0)

= −
g′′′(0)

∫
∂D

b dσ

3
∫

D
|∇w1|2 dx

.

If g′′′(0) < 0, then the bifurcation to the right for Φ occurs at (λ, α) = (0, 0), whereas
there is no zero (λ, α), λ > 0, of Φ near (λ, α) = (0, 0) if g′′′(0) > 0.

In the same way we can verify that if g satisfies (1.5) with g′′′(0) = 0, namely, if 0 is a
zero of g(u) − (|D|/

∫
∂D

b dσ)u2 of order k0 � 4, then the bifurcation to the right for Φ

occurs at (λ, α) = (0, 0) when g(k0)(0) < 0, whereas there is no zero (λ, α), λ > 0, of Φ

near (λ, α) = (0, 0) when g(k0)(0) > 0.
Now it remains to verify the case g(u) = (|D|/

∫
∂D

b dσ)u2. Direct computations show
that all the terms of αj , j � 1, in the Taylor expansion of Φ do vanish, which is a result
of the fact that g(k)(0) = 0 for all j � 3. Hence we derive from (3.9) that

Φ1(λ, α) = λ

(∫
D

|∇w1|2 dx + terms of order k

)
,

where k � 1. This implies that there is no zero (λ, α), λ > 0, of Φ near (λ, α) = (0, 0). In
view of Proposition 3.2, the proof of Theorem 1.1 is complete. �

Proof of Corollary 1.3. Next we prove Corollary 1.3. Our argument is based on the
method of super and subsolutions. First of all, we should remark that it is possible to
construct any positive subsolution of (1.1) sufficiently small in the following manner.
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Lemma 3.3. Let ϕ1 be a positive principal eigenfunction of (1.3), corresponding to
the principal eigenvalue γ1(λ). If g is non-negative for 0 < u 	 1, then there exists a
constant ε0 = ε0(λ) > 0 such that εϕ1 is a subsolution of (1.1) for any 0 < ε � ε0.

If lim supu↓0 g(u)/u2 < |D|/
∫

∂D
b dσ, see (1.6), then there exist constants u1, δ1 > 0

small, such that

g(u) �
(

|D|∫
∂D

b dσ
− δ1

)
u2, 0 � u � u1. (3.10)

Set

g1(u) =
(

|D|∫
∂D

b dσ
− δ1

)
u2,

and then g1 is analytic at u = 0 and satisfies (1.4). As seen above, the problem

−∆w = λ(mw − w2) in D,

∂w

∂n
= λbg1(w) on ∂D,

⎫⎬
⎭ (3.11)

has a bifurcation point to the right at (λ, u) = (0, 0), meaning that problem (3.11) has a
positive solution (λ, wλ) for 0 < λ 	 1, satisfying

wλ → 0 in C(D̄) as λ ↓ 0. (3.12)

Thanks to (3.10), wλ is a supersolution of the original problem (1.1).
Since wλ > 0 in D̄, Lemma 3.3 allows us to choose some constant ε > 0 such that

εϕ1 � wλ in D̄ and εϕ1 is a subsolution of (1.1). The super and subsolution method
provides us with a positive solution (λ, uλ) of (1.1) such that εϕ1 � uλ � wλ in D̄.
Condition (3.12) gives us the desired conclusion.

If 0 < lim infu↓0 h(u)/uk � ∞ with an integer k � 3, see (1.7), then there exist
constants δ2, u2 > 0 such that

δ2u
k � h(u), 0 � u � u2.

It follows that

g(u) � |D|∫
∂D

b dσ
u2 + δ2u

k =: g2(u), 0 � u � u2,

and g2 is analytic at u = 0. We consider

−∆w = λ(mw − w2) in D,

∂w

∂n
= λbg2(w) on ∂D,

⎫⎬
⎭ (3.13)

and Theorem 1.1 tells us that there is no positive solution (λ, u), λ > 0, of (3.13) near
(λ, u) = (0, 0), since δ2 is positive.

Now we get the conclusion by arguing by contradiction. Without loss of generality,
we may assume to the contrary that the original problem (1.1) has a positive solution
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(λ, uλ) for 0 < λ 	 1 satisfying uλ → 0 in C(D̄) as λ ↓ 0. However, uλ is a supersolution
of (3.13) and we can construct a subsolution εϕ1 of (3.13) such that εϕ1 � uλ in D̄ from
Lemma 3.3. The super and subsolution method allows us to have a positive solution
(λ, wλ) of (3.13) satisfying εϕ1 � wλ � uλ in D̄, and thus wλ → 0 in C(D̄) as λ ↓ 0, a
contradiction.

The remaining assertions of Corollary 1.3 can be verified in the same way. The proof
of Corollary 1.3 is thus complete. �

4. Secondary bifurcation

Proof of Theorem 1.6. In this section we prove Theorem 1.6. First we consider
the case

∫
D

m dx > 0. However, the case
∫

D
m dx < 0 is quite similar, so that it will be

omitted. A necessary condition for (0, c), where c > 0 is a constant, to be a secondary
bifurcation point for (1.8) is that

φ(c) :=
∫

D

m dx − c|D| + cp−1
∫

∂D

b dσ = 0. (4.1)

Indeed, let {(λj , uλj )} be a sequence of positive solutions of (1.8) such that λj ↓ 0 and
uλj → c in C(D̄) as j → ∞. Then we have, by Green’s formula,

∫
D

(muλj − (uλj )
2) dx +

∫
∂D

b(uλj )
p dσ = 0.

When j → ∞, assertion (4.1) follows.
If 1 < p < 2, then φ has a unique zero c1 > 0, which implies Φ(0, c1) = 0 from (2.3).

We see that φ′(c∗) = 0 if and only if

(c∗)p−2 =
|D|

(p − 1)
∫

∂D
b dσ

, (4.2)

where c∗ < c1. The condition (4.2) and the fact that φ(c1) = 0 imply that

∂Φ

∂α
(0, c1) =

∫
D

m dx − 2c1|D| + p(c1)p−1
∫

∂D

b dσ

= c1

{
(p − 1)(c1)p−2

∫
∂D

b dσ − |D|
}

< c1

{
(p − 1)(c∗)p−2

∫
∂D

b dσ − |D|
}

= 0.

Hence the implicit function theorem provides us with a C1-function α = α(λ) such that
α(0) = c1 and

Φ(λ, α) = 0 ⇐⇒ α = α(λ), near (0, c1),

as desired.
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If p = 2 and |D| >
∫

∂D
b dσ, then the following constant c1 uniquely solves the equation

φ(c) = 0:

c =

∫
D

m dx

|D| −
∫

∂D
b dσ

(denoted by c1).

It follows that Φ(0, c1) = 0, and that

∂Φ

∂α
(0, c1) =

∫
D

m dx − 2c1|D| + 2c1

∫
∂D

b dσ = −
∫

D

m dx < 0.

Again, using the implicit function theorem leads us to the desired conclusion.
If p = 2 and |D| �

∫
∂D

b dσ, then we note that φ(c) > 0 for all c > 0, so that the
secondary bifurcation cannot occur at any (0, c).

If p > 2, then φ′ has a unique zero c∗ > 0 given by (4.2), so that

φ(c∗) =
∫

D

m dx − c∗|D| + (c∗)p−1
∫

∂D

b dσ

=
∫

D

m dx − c∗
(

p − 2
p − 1

)
|D|.

Additionally, if |D| < mp

∫
∂D

b dσ, then we have

c∗ <

(
p − 1
p − 2

)∫
D

m dx

|D| ,

which implies that φ(c∗) > 0. Since φ is strictly convex, it follows that φ(c) > 0 for all
c > 0 and the desired conclusion follows.

On the other hand, if, additionally, |D| > mp

∫
∂D

b dσ, then the function φ has exactly
two zeros c2 > c1 > 0, since φ(c∗) < 0. This implies that Φ(0, cj) = 0 and

∂Φ

∂α
(0, cj) =

∫
D

m dx − 2cj |D| + p(cj)p−1
∫

∂D

b dσ

= −cj |D| + (p − 1)(cj)p−1
∫

∂D

b dσ.

Combining (4.2) and the condition c1 < c∗ < c2 ensures that (∂Φ/∂α)(0, cj) �= 0. The
implicit function theorem leads us to the desired conclusion. Assertion (I) of Theorem 1.6
has been verified.

Finally, it remains to verify the case
∫

D
m dx = 0. If p �= 2, then φ has a unique zero

c1 > 0 given by

c1 =
(

|D|∫
∂D

b dσ

)1/(p−2)

,

and then (0, c1) is sure to be a secondary bifurcation point for (1.8) in the same manner
as in the case

∫
D

m dx > 0.
If p = 2, then we find from (4.1) that the condition |D| =

∫
∂D

b dσ is necessary for the
secondary bifurcation to occur at some (0, c), which completes the proof of assertion (III)
of Theorem 1.6.

We have finished the proof of Theorem 1.6. �
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5. Existence of growing-up solutions

Proof of Theorem 1.8. This section is devoted to the proof of Theorem 1.8. As seen
in Theorem 1.1, there exists a positive solution (λ, wλ) of (1.8) with p = 2 for 0 < λ 	 1,
satisfying wλ → 0 in C(D̄) as λ ↓ 0. Let u = wλ + v. Then v ∈ C2(D̄) satisfies

−∆v = λ((m − 2wλ)v − v2) in D,

∂v

∂n
= λb(2wλv + v2) on ∂D,

⎫⎬
⎭ (5.1)

if and only if u is a solution of (1.8) with p = 2. If N = 2, 3, then the embed-
ding W 1,2(D) ⊂ L3(D) of the Sobolev space is compact and the usual trace operator
W 1,2(D) → L3(∂D) is also compact. We call (λ, vλ) ∈ (0,∞) × W 1,2(D) a weak solution
of (5.1) if we have, for any ϕ ∈ W 1,2(D),

∫
D

∇vλ∇ϕ dx − λ

∫
D

m̃λvλϕ dx + λ

∫
D

(vλ)2ϕ dx

− 2λ

∫
∂D

bwλvλϕ dσ − λ

∫
∂D

b(vλ)2ϕ dσ = 0,

where m̃λ = m − 2wλ. By the standard Lp regularity theory, a weak solution of (5.1) is
in C2(D̄), that is, a solution in our sense.

To prove Theorem 1.8, it suffices to prove the existence of a positive solution Vλ of (5.1)
for 0 < λ 	 1. Indeed, uλ = wλ+Vλ is a positive solution of (1.8) with p = 2. If we assume
on the contrary that λj ↓ 0 and ‖uλj

‖C(D̄) � M with some constant M > 0 as j → ∞,
then Amann’s Lp regularity theory (see [3, Proposition 3.3]) shows that

‖uλj ‖W 1,p(D) � Cp

(
‖(−∆ + 1)uλj ‖Lp(D) +

∥∥∥∥∂uλj

∂n

∥∥∥∥
Lp(∂D)

)
, 1 < p < ∞,

with some constant Cp > 0. This implies that ‖uλj
‖W 1,p(D) is bounded with respect

to j � 1 for any 1 < p < ∞. By the standard Lp regularity theory and the Ascoli–
Arzelà theorem, it follows that there exist û ∈ C2(D̄) and a subsequence of {(λj , uλj )},
again denoted by {(λj , uλj )}, such that λj ↓ 0 and uλj → û in C2(D̄), so that û is a
non-negative constant. This is a contradiction, since Theorems 1.1 and 1.6 tell us the
existence of a unique bifurcation curve to the right at (λ, u) = (0, 0) and no secondary
bifurcation at any (0, c), where c > 0 is a constant, respectively, for the problem under
consideration. Eventually we have ‖uλ‖C(D̄) → ∞ as λ ↓ 0.

Now, we associate with (5.1) the following constrained minimization problem: for given

Jλ(v) =
λ

3

∫
D

|v|3 dx − λ

3

∫
∂D

b|v|3 dσ, v ∈ Mλ,

and

Mλ =
{

v ∈ W 1,2(D) : Eλ(v) := 1
2

∫
D

|∇v|2 dx − λ

2

∫
D

m̃λv2 dx − λ

∫
∂D

bwλv2 dσ � 1
}

,
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find vλ ∈ Mλ such that

vλ �= 0 and Jλ(vλ) = inf
v∈Mλ

Jλ(v). (5.2)

To do this, we first show that

inf
v∈Mλ

Jλ(v) < 0. (5.3)

Indeed, by considering a suitable C1-function in D̄ whose support is contained in a
neighbourhood of x ∈ ∂D where b(x) > 0, it is possible to construct ṽ ∈ C1(D̄) such
that Jλ(ṽ) < 0. If a constant ε > 0 is small enough, then Jλ(εṽ) < 0 and Eλ(εṽ) � 1.
Assertion (5.3) has been proved.

Next we have the following lemma.

Lemma 5.1. There exists a constant λ̄ > 0 such that if 0 < λ � λ̄, then we can take
some constant C(λ) > 0 satisfying that, for any {vj} ⊂ Mλ being a minimizing sequence
for (5.2), that is,

Jλ(vj) ↓ inf
v∈Mλ

Jλ(v) ∈ [−∞, 0),

we have ‖vj‖W 1,2(D) � C(λ).

Once Lemma 5.1 is proved, by the standard compactness argument there exist vλ ∈
W 1,2(D), 0 < λ � λ̄, and a sub-sequence of {vj}, again denoted by {vj}, such that

vj → vλ weakly in W 1,2(D),

vj → vλ strongly both in L3(D) and in L3(∂D).

It follows that, as j → ∞,

Jλ(vj) → λ

3

∫
D

|vλ|3 dx − λ

3

∫
∂D

b|vλ|3 dσ = Jλ(vλ) = inf
v∈Mλ

Jλ(v) > −∞.

By the lower semicontinuity of Eλ(·) we have Eλ(vλ) � 1, as desired. Here it should
be noted that the minimizer vλ is allowed to be non-negative in D (if not, then vλ is
replaced by |vλ|), and we can in fact show that

Eλ(vλ) = 1.

Assume to the contrary that Eλ(vλ) < 1, that is, vλ is an interior point of Mλ. Then, for
any ϕ ∈ W 1,2(D), we obtain vλ + sϕ ∈ Mλ, |s| 	 1, and

d
ds

Jλ(vλ + sϕ)|s=0 = 0. (5.4)

On the other hand, by direct computations we have

d
ds

Jλ(vλ + sϕ)|s=0 = λ

(∫
D

(vλ)2ϕ dx −
∫

∂D

b(vλ)2ϕ dσ

)
for any ϕ ∈ W 1,2(D).
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Choose ϕ such that ϕ = vλ, and we obtain

d
ds

Jλ(vλ + svλ)|s=0 = 3Jλ(vλ) < 0,

which contradicts (5.4), as desired. Therefore, we have proved that there exists vλ ∈ Sλ,
where

Sλ = {v ∈ W 1,2(D) : Eλ(v) = 1},

such that vλ � 0, vλ �= 0 and

Jλ(vλ) = inf
v∈Sλ

Jλ(v) < 0.

Now, it is straightforward to prove that the minimizer vλ satisfies

J ′
λ(vλ)ϕ + ΛE′

λ(vλ)ϕ = 0 for any ϕ ∈ W 1,2(D),

where Λ is the corresponding Lagrange multiplier. Putting ϕ = vλ, we have Λ =
−3Jλ(vλ)/2 > 0. Set Vλ = Λ−1vλ, and then (λ, Vλ) is a weak solution of (5.1) that
is non-negative and non-zero. Hence Vλ ∈ C2(D̄) as already stated. By the strong maxi-
mum principle and the boundary point lemma it follows that Vλ > 0 in D̄, as desired.

For the completeness of the proof it remains to prove Lemma 5.1.

Proof of Lemma 5.1. For the orthogonal decomposition W 1,2(D) = R ⊕ W , where
W = {η ∈ W 1,2(D) :

∫
D

η dx = 0}, we denote by ‖·‖W a reduced norm to W in W 1,2(D).
It is easy to see that ‖v‖2

W 1,2(D) and |t|2 + ‖η‖2
W are equivalent for v = t + η ∈ W 1,2(D),

where t ∈ R and η ∈ W . We can also check that ‖η‖2
W and

∫
D

|∇η|2 dx are equivalent
for η ∈ W , and that there exist constants C0 > 0 and λ∗ > 0 such that C0‖η‖2

W � Eλ(η)
for all η ∈ W and 0 < λ � λ∗, since W ⊂ L2(D), L2(∂D) are both continuous.

First we prove the following proposition.

Proposition 5.2. Let 0 < λ � λ∗. Then there exists a constant C1(λ) > 0 satisfying
C1(λ) → 0, λ ↓ 0, such that the following assertion holds true: for any {vj} ⊂ W 1,2(D)
such that

Eλ(vj) � 1 (5.5)

and

‖vj‖W 1,2(D) → ∞ as j → ∞, (5.6)

we have

lim sup
j→∞

∥∥∥∥ηj

tj

∥∥∥∥
W

� C1(λ),

where vj = tj + ηj ∈ R ⊕ W .
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Proof. We derive from the condition Eλ(vj) � 1 that

C0‖ηj‖2
W � 1 + 1

2λ(tj)2
∫

D

m̃λ dx + λtj

∫
D

m̃ληj dx

+ λ(tj)2
∫

∂D

bwλ dσ + 2λtj

∫
∂D

bwληj dσ. (5.7)

If |tj | is bounded, then condition (5.6) ensures that ‖ηj‖W → ∞ as j → ∞. However, by
using Schwarz’s inequality, the right-hand side of (5.7) is bounded above for C2(1+‖ηj‖W )
with some constant C2 > 0 independent of j, which leads to a contradiction when j → ∞
in (5.7). Hence we have |tj | → ∞ as j → ∞.

Using Schwarz’s inequality, we derive from (5.7) that

C0

∥∥∥∥ηj

tj

∥∥∥∥
2

W

� 1
(tj)2

+
λ

2

∫
D

m̃λ dx + λ

∫
D

m̃λ
ηj

tj
dx + λ

∫
∂D

bwλ dσ + 2λ

∫
∂D

bwλ
ηj

tj
dσ

� 1
(tj)2

+ C3(λ) + C4(λ)
∥∥∥∥ηj

tj

∥∥∥∥
W

. (5.8)

Here C3(λ) and C4(λ) are positive constants independent of the choice of the {vj},
satisfying

lim
λ↓0

C3(λ) = lim
λ↓0

C4(λ) = 0. (5.9)

Solving (5.8), we obtain
∥∥∥∥ηj

tj

∥∥∥∥
W

� C4(λ) +
√

C4(λ)2 + 4C0{(tj)−2 + C3(λ)}
2C0

,

which implies that

lim sup
j→∞

∥∥∥∥ηj

tj

∥∥∥∥
W

� C4(λ) +
√

C4(λ)2 + 4C0C3(λ)
2C0

=: C1(λ).

We derive the desired conclusion from (5.9), and Proposition 5.2 has been verified. �

Since W ⊂ L3(D), L3(∂D) are both continuous and |D| >
∫

∂D
b dσ, we can choose

constants ε0 > 0, C5 > 0 and 0 < λ∗∗ < λ∗ such that

C1(λ) < 1
2ε0 if 0 < λ � λ∗∗, (5.10)

and ∫
D

|1 + η|3 dx −
∫

∂D

b|1 + η|3 dσ � C5 if η ∈ W and ‖η‖W < ε0. (5.11)

Now let us show how to prove Lemma 5.1 with λ̄ = λ∗∗. Assume to the contrary that
there exists 0 < λ � λ∗∗ such that some minimizing sequence {vj} ⊂ Mλ includes a sub-
sequence satisfying (5.6), again denoted by {vj}. Since {vj} satisfies (5.5), Proposition 5.2
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can be applied to the sub-sequence {vj} and we get, from (5.10),

lim sup
j→∞

∥∥∥∥ηj

tj

∥∥∥∥
W

� 1
2ε0, vj = tj + ηj ∈ R ⊕ W.

From (5.11) it follows that there exists j0(λ) � 1 such that, for any j � j0(λ),

Jλ(vj) = 1
3λ|tj |3

(∫
D

∣∣∣∣1 +
ηj

tj

∣∣∣∣
3

dx −
∫

∂D

b

∣∣∣∣1 +
ηj

tj

∣∣∣∣
3

dσ

)
� 1

3λ|tj |3C5,

which contradicts (5.3) when j → ∞, as desired. The proof of Lemma 5.1 is complete. �

The proof of Theorem 1.8 is now complete. �
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