
Can. J. Math., Vol. XXV, No. 6, 1973, pp. 1285-1294 

ON THE STABLE HOMOTOPY TYPE OF 
THOM COMPLEXES 

R. P. HELD AND D. SJERVE 

1. Introduction. Let a b e a real vector bundle over a finite CW complex X 
and let T(a;X) be its associated Thorn complex. We propose to study the 
5-type (stable homotopy type) of Thorn complexes in the framework of the 
Atiyah-Adams /-Theory. Therefore we focus our attention on the group 
JR(X) which is defined to be the group of orthogonal sphere bundles over X 
modulo stable fiber homotopy equivalence. A basic link between the 5-type 
of Thorn complexes and the functor / R is given by the following proposition. 

(1.1) PROPOSITION (Atiyah [3]). Let a, (3 be real vector bundles over a finite 
CW-complex X and suppose JR{a) = JR{fi)> Then T(a, X) and T(ft, X) are of 
the same S-type. 

The main theme of this paper is to describe under which extra conditions 
the * 'converse" of Atiyah's theorem holds. A particular result in this respect 
can be stated as follows. (We use Adams' [1] notation.) 

(1.2) THEOREM. Suppose a, {$ are real vector bundles over a finite connected 
CW complex X, both oriented with respect to KR* theory and assume that KR(X) 
is torsion free. Suppose further that there exists a homotopy equivalence 

f : T(/3, X) -> T(a, X) such that 

/^ 
8*(T(a,X); Q) >£*(Ttf,Xy, Q) 

* / $ / 

H*(X; Q) > H*(X; Q) 
± i d 

is a commutative diagram, where <f>a
H, <j>pH denote the Thorn isomorphisms. Then 

JRM =JR(P). 

Let us point out that the assumption llKR(X) is torsion free" is crucial. To 
illustrate this we shall construct (see (2.5)) two real vector bundles a, /3 over 
S2 V S4 which give rise to 5-equivalent Thorn complexes, but whose JR classes 
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are different. We are indebted to our friend U. Suter for drawing our attention 
to this nice example. 

Theorem (1.2) essentially grew out of our work on the Spanier Conjecture; 
see [5]. In fact it synthesizes the basic arguments of that paper. 

The proof of (1.2) will be followed by an application (see (3.17)). 

2. Proof of the main theorem. Let X be a finite, connected CW-complex 
and KA(X) its Grothendrick ring of virtual A-bundles, where A stands for 
either C or R. By abuse of language we shall denote a A-vector bundle, its 
equivalence class, and even its stable equivalence class by the same (Greek) 
letter. The basic facts governing the relationship between KA(X) and JA(X) 
can be found in Adams [1], Adams-Walker [2], and Atiyah [3]. In order to 
avoid confusion between the functor JA of [2] and JA of [1]—which are 
defined differently—we shall denote the functor JA' of [2] by BhA, referring 
to the fact that it is defined in terms of the characteristic class bhA. 

Now let a, £ be A-vector bundles over X and suppose that there exists a 
homotopy-equivalence / : T(P) —> T(a) (we suppress X in the notation). 
Our goal is then to find conditions which imply JA(a) = JA(fi). 

An appropriate procedure for doing this is to study the effect of the map 
induced by / in various cohomology theories. Accordingly we shall henceforth 
assume a and /3 are i£A-oriented bundles. 

Let us fix some further notation. As the bundles a, fi are i£A-oriented there 
exist i£A-Thom classes Ua, Up and H*(—; Z)—Thorn classes Va, Vp of a, 0 
respectively, and Thorn isomorphisms $a

K, $pK, $a
H, $pH in the corresponding 

cohomology theories. For example, we evaluate the Thorn isomorphism 
$a

K : K(X)->K(T(a)) by the formula $a
K(x) = xV Ua for all x G K(X). 

In [5] the concept of an "untwisted homotopy equivalence"/ : T(($) —» T(a) 
played a decisive role. This signals that we should concentrate on such specific 
homotopy equivalences. 

(2.1) Definition. A homotopy equivalence/ : T(/3, X) —> T(a, X) is said to 
be untwisted if there exists 8 = ± 1 such that 

f*(x V Va) = à • x U Vp for all x € H*(X; Q). 

It is obvious how an untwisted 5-equivalence has to be defined. Note that if/ 
does arise from a fiber homotopy equivalence then it is untwisted ! 

The proof of theorem (1.2) evolves from the subsequent propositions. 

(2.2) PROPOSITION. Suppose f : T(P, X) —> T(a, X) is an untwisted S-
equivalence, where a, ft are KA-oriented. Then BhA(a) = BhA((3). 

Proof. As a matter of notational convenience define a group homomorphism 
F : KA(X) -+KA(X) by the formula / * ( * U Ua) = F(x) U Up. (Without 
loss of generality we assume/ to be a homotopy equivalence.) 
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Consider the commutative diagram 

KA(T(a)) » KA(T(I3)) 

ch ch, 

S*(T(a);Q) >8*(W);Q). 
f* 

We get on the one hand 

chAf*(x KJ Ua) = chA(F(x) U Ufi) = bhA(0) • chA(F(x)) U V? 

by [1, p. 156], and on the other hand 

f*chA(x\J Ua) = f*(bhA(a)chA(x) \J Va) = ôbhA(a)chA(x) U 7j 

again by [1, p. 156]. 
Therefore bhA(l3)chA(F(x)) = bhA(a)chA(8x) for all x £ XAQO- If we 

choose x G KA(X) to be invertible we can re-write this as bhA(a — 0) = 
chA(F(x) • 5 • x_ 1) . But WzA takes values in the multiplicative group 

1 + S iT(X; Ç) 
s>0 

and so we have F(x)ôx~1 = 1 + 3/ for some y £ KA(X). Hence bhA(a —• /3) = 
cAA(l + 3>) and therefore BhA(a — fi) = 0. Thus the proof is complete. 

In view of (2.2) it is important to know when the group BhA(X) is iso
morphic to JA(X). A partial answer to this question is given in the next 
theorem. By BhA : KA(X) —>BhA(X) we denote the "canonical" projection; 
see [2]. 

(2.3) PROPOSITION. Suppose £ is a KA-oriented vector bundle over X, KA(X) is 
torsion free and BhA(%) = 0. ThenJA(£) = 0. 

Proof. BhA(£) = 0 if, and only if, there exists an element y £ KA(X) 
such that bhA(£) = chA(l + y). Making use of the equation 

WA(«)-CAA(PA*(S)) =kn(rbhA(0) 

(see [1, p. 157]) we get chA((l + y)pA*(É)) = chA(kn*A«(l + y)), where 2n 
is the fiber dimension of £ over R, pA*(£) the A-cannibalistic class of £, and 
\f/A

k an Adams operation. The chern character chA is a monomorphism since 
there is no torsion in KA(X); therefore 

* * V ( i + y) 
PA (0 = ~ l + y 

for all integers k. If the stable class of £ is considered this amounts to pA
k(£) = 

rpA
k(l + 3>)/(l + y) a s elements of KA(X) (g) Q*> which is equivalent to 
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JA(£) = 0. Here Qk denotes the addit ive group of rat ionals of the form 
p/kq. Hence the proof is complete. 

(2.4) Remarks, (i) By vi r tue of the Adams Conjecture—as proved by 
Quillen [7]—the converse of (2.3) is t rue in the case A = R. We do not know 
if the converse is t rue in case A = C; (Note t h a t J C ( X ) ^ Jc

f (X) in general; 
an example is given by X = S4). 

(ii) Theorem (1.2) is an immediate consequence of (2.2), (2.3) and the 
Adams conjecture. 

(2.5) Example. We now give an example which shows t h a t the assumptions 
in (1.2) are essential. For this purpose we pick X = S2 V S4. Let œ denote the 
complex Hopf line bundle over S2 and let £ denote the quaternionic (left) Hopf 
line bundle over 5 4 . Then KR(X) ~ Z 2 © Z with generators a2 = r(œ) — 2, 
c7-4 = r(£) — 4 and JR(X) = Z2 © Z 2 4 with generators x2 = P R ^ ) , 
^4 = -7R(O*4). Then we choose a, & such t h a t J R ( « ) = (x2, 0) and J R ( / 3 ) = 

(x2, 12x4). 
If 7 is any vector bundle over X, then we have 

T(y,X) = T(y\S\S2)UT(y\S\S'), 

where k is the fiber dimension of y and Sk is the sphere carrying the Thorn 
class. Bu t T(y\S4, S4) = Sk Ufe

4+\ where the a t taching m a p / : S3+k -> Sk is 
given by the image of y\S4 via the classical P-homomorphism J : T-s(S0(k)) —> 
X3+*(5*). Similarly for T(y\S2, S2). T h u s 

T(a,X) = ek+2 U 5* V 5* f 4 and T(0,X) = e*+2 U 5* U **+4, 

where r = P(12cr4) and TJ is the stable Hopf map . Bu t P(12cr4) can be repre
sented by TJZ [9, p . 190] which is null homotopic as a m a p Sk+S —> Sk Ur? ^ + 2 -
Therefore T(OL,X)<^.T{$,X). In fact this homotopy equivalence can be 
taken to be untwisted since the top cell of T(a, X) is a t tached trivially. 

Even more is t rue. Namely : J R ( « ) ^ PR(<?*/3) for all self equivalences 
e of X . This is because the induced map e* on KK(X) is determined by 
e*(a2) = o"2, e*(o"4) = =t o"4, and therefore e*(x2) = x2, e*(x4) = =J= x4. 

3 . A p p l i c a t i o n s of t h e m a i n t h e o r e m . As an application of (1.2) we show 
how some s tun ted quaternionic projective spaces can be classified up to 
5- type . Let £ be the canonical quaternionic (left) line bundle over HPn. Then 
Atiyah [3] proved t h a t the s tunted quaternionic projective space WPn+s/WPs~l 

is homeomorphic to the Thorn complex T(si~, HPn). T h u s the spaces 
UPy-8/UP8-\ H P ^ + V H P ' - 1 are 5-equivalent if J R ( s£) = PR(*£) as elements 
of P R (HP W ) . For some earlier results in this direction see [6]. In our approach 
a t the 5- type classification we assume t h a t UPn+s/UPs~\ H P * * ' / H P ' - 1 are 
5-equivalent and then prove t h a t J R ( S £ ) = P R ( / £ ) under certain mild hy
pothesis (see (3.17)) . 
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Thus, all throughout this section we shall assume that there exists an 
S-equivalence / : ttP^/ttP81 -> H P ^ ' / H P ' - 1 . Letting a 6 H4UPn; Z) de
note a generator we make the following definition: 

(3.1) Definition. Let ei, e2, . . . , en+1 be the sequence of ± signs defined by 

If €i = €2 = . . . = ew+i then / is an untwisted 5-equivalence and so by the 
stable analogue of (1.2) we would have JR(S%) = J R ( / £ ) . Our method is to 
show that the functoriality relationships / * o p y = p ; ' o / * , where p-7 is an 
arbitrary mod p Steenrod power, automatically imply €l = €2 = . . . = en+i— 
provided certain conditions hold. By a long but routine calculation the 
equat ions/* o p^a* -1 U Vt{) = py o/*(az '_1 \J Vt{) give the following infor
mation (for a similar calculation see [5]): 

(3.2) LEMMA. For any odd prime p we have the congruences 

(2(i- 1 + s)\ (2(i- l + t)\ , , x 
[ K j J)*t= [ j )ti+hiP-Vj i^odp) 

for all i,j ^ 1 satisfying i + \{p — l)j fg n + 1. 

The basic tool in analyzing these congruences is the following lemma which 
we use repeatedly. 

(3.3) LEMMA. 

where 

A = E Akp\ B=Z BkP* 

are /&£ p-adic expansions. 

Then we have 

(3.4) THEOREM. If p ^ 2n — 1 w aw odd prime, then et = €i+i(P-D for all i 
such that l^i^n+1— \(p — 1) ana7 i — 1 + s ^ 0 (mod £). 

Proof. Fix an odd prime £ and let 2s = ^ #*£*> 2t = ^ bkp
k be the £-adic 

expansions of 2s, 2t respectively. Assume that ak = bk for k < v; whereas 
av 9^ by. This is equivalent to assuming s = /(mod pv), s ^ /(mod pv+1). 

If 1 + î (£ — 1)£* ^ » + ! t n e n we can substitute i = 1, j = £ ' into (3.2). 
By (3.3) the result is av = — a„ (mod£>), since a„ ^ a„ (mod£>). If £" + 
\(p — l)pv S n then we can substitute i = pv + 1, j = pv into (3.2). This 
gives 2 + a„ = =b (2 + 6„) = ± (2 — a„) (mod£). One can easily check 
that this gives a contradiction and therefore we must actually have 
Pv + h(P - VPV > n-
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We have thus proved that for any odd prime p we have 5 = t (mod p^), where 
/x = fi{p) is the least integer such that \{p + l)p» > n. As a consequence 
(3.2) then gives e, = e ^ ^ - i ^ for all i,j satisfying: i,j ^ 1; i + \{p — \)j ^ 

n + 1; j < p* and I . I ^ 0(mod#>). The result now follows by 

choosing j = 1. 

(3.5) Notation. Instead of writing et = e^+i^-i) = . . . we shall use the 
notation [i, i + \(p — 1), . . .] . 

(3.6) Example. If n ^ 2 then we can substitute p = 3 into (3.4). There are 
then three possibilities: 

(i) [1,2, 3], [4, 5, 6 ] , . . . if s ss l (mod3) ; 
(ii) [1,2], [ 3 , 4 , 5 ] , . . .if 5 = 2(mod3); 

(iii) [ l ] , [ 2 , 3 , 4 ] , . . . i f 5 ^ 0 ( 3 ) . 
Therefore the integers 1, 2, . . . , n + 1 are partitioned into disjoint sets of 

consecutive integers. Each of these sets contains three elements, except 
possibly for the first and last sets. 

(3.7) THEOREM: e2 = e3 = . . . = en. 

Proof. First note that this theorem has meaning only for n ^ 3. If n = 3 
then we may use p = 5 in (3.4) to relate consecutive sets in the above parti
tion. For example, if [?, k — 2, k — 1], [k, k + 1, ?] are consecutive sets of 
equal signs then (3.4) for p = 5 gives at least one of efc_2 = ek, efe_i = ek+i. 
The question marks are put in because these sets may contain just two 
elements. The theorem now follows by equating signs from all such consecutive 
groups. 

It should be remarked that one fails to get ei (respectively en+i) by this 
method if, and only if, 5 = 0(mod 3) (respectively 5 = 1 — w(mod 3)). To 
improve on (3.7) we make the following definitions: 

(3.8) Definitions. We say that 5 satisfies condition An (respectively Bn) if 
there exists an odd prime p = 2n — 1 such that 5 ?é 0(mod p) (respectively 
5 fé UP ~ 1) - n(modp)). 

Then we have 

(3.9) THEOREM. ei = €2 = . . . = ew if s satisfies condition An and 
€2 = e3 = . . . = en+i if s satisfies condition Bn. 

Proof. According to (3.4) we can equate ei to one of e2, . . . , en if there 
exists an odd prime p = 2n — 1 such that 2 = l + i ( £ ~ ~ l ) = ^ and 
5 ^ 0(mod£) , i.e., if 5 satisfies condition An. By virtue of (3.7) this proves 
the first part. The second part is similar. 

(3.10) COROLLARY. Suppose H P ^ / H P * " 1 and H P ^ ' / H P ' " 1 are stably 
homotopically equivalent and suppose s satisfies conditions An and Bn. Then 
JR(S£) = JR(%) CIS elements of JR(HPW). 
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I t is easy to see t ha t if n ^ 2 then s satisfies a t least one of the conditions 
An, Bn and so we have either ei = e2 = . . . = en or e2 = e3 = . . . = en+i. 
Let Mk = Mk(H) denote the At iyah-Todd number corresponding to HP*" 1 , 
i.e., Mk is the order of £ as an element of J R ( H P f t _ 1 ) . Then the equali ty of n 
consecutive signs is sufficient to give 

(3.11) T H E O R E M , S = /(mod Mn) if n ^ 2. 

Proof. Firs t assume ei = €2 = . • . = en. Then the stable homotopy equi
valence / : UPn+ V H P s - x - » UPn+ V H P ' - 1 restricts to an untwisted stable 
homotopy equivalence H P ^ + V H P 5 " 1 -> H P ^ + ' / H P ' - 1 and so J R ( ^ ) = 
J R ( J £ ) as elements of J R C H P * - 1 ) , i.e., 5 = / (mod Af„). 

jjfr Now assume e2 = e3 = . . . = en+i. Consider the stably homo topically 
commuta t ive diagram 

s*s > s u 

I r i 
HP^'/UP8-1 > UP^/UP1'1. 

Thejver t ical maps are the cellular inclusions. By taking mapping cones we 
get a stable homotopy equivalence g : HPn+s/HPs —> H P w + ' / H P ' whose 
corresponding sequence of signs is jus t €2, . . . , en+i. T h u s g is untwisted and 
therefore JR((s + 1)?) = JR((t + 1)£) as elements of J R Q É L P * - 1 ) . Again we 
have 5 = /(mod Mn). 

T o proceed further we need a description of the quaternionic At iyah-Todd 
numbers . Sigrist and Suter [8] have determined the numbers Mk. Their result 
is 

v2(Mk) = max(2& - 1, 2r + v2(r)), 1 ^ r ^ k - 1; 
vp(Mk) = max(r + ^ W ) , 1 ̂  r ^ [ ( 2 f c - l ) / ( £ - l ) ] f o r o d d p r i m e s £ ^ 2 & - 1 ; 
vp(Mk) = 0iîp> 2k - 1. 

Here vv(a) denotes the exponent of p in the prime power factorization of a. 

(3.12) Definition. For any prime p and a fixed integer n let r = T ( ^ ) be the 
least integer such t h a t \{p — l)pT > n. 

As a corollary of (3.11) we then have 

(3.13) COROLLARY. If n ^ 2 awd p S 2n — 1 is an odd prime then 

for all i,j^ 1 satisfying i + \{p — l)j ^ n + 1. 

Proof. Notice t h a t if i,j à 1 and i + \{p — l ) j ^ n + 1 then we also have 
j < pT. T h e result will follow if we prove t h a t r S vp(Mn), since then the 
£-adic expansions of 2 (i — 1 + s), 2(i — 1 + /) would agree up to a t least 
the pT~l term (see (3.3)) . 
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Let a = a(p) be the largest integer such that 

- . \2n - l l \2n - 2 
p = LT^Tj = L7-T 

_ 2 
.P - 1J LP 

Then vv(Mn) ^ pa + a. But a and r are defined by the inequalities 

\{p - l ) ^ " 1 ^ n < è(£ - l)pT\ \{p - \)p° ^ n - 1 < \{p - l)p*+i 

and so T - 2 ^ ^ T - 1 . Therefore vp(Mn) ^ pa + T — 2 and thus 
^(Jlf„) ^ r i f cr > 0. 

To complete the proof we need only consider the case a = 0. Then r = l o r 2, 
and since vv{Mn) ^ 1 we need only consider the possibility r = 2. But 
a = r — 2, if, and only if, \{p — l)pT~l = n, and so we have \{p — l)p = n. 
But then 

vp{Mn) = 

This completes the proof. 

2n - 2 

Lp-Tl 
(p -l)p-2 

p - 1 . 
> 2. 

From (3.2) we immediately get: 

(3.14) COROLLARY. Assume n ^ 2 and p ^ 2n — 1 is an odd prime. Then 
et = €i+±(P-i)j for all i,j ^ 1 satisfying i + \(p — l)j ^ n + 1 awd 

[2«-} + s))*0(mo6P). 

(3.15) Definition, s satisfies condition Cn (respectively Dn) if there exists an 
odd prime p ^ 2n — 1 such that 

5 p* 0(mod£ r) (respectively, 2n + 2s + 1 ^ 0(mod£ r))> 

where r is defined in (3.12). 

Before stating the strongest result obtainable from our method we need one 
more lemma. 

/ j^f — pj -f- A 
(3.16) LEMMA. For any prime p we have I . I = 0(mod£) for 

1 t^j = Lif, and only if,M-\- 1 = 0(mod pa), where a is the least integer such 
that pa > L. 

Proof. Write M + 1 = avp
v + h.o.t., where 0 < av < p. First assume 

| ~ p + A = 0(mod£) for 1 ^ j ^ L. If we attempt to substitute 

j = pv into this congruence we get 

(M-pj+j\ -(M+l -pv^ + pv - l\ 

-{M+l^pV-1)-av^0 (pndp). 
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Therefore pv > L and so v ^ a. Now assume M + 1 = C^mod^). Then 
v ^ a and for any j < p* we have 

( M - p j + j ^ ( M + l - p j + j - l ^ ( - p j + j - l ^ 0 (modp) 

as —pj-\-j — 1 < 0. This finishes the proof. 

Finally we have 

(3.17) THEOREM. Suppose n^2 and HPn+s/HPs-\ H P ^ / H P ' " 1 are 
stably homotopically équivalent. If s satisfies both condition Cn and condition Dn 

then JR(S£) = J R ( / £ ) as elements of JR(HPn). 

Proof. To prove this theorem we need only show that ei = €2 = . . . = en+i. 
We already know that either ei = €2 = . • . = en or 62 = e3 = . . . = en+i 
(and perhaps both). 

If €2 = e3 = . . . = en+1 then we use (3.14) with i = 1. Thus we want to 
find an odd prime p S 2n — 1 and an integer j ^ 1 such that 

(?H< 2 ^ 1 + \{p - l ) j ^ n + 1 and ( . ) ^ 0(mod p) 

This is equivalent to 5 satisfying condition Cn. 
On the other hand if ei = €2 = . . . = en then we use (3.14) for some i,j 

such that i + i(p — l)j = n + 1. Therefore we need only find an odd prime 
p ^ 2n — 1 and integers i,j ^ 1 such that i ^ n, i -\~ \{p — l)j = n + 1, 

' 2 ^ 1 + , ^ 0 ( and I . ) ^ 0(mod £). In other words we must find an odd prime 

p ^ 2n — 1 and an integer j so that 1 S j S 2n/(p — 1) and 

O(mod^). (2n + 2s - pj +j\ 

\ J 
By (3.16) this is equivalent to 5 satisfying condition Dn. This concludes the 
proof. 

We could also apply our method to the problem of classifying stunted 
complex projective spaces CPn+s/CPs~l up to stable homotopy type. Recall 
that the Atiyah-Todd number MA+I(C) is the order of JR(w) in 7R(CP*), 
where co is the Hopf complex line bundle over GPk. Feder and Gitler [4] have 
shown : 

(3.18) THEOREM. If n is odd and CPn+s/CP>s~\ CP^+yCP'- 1 are stably 
homotopically equivalent, then s = /(mod Mn+i(C)). 

Since this is a best possible result we shall not bother doing the number 
theory associated to the complex case. Therefore we conclude with a con
jecture. 
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(3.19) Conjecture. Suppose F is one of R, C or H and suppose (n, F) 7̂  
(1, H) , (2, C). Then FI^+'/FP8-1 and FP^'/FP1'1 are stably homotopically 
equivalent if, and only if, 5 = /(mod Mn+i(F)). 

By ad hoc homotopy arguments we can show that this conjecture is false 
for («, F) = (1 ,H) , (2, C). However these counter-examples seem to be 
only low dimensional anomalies. 
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