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Searching for the log law in open channel flow
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We carry out direct numerical simulations of flow in a plane open channel at friction
Reynolds number up to Reτ ≈ 6000. We find solid evidence for the presence of universal
large-scale organization in the outer layer, with eddies that are larger and stronger than
in the closed channel flow. As a result, velocity fluctuations are found to be stronger
than in closed channels, throughout the depth. The inner-layer peak of the streamwise
velocity variance is observed to grow logarithmically, as in Townsend’s attached-eddy
model (Townsend, The Structure of Turbulent Shear Flow, 2nd edn, Cambridge University
Press, 1976), but saturation of the growth cannot be discarded based on the present data.
Although we do not observe a clear outer peak of the streamwise velocity variance, we
present substantial evidence that such a peak should emerge at a Reynolds number barely
higher than achieved herein. The most striking feature of the flow is the presence of an
extended logarithmic layer, with associated Kármán constant asymptoting to k ≈ 0.375, in
line with observations made in shear-free Couette–Poiseuille flow (Coleman et al., Flow
Turbul. Combust., vol. 99, issue 3, 2017, pp. 553–564). The virtual absence of a wake
region and of corrective terms to the log law in the present flow leads us to conclude that
deviations from the log law observed in internal flows are likely due to the effects of the
opposing walls, rather than the presence of a driving pressure gradient.

Key words: turbulence simulation, turbulent boundary layers

1. Introduction

Turbulent flows in open channels, namely in the presence of a (nearly) shear-free,
approximately flat interface, are relevant in a large number number of engineering and
environmental situations, including rivers, lakes and oceanic flows (Nezu 2005; Chaudhry
2007). During the past decades, significant attention has been given to the study of open
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channel flow, with special emphasis given to processes of sediment transportation (Soldati
& Marchioli 2012), and mass and momentum exchanges at the free surface (Lovecchio,
Marchioli & Soldati 2013; Mashayekhpour et al. 2019; Pinelli et al. 2022). Open channel
flow is also used as a convenient model for the atmospheric surface layer (Nieuwstadt
2005; Flores & Riley 2011), and for the oceanic bottom layer (Taylor 2008). Studying
how turbulence is affected by the presence of a free surface is obviously important to
understand the complex interactions that take place near gas–liquid interfaces. From a
modelling standpoint, access to first- and second-order statistics of turbulence near a free
interface is crucial for the improvement of Reynolds-averaged Navier–Stokes turbulence
models. In this respect, classical experimental studies (Nezu & Rodi 1986; Kumar, Gupta
& Banerjee 1998) have shown that velocity fluctuations in the direction normal to the
interface are damped, whereas fluctuations parallel to the free surface are enhanced.
However, experiments in open channel flow suffer from serious difficulties in measuring
very close to a free surface owing to finite deformation effects, which results in lack of
accuracy.

Direct numerical simulations (DNS) have been shown to be very useful to analyse open
channel flow, and important contributions were given for instance by Lam & Banerjee
(1992), Komori et al. (1993), Campagne et al. (2009) and Ahmed et al. (2021). Large-eddy
simulations have also been used for the purpose of studying open channel flow by Salvetti
et al. (1997), Taylor, Sarkar & Armenio (2005), Hinterberger, Fröhlich & Rodi (2008) and
Ahmed et al. (2021), and especially to study mass transfer across the shear-free interface
(Calmet & Magnaudet 2003; Magnaudet & Calmet 2006). However, those studies achieved
relatively modest Reynolds numbers, measured in terms of the friction Reynolds number
at the no-slip wall, namely Reτ = uτ h/ν, where uτ = (τw/ρ)1/2 is the friction velocity,
h is the channel depth, and ν is the fluid kinematic viscosity. An important step forward
towards realism has been made recently by Yao, Chen & Hussain (2022), who carried
out well-resolved DNS of open channel flows at friction Reynolds numbers up to Reτ =
2000. Those authors found that the mean velocity profiles differ from the case of the
closed channel in the outer region, and found the presence of a logarithmic layer with
Kármán constant k = 0.363. Very-large-scale motions with streamwise wavelength λx >

3h, or spanwise wavelength λz > 0.5h, were found to be stronger than in closed channels,
resulting in a slightly higher streamwise velocity variance.

An outstanding issue in the wall turbulence community is to what extent the commonly
used paradigms are robust, such as the occurrence of a logarithmic layer for the mean
velocity profile, and the validity of wall scaling in general. Regarding the first item,
whereas most authors agree that a logarithmic layer should arise in all wall-bounded
flows at sufficiently high Reynolds number, universality of the log-law constants is still
debated (Nagib & Chauhan 2008). Deviations from the assumed log law were discussed by
Luchini (2017), who claimed that discrepancies among flows in different (circular or plane)
geometries can be ascribed to the effect of the pressure gradient, and that when this effect
is accounted for in the form of a higher-order perturbation, universal agreement emerges.
Monkewitz (2021) determined the two-term inner and outer asymptotic expansions for
closed channel flow, uncovering a change of the logarithmic slope of the mean velocity
at a wall distance of several hundred wall units. The slope change was connected with
the flow symmetry, and motivated the hypothesis that the breakpoint between the possibly
universal short inner logarithmic region and the actual overlap log-law corresponds to the
penetration depth of large-scale turbulent structures originating from the opposite wall.
In this respect, we believe that the analysis of open channel flow can yield important
insight, in that absence of shear at the free surface implies that turbulence kinetic energy

971 A15-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

61
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.616


Searching for the log law in open channel flow

production is also zero as at the centre of channels and pipes, however without influence of
other walls. Hence we expect the effect of the free surface on the no-slip wall to be much
less than in the case of other canonical internal flows.

The distributions of the velocity variances in wall-bounded flows at high Re also
suggest violation of strict wall scaling. In fact, it is now well established (Marusic
& Monty 2019) that the streamwise (u) and spanwise (w) velocity variances increase
slowly with the Reynolds number, with commonly accepted logarithmic growth as in
Townsend’s attached-eddy model (Townsend 1976). On the other hand, the wall-normal
velocity fluctuations seem to level off to a maximum value approximately 1.30 (Smits
et al. 2021). It is remarkable that the general growth of the longitudinal and spanwise
fluctuations is more evident in the outer layer, and in fact it has long been argued about the
possible occurrence of a secondary peak of 〈u2〉, besides the primary buffer-layer peak.
Experiments carried out in the Superpipe (Hultmark et al. 2012) and CICLoPE (Willert
et al. 2017) facilities indeed support the occurrence of such peak at Reτ � 104. It would be
extremely interesting to verify whether these similarities also persist at higher Reynolds
number, and whether any hint for the onset of an outer peak of the streamwise velocity
variance can also be found in open channel flow.

Given this background, our intent here is pushing DNS of flow in open channels
to yet higher Reynolds number than achieved so far, in order to test current notions
and infer possible infinite-Re extrapolations. Using the DNS solver to be described in
the forthcoming sections, we reach Reτ ≈ 6000 (based on friction at the stationary
wall), which is a factor three beyond the current state of the art. Important theoretical
and practical inferences include assessing the proper form of the log law of the
wall, and establishing similarities and differences with other canonical wall-bounded
flows.

2. Methodology

Numerical simulations of fully developed forced turbulent flow in a plane open channel are
carried out, assuming periodic boundary conditions in the streamwise (x) and spanwise (z)
directions, no-slip boundary conditions at the bottom wall, and zero shear stress boundary
conditions at the top boundary (see figure 1). For that purpose, the wall-normal velocity
(v) is set to zero, whereas the coefficients for the discrete evaluation of the derivatives
in the viscous terms for the streamwise (u) and spanwise (w) velocity components are
redefined to have zero wall-normal derivative. The bulk velocity (ub) is kept strictly
constant during the simulations through the use of a time-varying, spatially uniform body
force. The single controlling parameter is the bulk Reynolds number Reb = 2hub/ν, with
h the channel depth, and ν the fluid kinematic viscosity. The computer code used for the
DNS is based on the classical second-order marker-and-cell method (Harlow & Welch
1965; Orlandi 2000), whereby pressure is located at the cell centres, whereas the velocity
components are located at the cell faces, thus removing odd–even decoupling phenomena
and guaranteeing discrete conservation of the total kinetic energy in the inviscid limit. The
Poisson equation resulting from enforcement of the divergence-free condition is solved
efficiently by double trigonometric expansion in the periodic streamwise and spanwise
directions, and inversion of tridiagonal matrices in the wall-normal direction (Kim &
Moin 1985). An extensive series of previous studies about wall-bounded flows from
this group proved that second-order finite-difference discretization in practical cases of
wall-bounded turbulence yields results that are by no means inferior in quality to those
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Figure 1. Definition of the computational set-up for DNS of open channel flow. Here, x, y, z are the streamwise,
wall-normal and spanwise directions, respectively, Lx and Lz are the box sizes along the streamwise and
spanwise directions, h is the channel depth, and ub is the bulk velocity.

Flow case Mesh (Nx × Ny × Nz) Reb Reτ ETT Line style

A 384 × 64 × 256 2850 180.38 204.0

B 1280 × 114 × 864 10 000 540.58 81.1

C 2304 × 165 × 1536 20 000 994.43 223.8

D 4608 × 265 × 3072 43 650 2002.2 27.6

E 6912 × 355 × 4608 68 600 3009.0 44.0

F 13 312 × 591 × 9216 148 000 6010.1 23.4

Table 1. Flow parameters for DNS of open channel flow. Here, Nx, Ny and Nz are the numbers of grid points in
the streamwise, wall-normal and spanwise directions, respectively, Reb = 2hub/ν is the bulk Reynolds number,
Reτ = uτ h/ν is the friction Reynolds number, and ETT is the time interval used to collect the flow statistics,
in units of the eddy turnover time h/uτ .

of pseudo-spectral methods (e.g. Pirozzoli, Bernardini & Orlandi 2016). The governing
equations are advanced in time by means of a hybrid third-order low-storage Runge–Kutta
algorithm, whereby the diffusive terms are handled implicitly, and convective terms are
handled explicitly. The code was adapted to run on clusters of graphic accelerators (GPUs),
using a combination of CUDA Fortran and OpenACC directives, and relying on the
CUFFT libraries for efficient execution of fast Fourier transforms (Ruetsch & Fatica 2014;
Pirozzoli et al. 2021).

A list of the main simulations that we have carried out is given in table 1. All DNS are
carried out in a box with Lx = 6πh, Lz = 2πh. Extensive preliminary studies of sensitivity
to the computational box size and grid spacing have been carried out in a preliminary stage,
for flow case C, which have shown that the maximum effect on the one-point statistics
presented hereafter is much less than 1 %. This is well in line with what was reported
in previous studies (Yao et al. 2022). The mesh resolution for these cases is designed
based on the criteria discussed by Pirozzoli & Orlandi (2021). In particular, the collocation
points are distributed in the wall-normal direction so that approximately 30 points are
placed within y+ ≤ 40, with the first grid point at y+ < 0.1, and the mesh is stretched
progressively in the outer wall layer in such a way that the mesh spacing is proportional
to the local Kolmogorov length scale, which there varies as η+ ≈ 0.8y+1/4 (Jiménez
2018). Mild stretching towards the free surface is also used in order to resolve the thin
layer in which vertical velocity damping is effective. Based on experience accumulated
in a number of previous studies, the grid resolution in the wall-parallel directions is set
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to Δx+ ≈ 8.5, Δz+ ≈ 4.0, for all the flow cases. According to the established practice
(Hoyas & Jiménez 2006; Lee & Moser 2015), the time intervals used to collect the flow
statistics are reported in terms of eddy turnover times, namely h/uτ . It should be noted that
such intervals are longer than those used typically in closed channels, as we have verified
slower time convergence in open channel flow.

The sampling errors for some key properties discussed in this paper have been estimated
using the method of Russo & Luchini (2017), based on extension of the classical batch
means approach. Consistent with what we found in pipe flow (Pirozzoli et al. 2021), we
find that the sampling and discretization errors are at most 0.3 % for the friction coefficient,
0.5 % for the mean velocity at the free surface, and 0.6 % for the peak velocity variances.

Hereafter, capital letters will be used to denote flow properties averaged in the
homogeneous spatial directions and in time, brackets denote the averaging operator, and
lower-case letters denote fluctuations from the mean. Instantaneous values will be denoted
with tildes, hence ũ = U + u.

3. Results

We begin by inspecting the instantaneous velocity fields in a cross-stream plane in
figure 2. The figure highlights well that, as in all wall-bounded flows, the near-wall region
with low-speed fluid becomes thinner as the Reynolds number increases, and finer-scale
organization of the turbulent eddies is clearly visible. At the same time, large-sized
towering eddies are well visible, which originate from the no-slip wall and extend up
to the free surface. Despite differences in the details, the organization of the large-scale
eddies seems to be similar, as will be confirmed quantitatively from the velocity spectra.

The flow organization in wall-parallel planes is considered in figure 3, where we show
streamwise velocity contours near the no-slip wall and at the free surface, at two Reynolds
numbers. The flow near the bottom wall is dominated by streaks of alternating high- and
low-speed fluid, which are the hallmark of wall-bounded turbulence (Kline et al. 1967).
Organization of the streaks on two different scales is quite apparent, with large-scale
streaks whose size is similar at the two Reynolds numbers, and smaller-scale streaks whose
size scales in wall units, and which hence become smaller at higher Re. The large-scale
streaks are the roots of the towering eddies noted previously. The imprinting of their tops is
clear in the free-surface planes, which show the presence of streamwise-elongated eddies,
whose spanwise size is similar at the two Reynolds numbers under scrutiny. Detailed
information about the large-scale organization of the velocity field and the dynamical
contributions of the large eddies can be found in the studies of Duan et al. (2020) and
Yao et al. (2022).

Quantitative information about the flow organization can be gained from the spectral
maps of u, which are depicted in figure 4, where kz = 2π/λz is the relevant wavenumber
for the spanwise direction. At low Reynolds number, a single peak is present, associated
with the wall regeneration cycle (Jiménez & Pinelli 1999). At higher Reynolds number,
a secondary energetic site emerges, which is associated with outer-layer, large-scale
motions (Hutchins & Marusic 2007). In between the two sites, a spectral ridge is present,
corresponding to eddies with typical spanwise length scale λz ∼ y, here encompassing
over one decade in flow case F, which can be interpreted as the footprint of a hierarchy of
wall-attached eddies as in Townsend’s model (Townsend 1976). Although the spanwise
spectra may seem noisy in the outer part, their time convergence has been checked
carefully. Hence the observed undulations are rather the result of difficulties for the largest
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ũ/UFS ũ/UFS

Figure 2. (a–f ) Instantaneous streamwise velocity field (normalized by the mean free-surface velocity UFS)
in a cross-stream plane, for the flow cases A–F, respectively, listed in table 1. Here, y = 0 corresponds to the
no-slip wall, and y/h = 1 corresponds to the free surface. Note that only a limited part of the domain span is
shown.

structures to be accommodated in the relatively narrow computational box. These effects
are commented on in Appendix A.

The spectral maps are compared with those found in closed channel flow (Pirozzoli
et al. 2016), at matching Reynolds number (Reτ = 2000) in figure 5. Whereas the inner
spectral peak is pretty much the same in the two flows (namely λ+z ≈ 117, at y+ ≈ 13),
the outer peak is quite different. In fact, it occurs at a wavelength λz = πh/2, at a distance
y = 0.28h in the open channel, and it occurs at λz = πh/3, at a distance y = 0.18h in
the closed channel. This shows that in the open channel, the eddies that emerge from the
no-slip wall can penetrate a greater distance, which also implies that the eddies are larger.

Reynolds number effects on the streamwise velocity spectra are scrutinized more closely
in figure 6, where we show spectral densities at the inner energy site location (y+ = 15),
and at the outer site location (y/h = 0.28). Figure 6(a) clearly brings out universality of
the spectra in inner units at the small scales. Additional energy appears at large scales as

971 A15-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

61
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.616


Searching for the log law in open channel flow

6

4

2

0 2 4 6 8 10 12 14 16 18

4

2

0 2 4 6 8 10 12 14 16 18

4

6

2

0 2 4 6 8 10 12 14 16 18

4

6

2

0 2 4 6 8 10 12 14 16 18

z/h

z/h

z/h

z/h

x/h

(a)

(b)

(c)

(d )

0 0.16 0.32 0.48 0.64 0.80 0.96 1.12ũ/UFS

Figure 3. Instantaneous streamwise velocity fields in wall-parallel planes: (a,b) near the no-slip wall
(y+ = 15), and (c,d) at the free surface (y/h = 1), for (a,c) flow case C (Reτ = 1000), and (b,d) flow case
F (Reτ = 6000).
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Figure 4. (a–f ) Variation of pre-multiplied spanwise spectral densities of fluctuating streamwise velocity with
wall distance, for cases A–F, respectively. Wall distances and wavelengths are reported both in inner units
(bottom, left axes) and in outer units (top, right axes). The dashed line denotes the channel free surface. The
crosses denote the positions of the inner and outer energetic sites. Contour levels from 0.2 to 2.0 are shown, in
intervals of 0.2.

the Reynolds number increases, as a result of influence from the outer energy site (Marusic
& Monty 2019). At intermediate wavelengths, there is also mild evidence for an Eu ∼ λz
spectral range, which is also predicted from Townsend’s attached-eddy model (Nickels
et al. 2005). The inset of figure 6(a) further compares the spectrum at Reτ = 2000 with
the corresponding case of a closed channel. The figure suggests that the distribution of
energy across the flow scales is very much the same in the two flows, with deviations
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Figure 5. Comparison of spectral maps of fluctuating streamwise velocity in (a) open channel flow and
(b) closed channel flow, at Reτ = 2000 (Bernardini, Pirozzoli & Orlandi 2014). Wall distances and wavelengths
are reported both in inner units (bottom, left axes) and in outer units (top, right axes). The dashed line denotes
either the channel free surface or the channel centreline. Contour levels from 0.2 to 2.0 are shown, in intervals
of 0.2. The second group of contours that appears in (b), for y > h, is the symmetric equivalence of the y < h
pattern, condensed visually because of use of a logarithmic scale.
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Figure 6. Pre-multiplied spectral densities of streamwise velocity at (a) y+ = 15 and (b) y/h = 0.28. The
insets report a comparison with spectra in a closed channel at Reτ = 2000 (solid lines indicate open channel,
dashed lines indicate closed channel). The colour codes are as in table 1.

occurring only at the largest scales, where the open channel (solid line) is found to have
more energy, which results from the different outer-layer organization noticed previously,
and in agreement with the results of Yao et al. (2022). The spectra corresponding to the
outer energy site, shown in figure 6(b), are comparatively more scattered, with change
of the peak value with Re and occasional peak splitting, again on account of the limited
spanwise size of the box. Nevertheless, we notice a tendency for the spectra to collapse
at the highest Reynolds numbers under scrutiny. This seems to be evidence that besides
the well recognized universality of the inner-layer dynamics in inner units, the outer-layer
dynamics also becomes universal in outer units, however only at sufficiently high Reynolds
number, as argued previously by Dennis & Sogaro (2014) for pipe flow.

In figure 7, we show the inner-scaled mean velocity profiles obtained from the present
DNS, which indicate agreement with a logarithmic distribution. Data fitting of the highest
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Figure 7. (a) Inner-scaled mean velocity profiles obtained from the present DNS. (b) Comparison with the
case of closed channel and pipe flow at Reτ = 2000. The dashed line in (a) refers to the logarithmic fit U+ =
log y+/0.375 + 4.21. In (b), the dashed line refers to the closed channel (Pirozzoli et al. 2016), the dotted
line to the case of pipe flow (Pirozzoli et al. 2021), and the blue circles to open channel experimental data at
Reτ = 1903 (Duan et al. 2020). The colour codes are as in table 1.

Re data yields U+ = 1/k log y+ + 4.21, with Kármán constant k = 0.375, hence smaller
than reported for channel flow and in pipe flow (Lee & Moser 2015; Pirozzoli et al. 2021).
It is important to note that no significant deviations from the logarithmic distribution are
found, also far from the wall. Detailed comparison with other internal flows at Reτ ≈ 2000
is reported in figure 7(b), where we also show experimental data of open channel flow from
Duan et al. (2020). The figure shows quite good agreement with experiments, and that the
open channel flow has a weaker wake than the closed channel flow, which in turn has a
weaker wake than pipe flow. Hence one could argue that the open channel flow is closest to
the ideal situation of a wake-free flow, which is the optimal testbed to quantitatively probe
the properties of the logarithmic layer. Similar observations were reported in the context
of shear-free Couette–Poiseuille flow by Coleman et al. (2017).

More refined information on the behaviour of the mean velocity profile can be gained
from inspection of the log-law diagnostic function, namely y+ dU+/dy+, which is shown
in figure 8, and whose constancy would imply the presence of a genuine logarithmic layer.
The figure supports universality of the inner-scaled streamwise velocity for Reτ � 103,
up to y+ ≈ 60, where the diagnostic function attains a minimum. The figure also shows
clear flattening of this indicator as the Reynolds number increases. At Reτ = 2000, an
extended flat region is first observed, for which the extrapolated Kármán constant is in
perfect agreement with the results of Yao et al. (2022), and in very good agreement with
the data of Coleman et al. (2017) for Couette–Poiseuille flow with a zero-shear wall, from
which k ≈ 0.37 can be inferred. At higher Reτ the Kármán constant seems to decrease
a little, and at Reτ = 6000 there is a well developed logarithmic layer up to y/h = 0.5,
corresponding to k = 0.375. These values of the Kármán constant seem to differ somewhat
from the commonly quoted value k ≈ 0.39 for closed channel and pipe flow (Lee &
Moser 2015; Pirozzoli et al. 2021; Hoyas et al. 2022). However, in those cases, significant
scatter and ambiguity persist on how the fitting is carried out, in the absence of extended
regions with flat diagnostic functions. In fact, systematic deviations from a logarithmic
distribution are observed in internal flows, which are typically modelled through additional
linear terms (Afzal 1982; Jiménez & Moser 2007; Luchini 2017). In particular, the latter
study attributed the occurrence of additional linear terms in the overlap layer expansion of
the mean velocity profile in internal flows to the effect of the imposed pressure gradient.
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Figure 8. Log-law diagnostic function for mean streamwise velocity, as a function of (a) inner-scaled and
(b) outer-scaled wall distance. The dashed horizontal line denotes the inverse Kármán constant, 1/0.375. Lines
denote present DNS data, with colour code as in table 1. Symbols denote data for closed channel flow at
Reτ = 5200 (triangles, Lee & Moser 2015), boundary layer at Reτ = 6115 (circles, Österlund et al. 2000), and
pipe flow at Reτ = 6000 (squares, Pirozzoli et al. 2021).
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Figure 9. Defect velocity profiles for DNS of open channel flow, in (a) linear and (b) semi-logarithmic scale.
The dashed grey line marks the outer-layer logarithmic fit U+

FS − U+ = −0.128 − 1/0.375 log( y/h).

The case of the open channel flow, in which a pressure gradient is present, but deviations
from the log law are not evident, seems to rule out such explanation. On the other hand,
the present findings seem to corroborate the interpretation given by Monkewitz (2021),
that the late start of the logarithmic layer in internals flows is due to intrusions from the
opposite wall, which in fact are not present in the open channel flow. Differences with
other canonical wall-bounded flows are made more explicit in figure 8(b), which makes it
quite clear that the log-law diagnostic function is much flatter in the present case than in
other flows, and even closed channel flow at substantially higher Reynolds number (Hoyas
et al. 2022) exhibits a much wider range of variation.

The structure of the wake region of the open channel is examined in detail in figure 9,
where the mean velocity profiles are shown in defect form. Full outer-layer similarity is
achieved even at the lowest Reynolds numbers under scrutiny, starting at y/h ≈ 0.2. The
defect logarithmic profile

U+
FS−U+= − 1

k
log( y/h) + B (3.1)
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Figure 10. (a) Mean free surface velocity (UFS) and bulk velocity, and (b) their ratio, as functions of the
friction Reynolds number. DNS data are shown as circle symbols, and the corresponding logarithmic fits are
shown as dashed lines. Black is used for UFS, and purple for ub.

fits the data very well with k = 0.375, and with additive constant B = 0.128. Deviations
from the outer log law seem to be very minor, and concentrated in a narrow layer adjacent
to the free surface.

The previous observations regarding the structure of the mean velocity field can be
leveraged to deduce that the dependence of the bulk and mean free-surface velocity on
the friction Reynolds number should be logarithmic. This is checked in figure 10, where
we show the mean velocity at the free surface and the bulk velocity normalized by the
friction velocity, as functions of the friction Reynolds number. Consistently with the case
of internal flows (e.g. Monkewitz 2021), the data in fact support logarithmic increase with
Reτ , according to

u+
b =1

k
log Reτ + Bb, U+

FS=
1

kFS
log Reτ + BFS, (3.2a,b)

with data fitting suggesting kFS ≈ k = 0.375, and Bb = 1.57, BFS = 4.02. As a result of
the observed identity (or very close vicinity) of the Kármán constant for the centreline
and for the bulk velocity, figure 10(b) highlights that their ratio approaches unity at
large Re, supporting the inference that open channel flow asymptotes to plug flow in the
infinite-Reynolds-number limit; see Pullin, Inoue & Saito (2013). Regarding that study,
it is worthwhile noticing that one of the assumptions made in the analysis is that the
wall-normal location of the onset of the logarithmic region is either finite or increases no
faster than Reτ . Interpreting the near-wall minimum of the diagnostic function in figure 8
as the root of the (near) logarithmic layer, our data well support that assumption. However,
as figure 10(b) suggests, this trend is extremely slow.

Equations (3.2a,b) can be exploited in order to determine friction relationships for flow
in smooth open channels, namely√

2
Cf

= 1
k

log

(
Reb

√
Cf

2

)
+ Bb − 1

k
,

√
2
cf

= 1
k

log
(

ReFS

√
cf

2

)
+ BFS, (3.3a,b)

whence the friction coefficient (either Cf = 2τw/(ρu2
b) or cf = 2τw/(ρU2

FS)) can be
evaluated as an implicit function of the bulk Reynolds number, or of the Reynolds number
at the free surface (ReFS = UFSh/ν).
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Figure 11. Distribution of velocity variances (a–c) and trend of peak streamwise velocity variance with
Reynolds number (d). The blue circles in (a,b) denotes experimental data of Duan et al. (2020), at Reτ = 1903.
The circles in (d) denote the present open channel data, and the squares the closed channel data of Lee & Moser
(2015), at Reτ = 550, 1000, 2000, 5200. The dashed and dot-dashed data denote the corresponding logarithmic
fits, and the dotted line the trend predicted by Chen & Sreenivasan (2021).

The distributions of the velocity variances along the coordinate directions are shown in
figure 11, in inner scaling. As is well established (Marusic & Monty 2019), the streamwise
(u) and spanwise (w) velocity fluctuations show slow increase with the Reynolds number,
with commonly accepted logarithmic growth as in Townsend’s attached-eddy model
(Townsend 1976). On the other hand, the wall-normal velocity fluctuations seem to level
off to maximum value approximately 1.30 (Smits et al. 2021). It is remarkable that the
general growth of the longitudinal and spanwise fluctuations is more evident in the outer
layer, and in fact it has long been argued about the possible occurrence of a secondary peak
of 〈u2〉, besides the primary buffer-layer peak. Experiments carried out in the Superpipe
(Hultmark et al. 2012) and CICLoPE (Willert et al. 2017) facilities indeed support the
occurrence of such a peak at Reτ � 104. Whereas DNS data do not reach sufficiently high
Reτ to show this secondary peak, it appears that in flow case F, the streamwise velocity
variance has attained a nearly horizontal inflectional point at y+ ≈ 140. Comparison with
the data from closed channels shows generally higher values of all fluctuating velocity
components, which is consistent with additional energy resulting from the more intense
outer-layer eddies. This also yields higher probability that the outer-layer peaks of 〈u2〉,
if found, would occur earlier in the open channel than in the closed channel. Additional
differences are related to the behaviour of the velocity variances near the free surface,
where of course 〈v2〉 must go to zero as a consequence of the rigid-lid assumption, and
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where the horizontal velocity variances show some pile-up and become very similar in
magnitude (Nezu 2005). Comparison with the experimental data of Duan et al. (2020)
in figures 11(a,b) shows generally good agreement, especially in the outer part of the
flow. Differences observed towards the wall, and especially overestimation of the vertical
velocity variance in the experiment, are the likely result of well-known difficulties in
measuring in the vicinity of walls.

Figure 11(d) displays the trend of the streamwise velocity variance with Reτ . This
quantity is the subject of a lot of theoretical interest, and in particular its behaviour
in the infinite-Re limit. In fact, the attached-eddy model (Townsend 1976; Marusic &
Monty 2019) predicts that it should be increasing logarithmically with Reτ , on account
of influence from distant, outer-layer eddies, which would imply a violation of the strict
wall scaling. On the other hand, arguments have been made recently that this peak
should stay finite, as a result of saturation of growth of the turbulence kinetic energy
dissipation rate at the wall (Chen & Sreenivasan 2021). Although difference between slow
logarithmic growth and attainment of an asymptotic value is quite tenuous in practice, the
theoretical interest is high as in the latter case universality of wall scaling would be restored
eventually. The data shown in figure 11(d) generally seem to support logarithmic growth,
with slope approximately 0.63, very close to the case of closed channel (Lee & Moser
2015), and as suggested from a collection of DNS and experiments on boundary layers
(Marusic, Baars & Hutchins 2017). At the same time, the theoretical prediction of Chen &
Sreenivasan (2021) (see the dotted purple line of figure 11d) seems to conform well with
DNS data at the highest Reynolds number achieved. Discriminating between these two
trends would probably require much higher Reynolds numbers than are currently feasible
in DNS of wall-bounded flows.

Whereas our DNS data cannot be used to evaluate directly the theoretical predictions
owing to limited achievable Reynolds number, they can be used to better scrutinize
the foundations of the theoretical arguments. The main argument made by Chen
& Sreenivasan (2021), although not strictly justified mathematically, was that since
turbulence kinetic energy production is bounded, the wall dissipation must also stay
bounded. Letting P = −〈uv〉 dU/dy be the turbulence kinetic energy production rate, and
ε11 = ν

〈|∇u|2〉 be the dissipation rate of the streamwise velocity variance, those authors
argued that the wall limiting value of ε11 should scale as

ε11
+
w =1/4 − β/Re1/4

τ , (3.4)

with β a suitable constant. In figure 12(a), we explore deviations of ε11w and of the
peak turbulence kinetic energy production, say PPK , from their asymptotic value, namely
1/4. According to analytical constraints (Pope 2000), we find that production tends to its
asymptotic value quite rapidly, as approximately 1/Reτ . Consistent with (3.4), the wall
dissipation rate also tends to 1/4, more or less at the predicted rate, thus validating the
first assumption empirically. The next argument advocated by Chen & Sreenivasan (2021)
is that wall balance between viscous diffusion and dissipation and Taylor series expansion
of the streamwise velocity variance near the wall yields

〈u2〉+∼ε+
11wy+2

, (3.5)

whence, from assumed invariance of the peak location of 〈u2〉 (say, y+
PK), saturation of

growth of the peak velocity variance would follow. Figure 12(b) reports the position of
the streamwise velocity variance peak position as a function of Reτ , as inferred from
cubic spline interpolation of the DNS data. Also accounting for uncertainty associated
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Figure 12. (a) Distributions of peak turbulence production (PPK , squares), and wall dissipation of streamwise
velocity variance (ε11w, circles). (b) Peak position of streamwise velocity variance. In (a), the dot-dashed and
dotted lines denote fits of PPK and ε11w in their tendency to the respective assumed asymptotic values.

with data interpolation, the figure suggests that this second assumption may not be valid,
as the (inner-scaled) peak position shifts away from the wall at increasing Reτ , with
non-negligible effect on the peak variance as it appears in squared form in (3.5). As a
consequence, logarithmic growth of the peak velocity variance would still be possible
even in the presence of saturation of the wall dissipation rate, at least based on DNS data
in the currently accessible range of Reynolds numbers.

It is well established that the intensity of wall pressure fluctuations in boundary layers
and channels increases logarithmically with the Reynolds number, when scaled by the
mean wall shear stress (Willmarth 1975; Farabee & Casarella 1991; Hu, Morfey &
Sandham 2006; Tsuji et al. 2007; Jiménez & Hoyas 2008; Sillero, Jiménez & Moser
2013). Tsuji et al. (2007) found a similar trend for the peak pressure variance, which
occurs at approximately y+ = 30. Jiménez & Hoyas (2008) suggested that this logarithmic
increment should be attributed to a growing hierarchy of self-similar wall-attached eddies
(Townsend 1976; Hwang 2015; Marusic & Monty 2019). Pressure, like the wall-parallel
velocity components, can indeed be regarded as a wall-attached quantity (Bradshaw 1967),
which explains why profiles of the pressure variance also follow a logarithmic trend with
respect to the wall distance. The same behaviour can, however, also be predicted based
on inner/outer layer overlap arguments (Panton, Lee & Moser 2017). Mehrez et al. (2019)
explored the DNS database of closed channel flow at friction Reynolds number up to 4000,
and found that the logarithmic trend shows up only for Reτ � 500.

The distributions of the pressure variances obtained from the present DNS are displayed
in figure 13(a). These are found to remain nearly constant within the viscous sublayer
(say, y+ ≤ 5), then increase to attain a peak value at y+ ≈ 30, and decrease thereafter.
A region with distinctly logarithmic decrease is found from y+ ≈ 100 basically all the
way to the free surface, with slight deviations. As the Reynolds number increases, the
pressure variances at the wall and their peak values increase systematically, whereas the
value at the free surface is not much affected. Compared with the variances in closed
channels (dashed lines), we note that pressure fluctuations in open channels tend to be a
bit less in the buffer layer, whereas they are virtually identical towards the wall and in the
outer layer. When plotted against outer wall coordinates, the logarithmic portions of the
pressure variance distribution collapse for Reτ � 500, consistent with the case of closed
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Figure 13. (a) Wall-normal distribution of pressure variance, and (b) wall pressure variance as a function of
Reynolds number. In (a), the dashed lines correspond to closed channel flow DNS data (Lee & Moser 2015) at
Reτ = 180, 550, 1000, 2000, 5200, and the grey line denotes the logarithmic fit given in (3.6). In (b), circles are
used for the open channel data, and squares for the closed channel data; the dashed lines denote the logarithmic
data fit given in (3.7). Refer to table 1 for colour codes.

channel flow (Mehrez et al. 2019). Expressing the outer distribution as

〈p2〉+( y/h) = Ap log (y/h) + Bp, (3.6)

curve fitting within the range y = 0.02h–0.5h for flow case F yields the values of
parameters Ap = −2.40 and Bp = 1.23, with error 0.4 %.

We further report the wall pressure variances as a function of Reτ in figure 13(b). With
exclusion of the lowest Reynolds number case at Reτ ≈ 180, the wall pressure variances
can be well characterized in terms of the log law

〈p2
w〉+=2.22 log Reτ − 8.99, (3.7)

thus supporting theoretical inferences quite well. The logarithmic growth rate seems to be
identical to that for closed channel flow.

4. Concluding comments

The study of flow in an open channel has the merit of isolating the effect of wall-imposed
shear from other complicating effects, for instance due to the presence of opposing walls
(as in closed channel flow) or geometrical confinement in general (as in pipe flow). Hence,
despite limited practical impact, as by far most instances of open channel flow occur over
rough beds, we believe that the theoretical interest of studying open channel flow is quite
large. We find that flow in an open channel is a very good candidate to observe the log
law of the wall in its ‘pure’ form, and in fact a clear logarithmic layer is present even
at ‘modest’ Reynolds number (Yao et al. 2022), and in the present DNS there is a clear
evidence that a genuine logarithmic layer exists, at least up to half of the channel depth. The
estimated Kármán constant is found to increase a little with the Reynolds number, starting
from k = 0.363 at Reτ = 2000 (in perfect agreement with Yao et al. 2022), to arrive at
k = 0.375 at Reτ = 6000. A certain variability of the Kármán constant was in fact noticed
in previous systematic experimental studies (Nagib & Chauhan 2008), which is possibly
related to finite-Re effects. In any case, the scenario is much clearer than in internal flows
such as closed channels and pipes. In the case of a closed channel, convincing evidence
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for a (small) region with flat behaviour of the log-law diagnostic function has come only
recently from DNS at Reτ = 10 000 (Hoyas et al. 2022). Otherwise, data at lower Re seem
to feature obvious deviations from the expected logarithmic behaviour that are traditionally
modelled as additional linear terms (Jiménez & Moser 2007; Luchini 2017), and the
Kármán constant is extrapolated based on fitting those compound distributions to the
DNS data (e.g. Pirozzoli et al. 2021). The resulting value of the Kármán constant is then
k = 0.38–0.39, hence a bit higher than found in the open channel. It is also noteworthy
that Coleman et al. (2017) carried out numerical simulation of the Couette–Poiseuille flow
(namely, channel flow with combined relative motion of the walls and imposed pressure
gradient) under conditions such that one of the walls has zero shear, and found very similar
behaviour, namely an extended logarithmic layer with Kármán constant k = 0.37. In our
opinion, universality of wall turbulence in the near-wall region requires universality of the
Kármán constant, hence we believe that variations observed in all studies so far are related
to limited Reynolds number, or to numerical and experimental uncertainties, or effects of
geometrical confinement, or all of these. Study of flow in open channels has the merit of
removing at least the latter contaminating effects. Regarding deviations from the log law
in internal flows, Luchini (2017) argued that additive linear terms should be present on
account of the driving pressure gradient. However, a driving force is present in the open
channel flow, but clear deviations from logarithmic behaviour are not observed. Hence
it seems more reasonable to accept that deviations or late occurrence of a logarithmic
behaviour in internal flows is rather due to geometric confinement effects, and specifically
to influence of the opposing wall in closed channels, as argued by Monkewitz (2021).

Study of flow in open channels also bears some interesting implications regarding
interactions between the inner and outer wall layers, and their universality. Our study
corroborates previous findings (Duan et al. 2020; Yao et al. 2022) that large outer-layer
eddies form in open channels, which are larger and more energetic than in closed
channels. Here, we find evidence that these eddies also become universal at sufficiently
high Reynolds number, when lengths are expressed in outer units. This would support
universality of the outer-layer dynamics, in addition to the well-recognized universality
of the inner-layer dynamics, as proposed by Dennis & Sogaro (2014). The signature of
wall-attached eddies is also evident in the spectral footprints, as well as in the statistics
of the spanwise velocities and pressure fluctuations, which exhibit extended logarithmic
layers. The imprinting of the energetic outer-layer eddies manifests itself with higher
values of the velocity variances. This in turn translates to earlier occurrence of the
(possible) outer-layer peak, which we believe can be observed in open channel flow
at Reτ ≈ 104. Regarding the growth of the inner-layer peak of the streamwise velocity
variance, available evidence seems to support logarithmic growth with Reτ , although firm
asymptotic trends are difficult to discern. Specifically, we find empirical evidence that the
turbulence kinetic energy dissipation rate at the wall reaches an asymptote, as argued by
Chen & Sreenivasan (2021), but we also find that the peak location at which the streamwise
velocity variance is maximum slowly varies with Reτ , which would allow for logarithmic
growth of the peak value even if the growth of the wall dissipation was to saturate.

In summary, we find that, besides its intrinsic interest, open channel flow can be
exploited usefully as a testbed to explore the behaviour of wall turbulence at extreme
Reynolds number, and especially to disentangle various complicating effects. Follow-up
studies will also include analysis of the process of exchange of mass and momentum at the
free surface at computationally high Reynolds number.
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Appendix A. Box and grid sensitivity analysis

The wall-normal stretching is designed after the prescriptions set by Pirozzoli & Orlandi
(2021), to resolve the steep near-wall velocity gradients and the local Kolmogorov scale
away from the wall. Referring to the no-slip wall, the grid points are distributed according
to

y+(j) = 1
1 + (j/jb)2

[
Δy+

w j +
(

3
4

αcηj
)4/3

(j/jb)2
]
, (A1)
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Figure 14. Distribution of wall-normal coordinate (yj, solid line) and corresponding grid spacing (Δy, dashed

line) for flow case F, as a function of the grid index (j).
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Figure 15. (a) Wall-normal grid resolution, in terms of grid spacing in local Kolmogorov units. (b) Detail of
the root-mean-square spanwise vorticity near the free surface. The colour codes are as in table 1.
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Flow case Mesh (Nx × Ny × Nz) Lz/h λmax/h Reτ ETT Line style

C 2304 × 165 × 1536 2π 1.26 994.43 223.8

C-M 2304 × 165 × 2304 3π 1.57 994.62 179.0

C-W 2304 × 165 × 3072 4π 1.80 994.65 153.1

C-WW 2304 × 165 × 3849 5π 1.75 992.91 55.4

C-FY 2304 × 265 × 1536 2π 1.26 994.77 154.2

Table 2. Computational parameters for box and grid sensitivity study. For all cases, Reb = 20 000. Here, Nx,
Ny and Nz are the numbers of grid points in the streamwise, wall-normal and spanwise directions, respectively,
Reτ = uτ h/ν is the friction Reynolds number, λmax is the wavelength corresponding to the outer spectral peak,
and ETT is the time interval used to collect the flow statistics, in units of the eddy turnover time h/uτ .
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Figure 16. Variation of pre-multiplied spanwise spectral densities of instantaneous streamwise velocity with
wall distance for the flow cases listed in table 2. Wall distances and wavelengths are reported both in inner units
(bottom, left axes), and in outer units (top, right axes). The dashed line denotes the channel free surface. The
crosses denote the positions of the inner and outer energetic sites. Contour levels from 0.2 to 2.0 are shown, in
intervals of 0.2.

where Δy+
w = 0.05 is the wall distance of the first grid point, jb = 40 defines the grid

index at which transition between the near-wall and the outer mesh stretching takes place,
and cη = 0.8 guarantees resolution of wavenumbers up to kmaxη = 1.5. The grid points
are also more mildly clustered towards the free-slip wall to guarantee proper resolution of
the free-surface layer. Based on preliminary studies, we still use the stretching function
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Figure 17. Box and grid sensitivity study for one-point statistics: (a) inner-scaled mean velocity profiles
and streamwise velocity variances, and (b) log-law diagnostics function. The dashed line in (a) refers to
the logarithmic fit U+ = log y+/0.375 + 4.21. The dashed horizontal line in (b) denotes the inverse Kármán
constant 1/0.375. The line style is as in table 2.

(A1), however, with jb = 15, cη = 1.03. The two distributions are smoothly connected at
y/h = 0.73, as shown in figure 14.

The wall-normal resolution is checked a posteriori in figure 15, where we show the grid
spacing expressed in local Kolmogorov units, which is found to be no larger than 2.6,
throughout the channel. Adequate resolution of the free-surface layer is also evident in
figure 15, which shows that it is resolved with ten collocation points at least.

Sensitivity of the computed results to the computational box size and grid resolution
has also been verified by carrying out additional simulations at Reb = 20 000, as listed in
table 2. As one could argue from the instantaneous flow visualizations of figure 2, spanwise
confinement effects are expected, especially towards the free surface, where structures
are wider. This is why flow cases C-M, C-W, C-WW were carried out, corresponding to
box width up to Lx = 5πh. Some confinement effect is in fact noticeable in the spectral
maps (see figure 16), which show some variability of the outer spectral peak position
and wavelength. This is made quantitative in table 2, where the outer peak wavelength is
reported. Apparently, having a wider domain allows the outer eddies to become a little
larger. The effect of rearrangement of the outer part of the spectral maps is, however, quite
small when it comes to the one-point statistics, which we show in figure 17. In fact, scatter
in the mean and first-order statistics, shown in figure 17(a), is much less than 1 %, hence
within the statistical sampling error. This error is magnified when the diagnostic function
is reported, as in figure 17(b). In this case, the scatter is larger, but not to the extent of
modifying the results qualitatively.
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