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A Free Product Formula for the
Sofic Dimension

Robert Graham and Mikael Pichot

Abstract. It is proved that if G = G1 ∗G3 G2 is free product of probability measure preserving s-regular
ergodic discrete groupoids amalgamated over an amenable subgroupoid G3, then the sofic dimension
s(G) satisfies the equality

s(G) = h(G0
1)s(G1) + h(G0

2)s(G2) − h(G0
3)s(G3),

where h is the normalized Haar measure on G.

1 Introduction

Let G be a group. The sofic dimension of G is an asymptotic invariant that accounts
for the number of unital maps

σ : Fn
± −→ Sym(d)

from the “Cayley ball” Fn
± of radius n in G into the symmetric group Sym(d), where

F ⊂ G is a finite set, n is an integer, d is a “very large” integer and the maps σ are
multiplicative and free up to an error δ > 0 relative to the normalized Hamming
distance on Sym(d) (see §2). If SA(F, n, δ, d) is the (finite) set of all such maps, and
NSA := |{σ|F, σ ∈ SA}|, then the sofic dimension of F is

s(F) = inf
n∈N

inf
δ>0

lim sup
d→∞

log NSA(F, n, δ, d)

d log d

(so the limit is on d first, and then on δ and n). This definition was considered in
[DKP1,DKP2]. It is a combinatorial version of Voiculescu’s (microstate) free entropy
dimension δ(F), which can be defined by a similar formula involving maps

σ : Fn
± −→ U (d)

into the unitary group U (d) (see [Voi96, Jun1]). It can be shown that the value of
s(F) does not dependent on the finite generating set F of G and is therefore denoted
s(G). A limiting process allows to define of s(G) for an arbitrary group G.

The definition of the sofic dimension can be extended to probability measure pre-
serving (pmp) actions of countable groups, their orbit equivalence relations, and
more generally to discrete pmp groupoids. We refer to [DKP2, Definition 2.3] for
the general groupoid definition. An interesting feature of s is to provide combinato-
rial proofs of statements in orbit equivalence theory (for example, Corollary 7.5 in
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[DKP1] reproves Gaboriau’s theorem that the free groups on p generators are pair-
wise non orbit equivalent using the counting method).

Let G be a pmp groupoid and assume that G = G1 ∗G3 G2 is an amalgamated free
product over a subgroupoid G3. A free product formula of the form

s(G) = s(G1) + s(G2)− s(G3)

is known to hold in the following cases (under some technical assumptions, for ex-
ample “finitely generated” and/or “s-regularity”):

(a) G, G1, G2, and G3 are pmp equivalence relations on (X, µ) and G3 is amenable as
an equivalence relation: see [DKP1, Theorem 1.2].

(b) G, G1, G2, and G3 are countable groups and G3 is an amenable group: see [DKP2,
Theorem 4.10].

(c) G is the crossed product groupoid G := G1 ∗G2nX of a pmp action (G1 ∗G2) y
(X, µ), where G1 and G2 are countable groups and X is a standard probability
space. Here G3 is assumed to be the trivial group but the action of G1 ∗G2 is not
necessarily free (if free this is covered by (a)); see [DKP2, Theorem 6.4].

The general strategy to establish this sort of formula was devised by Voiculescu for
the free entropy dimension: see in particular [Voi91, Voi96, Voi98].

The proofs of the above results in [DKP1,DKP2] apply distinct tools to handle the
amenable amalgamated part, namely the Connes–Feldmann-Weiss theorem in (a),
and the Ornstein–Weiss quasi-tiling theorem in (b). This was a reason why it was
hardly conceivable to incorporate an amenable amalgamated subgroup G3 in (c); in
fact, the technical details would presumably (to quote [DKP2, §6]) be ‘formidable’
even if the action of G3 y X is essentially free.

We follow a different approach here, based on the use of Bernoulli shifts as a “cor-
respondence principle”:

groupoids ! equivalence relations

by which we mean that proving a result for (pmp) equivalence relations automati-
cally implies an a priori more general statement for (pmp) groupoids in a variety of
situations, and in particular for the computation of s (see §10 for more details).

The exact assumptions that we need for the free product formula are described in
the following statement, which is the main result of this paper.

Theorem 1.1 Let G be a discrete pmp groupoid of the form G = G1 ∗G3 G2, where
G1,G2 are s-regular ergodic subgroupoids of G and G3 is an amenable groupoid. Then

s(G) = h(G0
1)s(G1) + h(G0

2)s(G2)− h(G0
3)s(G3),

where h is the normalized Haar measure on G and G0 is the object space of G.

The more technical assumptions in this result can be weakened slightly. For ex-
ample, one way to remove the s-regularity assumption, following Voiculescu’s idea
(see e.g., [Voi98, Remark 4.8]), is to replace the lim sup in the definition of s(F) by a
limit along a fixed ultrafilter ω. What is rather unclear is the extent to which the as-
sumption that G3 is amenable is essential. Cohomological tools can be used to prove
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a similar formula for the first L2 Betti number β1 under the much weaker assump-
tion that β1(G3) = 0. (This is a result of Lück; see [BDJ, Theorem A.1] for the group
case.) Furthermore, Mineyev and Shlyakhtenko [MS] have shown that Voiculescu’s
non-microstate free entropy dimension δ∗ satisfies δ∗(G) = β1(G) − β0(G) + 1 for
any finitely generated group G, and therefore we have the formula

δ∗(G1 ∗G3 G2) = δ∗(G1) + δ∗(G2)− δ∗(G3),

where G1 and G2 are finitely generated groups and G3 is a group such that β1(G3) =
0. A fundamental relation between the microstate and the non-microstate approach
to free entropy is provided by the Biane–Capitaine–Guionnet inequality δ ≤ δ∗

[BCG]. A free product formula for δ0 has been established in [BDJ] for amalgama-
tion of (δ0-regular) groups over an amenable subgroup (where δ0 ≤ δ is a technical
modification of δ not depending on the generating set of the group; see [Voi96, Sec-
tion 6] and [Voi98]). We also note that the above correspondence principle for δ0

is probably less useful as the amenable part can always be handled uniformly using
the hyperfiniteness of von Neumann algebra LG3 (see in particular [Jun2]; for exam-
ple, the proof in [BDJ] in the group case does not rely on quasi-tilings). Concerning
pmp equivalence relations, a free product formula has been established by Gaboriau
[Gab] for the cost, allowing for amalgamations over amenable subrelations, and by
Shlyakhtenko [Shl] for δ0, for free product with trivial amalgamation.

Question 1.2 Can the assumption that G3 is amenable in Theorem 1.1 be weak-
ened (for example to β1(G3) = 0)?

The paper is organized as follows. Sections 2 and 3 establish basic facts about pmp
groupoids and their actions. In the case of s(G), the correspondence “groupoids!
equivalence relations” is achieved by using the formula s(G) = s(GnXG

0 ), where G y
XG

0 is a Bernoulli shift; see Theorem 8.2 (other applications of the correspondence
principle are given in §10). The proof of this formula uses the idea in a result of L.
Bowen [Bow, Theorem 8.1] for the sofic entropy, as explained in Section5. Other
difficulties inherent to the groupoid setting are dealt with in Sections 4, 6, and 7
(these difficulties were avoided in [DKP2] by working with groups and their actions
rather than with general groupoids). The proof of Theorem 8.2 is given in Section 8.
In Section 9 we prove a scaling formula for s(G). In Section10 we prove Theorem 1.1
by putting together these ingredients.

2 Review of s(G)

Recall that a discrete standard Borel groupoid G with base (i.e., set of objects) G0,
source map s : G → G0 and range map r : G → G0, is said to be probability measure
preserving (pmp) with respect to a Borel probability measure µ on G0 if the left and
right Haar measures h and h−1 on G coincide: h = h−1, where

h(A) :=

∫
G0

|Ae| dµ(e) and h−1(A) :=

∫
G0

|Ae| dµ(e)
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and A ⊂ G is a Borel set with Ae := r−1(e) ∩ A and Ae := s−1(e) ∩ A for e ∈ G0.
Then h|G0 = h−1

|G0 = µ, so we simply denote by h the measure µ on G0.
A bisection is a Borel subset s ⊂ G such that the restrictions of s and r to s are

Borel isomorphisms onto G0. The set of bisections form a group called the full group
of G and are denoted [G]. A partial bisection is a Borel subset s ⊂ G such that s and
r are injective in restriction to s. The set of partial bisections forms a Polish inverse
monoid called the full inverse semigroup (or the full pseudogroup) of G, denoted JGK.
For s ∈ JGK let dom(s) := s−1s ⊂ G0 and ran(s) := ss−1 ⊂ G0.

For example, if G := {1, . . . , d}2 is the transitive equivalence relation on the set
{1, . . . d} with d ∈ Z≥1 elements, then [G] = Sym(d) is the symmetric group on d
letters and JGK is the inverse semigroup of partial permutations. We denote the latter
by JdK.

The semigroup JGK (and [G] ⊂ JGK) is Polish with respect to the uniform distance

|s− t| := h{e ∈ G0 | se 6= te}.
If G = {1, . . . , d}2, then the uniform distance is the normalized Hamming distance
on JdK.

The (von Neumann) trace on JGK is given by

τ (s) := h(s ∩ Ge) = h{e ∈ G0 | se = e}.
It is the restriction to JGK ⊂ LG of the finite trace on the von Neumann algebra LG
of G.

We have

|s− t| = τ (s−1s) + τ (t−1t)− τ (s−1st−1t)− τ (st−1).

We will write tr for the trace on JdK. So

tr(σ) =
1

d
× number of fixed points of σ ∈ JdK.

If F ⊂ JGK is a finite subset and n ∈ Z≥1, then Fn
± denotes the set of all products of

at most n elements of F± := F ∪ F−1 ∪ {Id}. For F ⊂ JGK we let Σ F ⊂ JGK denote
the set of sums of elements of F with pairwise orthogonal domains and pairwise
orthogonal ranges.

By definition, G is sofic if its full inverse semigroup JGK is sofic:

Definition 2.1 A pmp groupoid G is called sofic if for every finite set F ⊂ JGK,
δ > 0 and n ∈ Z≥1 there exist d ∈ Z≥1 and a map

σ : Σ Fn
± −→ JdK

such that

(i) |σ(st)− σ(s)σ(t)| < δ

for every s, t ∈ Σ Fn
± such that st ∈ Σ Fn

± (σ is δ-multiplicative) and

(ii) | tr ◦σ(s)− τ (s)| < δ

for every s ∈ Fn
± (σ is δ-trace-preserving).

Remark 2.2 If G is a group, one can replace JdK by Sym(d) as is easily seen.
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Remark 2.3 The notion of sofic pmp equivalence relations was introduced by Elek
and Lippner in [EL] in terms of graph approximation and in [Oz] by requiring that
JGK be sofic as in the definition above (compare [DKP1, DKP2]). The sofic prop-
erty was first considered for groups by Gromov and Weiss in terms of (Cayley) graph
approximation and was studied by Elek and Szabo. It is a simultaneous generaliza-
tion of amenability and the LEF property of Vershik and Gordon (see [Pe] for more
details).

Let

SA(F, n, δ, d) := {σ : Σ Fn
± → JdK satisfying (i), (ii)}

and define

| SA(F, n, δ, d)|E := |{σ|E | σ ∈ SA(F, n, δ, d)}|
for E ⊂ F.

Definition 2.4 For E ⊂ F ⊂ JGK finite, n ∈ Z≥1 and δ > 0 define successively

sE(F, n, δ) := lim sup
d→∞

log | SA(F, n, δ, d)|E
d log d

,

sE(F, n) := inf
δ>0

sE(F, n, δ),

sE(F) := inf
n∈Z≥1

sE(F, n).

If K ⊂ JGK is an arbitrary subset, the sofic dimension of K is

s(K) := sup
E

inf
F

sE(F)

where E ⊂ F ⊂ K are finite subsets. The sofic dimension of G is s(G) := s(JGK).
One defines similarly the lower sofic dimension s and the ω sofic dimension sω for a
ultrafilterω on Z≥1 by replacing lim supd→∞ by lim infd→∞ and limd→ω respectively.

Voiculescu’s regularity condition reads as follows.

Definition 2.5 A pmp groupoid G is s-regular if s(G) = s(G).

Finally we recall the following definition.

Definition 2.6 A subset K ⊂ JGK is transversally generating if for any t ∈ JGK and
ε > 0 there exist n ∈ Z≥1 and s ∈ Σ Kn

± such that |t − s| ≤ ε.

This definition appears in [DKP1, Definition 2.4] where it is called “dynamically
generating”. The more classical notion of generating set for pmp equivalence rela-
tions (and groupoids) (as in [DKP1, Definition 2.2]) is that of Connes–Feldmann–
Weiss. While being distinct notions, a groupoid is finitely generated in the Connes–
Feldmann–Weiss sense if and only if it is transversally finitely generated (by an ar-
gument similar to that in [DKP1, Proposition 2.6]), so “finitely generated” is unam-
biguous for groupoids (and coincide with the usual notion in the group case).

The following result is proved in [DKP1, Theorem 4.1].
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Theorem 2.7 (Invariant of s under orbit equivalence) Let R be pmp equivalence
relation and K, L be transversally generating sets. Then s(K) = s(L), s(K) = s(L), and
sω(K) = sω(L).

The result in [DKP1] is stated for finitely generated equivalence relations, but the
same proof works in the general case (as does the proof of [DKP1, Theorem 1.2]).
The proof for groupoids is given in full generality in [DKP2, Theorem 2.11]. We will
not use this more general result here but will rather deduce it from Theorem 2.7 as
an illustration of the correspondence principle.

Remark 2.8 It is sometimes convenient to use the 2-norm on LG and its restriction
to JGK:

‖s− t‖2
2 := τ ((s− t)(s− t)−1) = τ ((s− t)−1(s− t)).

Observe ‖s− t‖2
2 ≥ |s− t| (with an equality ‖s− t‖2

2 = 2|s− t| on [G] ⊂ JGK) as

‖s− t‖2
2 = τ (s−1s) + τ (t−1t)− 2τ (st−1) and τ (st−1) ≤ τ (s−1st−1t).

3 Actions of Groupoids

Let X be a standard Borel space endowed with a Borel fibration p : X → G0, where
G0 is the base of G. If (µe)e∈G0 is a Borel field of probability measures on X, we
define a probability measure µ on X by µ :=

∫
G0 µ

edh(e), where h is the invariant
Haar measure on G0. Recall that a pmp action of G on the fibered space (X, µ) is a
measurable map

G ∗G0 X 3 (g, x) 7→ gx ∈ X

(where G fibers via the source map s : G → XG) satisfying the usual axioms of an
action, and such that g∗µs(g) = µr(g) for ae g ∈ G. Groupoid actions are denoted
G y X. The crossed product groupoid is the fiber bundle G ×G0 X endowed with
groupoid law defined by (s, x)(t, y) = (st, y) whenever t(y) = x.

Example 3.1 (Bernoulli shifts) Given a pmp groupoid G with invariant Haar mea-
sure h and a probability space (X0, µ0), consider the probability space

(XG
0 , µ) :=

∫
G0

(XGe

0 , µ
⊗

Ge

0 )dh(e)

(where XGe

0 :=
∏

Ge X0 is the infinite Cartesian product over Ge := r−1(e)) endowed

with the fibration XG
0 → G0 and field of measures (µ

⊗
Ge

0 )e∈G0 . Every element x ∈ XG
0

can be viewed as a sequence x := (xt )t∈Ge of elements of X0. The Bernoulli action
G y XG

0 is given by

s((xt )t∈Gr(s) ) := ((xs−1t )t∈Gr(s) ).

Remark 3.2 The notion of groupoid action has long been used in ergodic group
theory (see for example [Ram]). They can equivalently be described as actions on
bundles (cocycles) as above, or as groupoid extensions that are fiber bijective. In
[Bow2] L. Bowen discusses Bernoulli shifts using the latter description.
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We first prove a few lemmas that will be used in the proof of Theorem 1.1.

Lemma 3.3 Let G y XG
0 be a Bernoulli action and let H ⊂ G be an ergodic sub-

groupoid with G0 = H0. Then the action H y XG
0 is isomorphic to a Bernoulli shift

over H.

Proof By the von Neumann selection theorem, we can find a measurable section
s : RG → G of (s, r) : G ⇒ RG (i.e., the pmp equivalence relation associated with G)
such that that s(RG0) = G0 and s(RH) ⊂ H and, since the set G(e)/H(e) is countable
for e ∈ G0, measurable sections (g j : D j ⊂ G0 → SG) j∈ J of SG → G0 such that for
ae e ∈ G0, G(e) =

⊔
j∈ J H(e)g j(e). By ergodicity we may assume h(D j) = 1. Let

(ϕi)i∈I be a sequence in Aut(G0) such that {RH[ϕie]}i∈I form a partition of RG[e]
for ae e ∈ G0 (see [FSZ]). Then

Ge =
⊔

i∈I, j∈ J

⊔
(e, f )∈RH

H(e)g j(e)s(e, ϕ−1
i f ),

since any g ∈ Ge can be written uniquely in the form h0g j(e)s(e, ϕ−1
i f ) for i and f

such that (e, f ) ∈ RH and f = ϕis(g), so

gs(e, ϕ−1
i f )−1 ∈ G(e) and h0 = gs(e, ϕ−1

i f )−1g j(e)−1 ∈ H(e).

Consider the measurable field of maps ψe : XGe

0 → (XI× J
0 )He

defined by sending
x ∈ XGe

0 to (
(xh0g j (e)s(e,ϕ−1

i f ))(i, j)∈I× J

)
h0∈H(e),(e, f )∈RH

.

These maps are measure preserving, and if we consider the Bernoulli action of H with
base XI× J

0 then we see it is H-equivariant: for h ∈ He say h = h−1
1 s(d, e)−1, where

h1 ∈ H(e)

ψd(h(x)) = ψ(h(xh0g j (e)s(e,ϕ−1
i f ))(i, j)∈I× J,h0∈H(e),(e, f )∈RH)

= ψ((xs(d,e)h1h0g j (e)s(e,ϕ−1
i f ))(i, j)∈I× J,h0∈H(e),(e, f )∈RH)

=
(

(xs(d,e)h1h0g j (e)s(e,ϕ−1
i f ))(i, j)∈I× J

)
h0∈H(e),(e, f )∈RH

= h
(

(xh0g j (e)s(e,ϕ−1
i f ))(i, j)∈I× J

)
h0∈H(e),(e, f )∈RH

= h(ψe(x)).

We say a groupoid action G y X is essentially free if for ae s ∈ G \ G0,

µs(s)(Fix(s)) = 0,

where

Fix(s) = {x ∈ Xs(s) | sx = x}.

Lemma 3.4 If the pmp groupoid pmp action G y X is essentially free, then G n X is
isomorphic to a pmp equivalence relation.

Proof Since G y X is essentially free and Ge is countable, the set

Xe
0 := {x ∈ Xe | sx 6= x, ∀s ∈ Ge, s 6= e}

https://doi.org/10.4153/CJM-2014-019-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-019-5


376 R. Graham and M. Pichot

has measure 1 in Xe for every e ∈ A ⊂ G0 a measurable subset with h(A) = 1. Let
(XA

0 , µ)→ (A, h) be the measure fibration corresponding to (Xe
0)e∈A. Since G n X is

isomorphic to G|A n XA
0 , we may assume that sx 6= x for all s ∈ G \ G0, x ∈ Xs(s).

However, for (s, x) ∈ G n X,

r(s, x) = s(s, x)⇔ x ∈ Fix(s),

so r(s, x) 6= s(s, x) for every s ∈ G \ G0 and x ∈ X. This shows that G n X is an
equivalence relation. It is an easy exercise to check that it is pmp (more generally if G
is pmp and G y X is a pmp action, then G n X is a pmp groupoid).

Lemma 3.5 If G is transversally finitely generated, then so is G n X for any ergodic
pmp action G y X.

Proof Let R be the orbit equivalence relation of G y X. Since R is ergodic, there
exists an ergodic automorphism θ ∈ JRK, which is orbit equivalent to a Bernoulli shift
Z y {0, 1}Z ([Dye]). For i ∈ {0, 1}, let Bi be the cylinder set {x ∈ {0, 1}Z | x0 = i}.
Let p1, p2 be the projection in L∞(X) corresponding to B0 and B1 in Z y {0, 1}Z. If
F ⊂ JGK is a finite transversally generating set for G, then F ∪ {θ, p1, p2} is a finite
generating set for G n X.

Lemma 3.6 The Bernoulli action G y XG
0 is essentially free if G has infinite fibers

(i.e., |Ge| = ∞ for ae e ∈ G0) and the support of µ0 contains at least two points. If in
addition µ0 is diffuse, then the action is essentially free.

Proof Let s ∈ Ge, s 6= e, such that |Ge| = ∞. We show that µe(Fix(s)) = 0. If
r(s) 6= s(s), this is clear, so we assume s ∈ G(e). Note that (xt )t∈Ge is 〈s〉-invariant
if and only if xsnt = xt for all n ∈ Z, t ∈ Ge. Thus we can find an infinite family of
pairwise disjoint pairs {si , ti}i∈I , si 6= ti ∈ Ge, such that xsi = xti for every x ∈ Fix(s)
and i ∈ I. Since |I| = ∞, the set of x ∈ XGe

0 such that xsi = xti is negligible, so
µe(Fix(s)) = 0. If in addition µ0 is diffuse, then the set of x ∈ XGe

0 such that xs = xe

is negligible so µe(Fix(s)) = 0 in this case.

Lemma 3.7 If G is ergodic with infinite fibers then the Bernoulli action G y XG
0 is

ergodic for any base space (X0, µ0).

Proof If A ⊂ XG
0 is a nonzero G-invariant subset and p : XG

0 → G0, then B := p(A)
is G-invariant and nonzero therefore δ := µe(Ae) 6= 0 and is almost surely constant
by the ergodicity of G. Let ε > 0 be arbitrary. Since |Ge| = ∞ almost surely, we
can find by the von Neumann selection theorem a nonzero measure field (Fe)e∈B of
finite subsets of (Ge)e∈B such that µe(Ae ∩A|Fe ) > δ− ε and a section s of s such that
seFe ∩ Fr(se) = ∅ for ae e ∈ B. By invariance µs(e)(Ar(se) ∩ A|seFe ) > δ − ε, so

µs(e)(A|Fr(se) ∩ A|seFe ) > δ − 2ε,

µs(e)(A|Fr(se) ∩ A|seFe ) = µs(e)(A|Fr(se) )µs(e)(A|seFe ),

µs(e)(A|Fr(se) ∩ A|seFe ) < δ2 + 6εδ + 2ε2.

Letting ε→ 0, we get δ2 ≥ δ, so δ ≥ 1 and µ(A) = 1.
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Lemma 3.8 Let G y X be a groupoid action and suppose that G = G1 ∗G3 G2. Then

G n X ' (G1 n X|1) ∗(G3nX|3) (G2 n X|2),

where X|i = p−1(G0
i ).

Proof First note that Gi acts on Xi and that Gi n X|i is naturally a subgroupoid of
G n X. Given an arbitrary groupoid H and groupoid morphisms f1 : G1 n X|1 → H,

f2 : G2 n X|2 → H with f1

∣∣
G3nX3

= f2

∣∣
G3nX|3

, we want to show there is a unique

morphism k : G n X → H such that the following diagram commutes (where the
unlabeled edges are the inclusion map).

G3 n X|3

G1 n X|1 G n X G2 n X|2

H

f1 f2k

Since k|G1nX|1 = f1|G1nX|1 , k|G2nX|2 = f2|G2nX|2 , and the values of k are determined
on G1 n X|1 and G2 n X|2, which generate G n X, this gives uniqueness. To show it
is well defined note that if gi ∈ G1 n XG1 ∪ G2 n XG2 and g1 · · · gn = Ids(g1) and if g′i
are the corresponding elements of G1 and G2 then g′1 · · · g′n = e, so using the fact that
G1 and G2 are in free product over G3 this shows that k(g1) · · · k(gn) = Ids( f1(g1)) or
Ids( f2(g1)) as appropriate.

4 Overlapping Generators

Let F ⊂ JGK be a finite subset, π be a partition of F, and σ : F → JdK be a map.
Denote F|π the set of e ∈ G0 such that

e ≤
∏
s∈F

ss−1

and

∀s, t ∈ F, es = et ⇐⇒ π(s) = π(t).

Here and below we will view a partition π of F as a map from F to {1, . . . , α} =:
ranπ for some α ∈ Z≥0.

Similarly, let Fσ|π be the set of e ∈ {1, . . . d} (identified with the base space of the

transitive relation on {1, . . . , d}) such that

e ≤
∏
s∈F

σ(s)σ(s)−1
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and
∀s, t ∈ F, eσ(s) = eσ(t) ⇐⇒ π(s) = π(t).

The following lemma will be useful in the proof of Theorem 8.2. We denote a
projection onto a set A by pA.

Lemma 4.1 Given F ⊂ JGK, n ≥ 1, let

Fn := F ∪ {pF0|π | F0 ⊂ Fn
±, π partition of F0}

If σ ∈ SA(Fn, 4n|Fn
±| + 1, δ, d), F0 ⊂ Fn

±, and π is a partition of F0, then∣∣∣h(F0|π)−
|Fσ0|π|

d

∣∣∣ < c1(F, n)δ,

where c1(F, n) = 176(32n)|F±|2n.

Proof Fix some F0 ⊂ Fn
± and let π1, π2, . . . , πm be the family of partitions of F0

(so m = Be(|F0|) is the Bell number of |F0|). For convenience let p j := pF0|π j
and

pσj := pFσ
0|π j

.

If π j(s) = π j(t), p j = st−1 p j , so∣∣σ(s)σ(t)−1σ(p j)− σ(p j)
∣∣

=
∣∣σ(s)σ(t)−1σ(p j)− σ(st−1 p j)

∣∣
≤
∣∣σ(s)σ(t)−1σ(p j)− σ(s)σ(t−1)σ(p j)

∣∣ +
∣∣σ(s)σ(t−1)σ(p j)− σ(st−1 p j)

∣∣
≤ 4δ + 3δ = 7δ

by [DKP1, Lemma 3.1(8)].
Similarly, if π j(s) 6= π j(t), then∣∣σ(s)σ(t)−1σ(p j)− σ(st−1 p j)

∣∣ ≤ 7δ.

As τ (st−1 p j) = 0, we have∣∣ tr(σ(s)σ(t)−1σ(p j))
∣∣ =

∣∣ tr(σ(s)σ(t)−1σ(p j))− τ (st−1 p j)
∣∣

≤
∣∣ tr(σ(s)σ(t)−1σ(p j))− tr ◦σ(st−1 p j)

∣∣
+
∣∣ tr ◦σ(st−1 p j)− τ (st−1 p j)

∣∣
≤ 7δ + δ = 8δ

by [DKP1, Lemma 3.1 (4)].
Moreover, ∣∣σ(p j)− σ(p j)σ(p j)

∣∣ =
∣∣σ(p2

j )− σ(p j)σ(p j)
∣∣ < δ,

and since
∑m

j=1 p j =
∏

s∈F0
ss−1 using [DKP1, Lemma 3.5]∣∣ m∑

j=1
σ(p j)−

∏
s∈F0

σ(s)σ(s)−1
∣∣ < ∣∣σ( ∏

s∈F0

ss−1
)
−
∏

s∈F0

σ(s)σ(s)−1
∣∣ + 150(2|F| + 1)2nδ

≤ |F0|4δ + |F0|2δ + δ + 150(2|F| + 1)2nδ

≤ 157(32n)|F±|2nδ.
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If V denotes the set of integers 1 ≤ k ≤ d such that for all 1 ≤ j ≤ m and s, t ∈ F0:

σ(s)σ(t)−1σ(p j)k = σ(p j)k

σ(s)σ(t)−1σ(p j)k 6= k

σ(p j)k = σ(p j)σ(p j)k( m∑
j=1
σ(p j)

)
k =

( ∏
s∈F0

σ(s)σ(s)−1
)

k,

then

|V | ≥
(

1− 7δ|Fn
±| − 7δ|Fn

±| − δ|Fn
±| − δ|Fn

±| − 157(32n)|F±|2nδ
)

d

≥
(

1− 175(32n)|F±|2nδ
)

d.

So, for all π j we have that σ(p j)|V is a projection and

π j(s) = π j(t)⇒ σ(s)σ(t)−1σ(p j)|V = σ(p j)|V and tr
(
σ(s)σ(t)−1σ(p j)|V

)
= 0.

Hence ran(σ(p j)pV ) ⊂ ran(pσj pV ), but since we also have( m∑
j=1
σ(p j)

)
pV =

( ∏
s∈F0

σ(s)σ(s)−1
)

pV =
( m∑

j=1
pσj

)
pV ,

we conclude that σ(p j)pV = pσj pV , which implies∣∣ tr ◦σ(p j)− |Fσ0|π j
|/d
∣∣ < 175(32n)|F±|2nδ.

Therefore,∣∣h(F
π j

0 )− |Fσ0|π j
|/d
∣∣ =

∣∣ tr(p j)− |Fσ0|π j
|/d
∣∣

≤ | tr(p j)− tr ◦σ(p j)| +
∣∣ tr ◦σ(p j)− |Fσ0|π j

|/d
∣∣

≤ δ + 175(32n)|F±|2nδ ≤ 176(32n)|F±|2nδ.

5 Bernoulli Shifts and Random Partitions

For 1 ≤ i ≤ q let

Bi := {x ∈ {1, . . . , q}G | xe = i},

where X = {1, . . . , q}G is endowed with the Bernoulli action G y X, and for d ∈
Z≥1 let A1, . . . ,Aq be a partition of {1, . . . , d}. Given a set F ⊂ JGK and function
ψ : F → {1, . . . , q}, we define

Bψ :=
⋂
s∈F

sBψ(s) and Aψ :=
⋂

s∈Fψ

σ(s)Aψ(s)

for any σ : F → JdK. (Here and below the dependency in σ is omitted from the
notation Aψ as the chosen map will always be clear from context.)

The next lemma adapts the proof of Theorem 8.1 from L. Bowen’s paper [Bow].
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Lemma 5.1 If d is large enough (depending on F, n, and δ) then there is a partition
{A1,A2, . . . ,Aq} of {1, . . . , d} such that if σ ∈ SA(Fn, 4n|Fn

±| + 1, δ, d) then for every
subset Fψ ⊂ Fn

± and every function ψ : Fψ → {1, . . . , q}∣∣∣∣µ(Bψ)− |Aψ|
d

∣∣∣∣ < c2(F, n)δ

where c2(F, n) = 2c1(F, n) Be(|F±|n) and Be is the Bell number.

Proof Fix Fψ ⊂ Fn
± and ψ : Fψ → {1, . . . , q}. Create a random partition

{A1,A2, . . . ,Aq}
of {1, . . . , d} using the following scheme: for each k ∈ {1, . . . , d} place k in Ai with
probability µ0(i).

We will find the probability that |µ(Bψ)− |Aψ|/d| < c2(F, n)δ.
Let π1, π2, . . . , πm be the family of partitions of Fψ . Let s j : ranπ j → Fψ be an

arbitrary section of π j . If

χ j :=

{
0 if ∃s, t ∈ Fψ such that π j(s) = π j(t) and ψ(s) 6= ψ(t),

1 otherwise,

then

µ(Bψ) = µ
( ⋂

s∈Fψ

sBψ(s)

)
=

m∑
j=1
χ j h(Fψ|π j

)
∏

r∈ran π j

µ0

(
ψ(s j(r))

)
Since for σ ∈ SA(Fn, 4n|Fn

±| + 1, δ, d), we have

|Aψ|
d

=

m∑
j=1

|Aψ ∩ Fσψ|π j
|

d

it will suffice to show by the triangle inequality that for all j∣∣∣∣χ j h(Fψ|π j
)
∏

k∈ran π j

µ0

(
ψ(s j(k))

)
−
|Aψ ∩ Fσψ|π j

|
d

∣∣∣∣ < 2c1(F, n)δ.

First suppose χ j = 0, so for some s, t ∈ Fψ , π j(s) = π j(t) and ψ(s) 6= ψ(t). Then
Aψ ∩ Fσψ|π j

= ∅, for if k ∈ Aψ ∩ Fσψ|π j
then k ∈ σ(s)Aψ(s) ∩ σ(t)Aψ(t) ∩ Fσψ|π j

which

implies σ(s)−1k = σ(t)−1k ∈ Aψ(s) ∩ Aψ(t), a contradiction.
Next suppose χ j = 1. For 1 ≤ k ≤ d let

Zk =

{
1 if k ∈ Fσψ|π j

∩ Aψ

0 otherwise

We wish to compute E(Zk).
For k /∈ Fσψ|π j

we have E(Zk) = 0. Otherwise, k ∈ Fσψ|π j
∩ Aψ if and only if

σ−1
s j (r)k ∈ Aψ(s j (r)) for all r ∈ ranπ j , and since

σ−1
s j (r)k 6= σ−1

s j (r′)k, ∀r 6= r′ ∈ ranπ j ,
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we obtain
E(Zk) =

∏
r∈ran π j

µ0

(
ψ(s j(r))

)
Thus if we let Z =

∑d
k=1 Zk = |Fσψ|π j

∩ Aψ|, then

E(Z) = |Fσψ|π j
|
∏

r∈ran π j

µ0

(
ψ(s j(r))

)
.

Now let us bound var(Z):

var(Z) = E(Z2)− E(Z)2 =
∑

k,l∈{1...,d}
E(ZkZl)− E(Z)2

For k, l /∈ Fσψ|π j
we have E(ZkZl) = 0 = E(Zk)E(Zl). On the other hand if k, l ∈ Fσψ|π j

then Zk and Zl are not independent if σ−1
s j (r)k = σ−1

s j (r′)l for some r, r′. Thus are at most

|Fn
±|2|Fσψ|π j

| non independent pairs (k, l). Now clearly for these pairs, E(ZkZl) ≤
E(Zk)E(Zl) + 1. So returning to our equation above,∑

1≤k,l≤d
E(ZkZl)− E(Z)2 ≤

∑
1≤k,l≤d

E(Zk)E(Zl) + |Fn
±|2|Fσψ|π j

| − E(Z2)

= E(Z2) + |Fn
±|2|Fσψ|π j

| − E(Z2) = |Fn
±|2|Fσψ|π j

|

Now we can apply Chebyshev’s inequality to Z
d for a > 0

Pr
(∣∣∣ Z

d
− E(Z)

d

∣∣∣ ≥ a
)
≤

var( Z
d )

a2
≤
|Fn
±|2|Fσψ|π j

|
a2d2

≤
|Fn
±|2

a2d
.

Since Z = |Aψ ∩ Fσψ|π j
| and E(Z) = |Fσψ|π j

|
∏

r∈ran π j
µ0(ψ(s j(r))), and, by Lemma

4.1, ∣∣∣h(Fψ|π j
)−
|Fσψ|π j

|
d

∣∣∣ < c1(F, n)δ,

we have

Pr
(∣∣∣h(Fψ|π j

)
∏

k∈ran π j

µ0

(
ψ(s j(k))

)
− |Fσψ|π j

∩ Aψ|/d
∣∣∣ ≥ a + c1(F, n)δ

)
≤
|Fn
±|2

a2d
.

Let a = c1(F, n)δ, so then

Pr
(∣∣∣h(Fψ|π j

)
∏

k∈ran π j

µ0

(
ψ(s j(k))

)
−|Fσψ|π j

∩Aψ|/d
∣∣∣ ≥ 2c1(F, n)δ

)
≤

|Fn
±|2

(c1(F, n)δ)2d
.

So for d large enough there is some partition (A1, . . . ,Aq) such that∣∣∣h(Fψ|π j
)
∏

k∈ran π j

µ0

(
ψ(s j(k))

)
− |Fσψ|π j

∩ Aψ|/d
∣∣∣ < 2c1(F, n)δ.

Thus, for d large enough there will be a partition such that this true for all j so that∣∣∣ |Aψ|
d
− µ(Bψ)

∣∣∣ < c2(F, n)δ.

Indeed for large enough d nearly all partitions will satisfy this and hence we will have
nonzero probability that for all Fψ ⊂ Fn

± and ψ : Fψ → {1, . . . , q} the inequality
|µ(Bψ)− |Aψ|/d| < c2(F, n)δ holds.
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6 A Lemma on Approximate Equivariance

Given a groupoid G acting on a set X for any finite set of projections P ⊂ L∞(X, µ)
and finite set F ⊂ JGK, let PF denote the set of all projections of the form

∏
s∈F′ sps,

where ps ∈ P and F′ ⊂ F.
Let P = {pBi}, where

Bi := {x ∈ {1, . . . , q}G | xe = i}

and X = {1, . . . , q}G is endowed with the Bernoulli action G y X. Fix F ⊂ JGK and
a basis {pBψ1

, pBψ2
, . . . , pBψ`

} for span(PFn
±

) in L∞(X, µ) associated with ψi : Fψi →
{1, . . . , q}, 1 ≤ i ≤ `.

We set

κ = max
ψ,ψ1,...,ψ`,a1,...a`
pBψ

=
∑`

i=1 ai pBψi

|ai | ≥ 1.

Both κ and ` depend only on F and n.

Lemma 6.1 Let σ ∈ SA(Fn, 4n|Fn
±| + 1, δ, d) and take a partition {A1, . . . ,Aq}

satisfying the conclusion of Lemma 5.1.
If for some ψ : Fψ → {1, . . . , q}, pBψ =

∑`
i=1 ai pBψi

, then

∥∥∥ pAψ −
∑̀
i=1

ai pAψi

∥∥∥
2
< c3(F, n)

√
δ,

where c3(F, n) = ((1 + (3 + κ`) Be(`)N`))c2(F, n) and N` = `2`.

Proof For I ⊂ {1, . . . , `} define

DI := {x ∈ X | x ∈ Bψi ⇐⇒ i ∈ I}

and similarly

Dσ
I := {1 ≤ k ≤ d | k ∈ Aψi ⇐⇒ i ∈ I}.

We want to bound |µ(DI)− |Dσ
I |/d|.

Note that for any I ⊂ {1, . . . .`},

µ{x ∈ X | ∀i ∈ I, x ∈ Bψi} = µ
( ⋂

i∈I
Bψi

)
.

Now either for some s ∈ Fψi1
∩ Fψi2

we have ψi1 (s) 6= ψi2 (s) and so
⋂

i∈I Bψi =
∅, or otherwise

⋂
i∈I Bψi = Bψ′ for some ψ′ : Fψ′ → {1, . . . , q}. In the first case,⋂

i∈I Aψi = ∅ as well, and in the second case, by Lemma 5.1,∣∣µ(Bψ′)− |Aψ′ |/d
∣∣ < c2(F, n)δ

and

|Aψ′ |/d =
∣∣∣ ⋂

i∈I
Aψi

∣∣∣/d =
∣∣{1 ≤ k ≤ d | ∀i ∈ I, k ∈ Aψi}

∣∣/d.
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So in general we conclude that µ{x ∈ X | ∀i ∈ I, x ∈ Bψi} is within c1(F, n)δ of
|{1 ≤ k ≤ d | ∀i ∈ I, k ∈ Aψi}|/d. By inclusion-exclusion,

µ(DI) =
∑̀
k=|I|

∑
I′⊃I
|I′|=k

(−1)k−|I|µ({x ∈ X | ∀i ∈ I′, x ∈ Bψi}),

and similarly

|Dσ
I |

d
=
∑̀
k=|I|

∑
I′⊃I
|I′|=k

(−1)k−|I| 1

d

∣∣{1 ≤ k ≤ d | ∀i ∈ I′, k ∈ Aψi}
∣∣ ,

so by applying the triangle inequality at most N` = `2` times, we have∣∣µ(DI)− |Dσ
I |/d

∣∣ ≤ c2(F, n)N`δ.

Now,

µ(Bψ) =
∑

I⊂{1,...`}∑
i∈I ai=1

µ(DI).

So if
∑

i∈I ai = 1, then µ(
⋂

i∈I Bψi ) = µ(
⋂

i∈I Bψi ∩ Bψ) so by a similar argument
µ{x ∈ Bψ | ∀i ∈ I, x ∈ Bψi} is within c2(F, n)δ of |{k ∈ Aψ | ∀i ∈ I, k ∈ Aψi}|/d.
So if we let

D̃σ
I := {k ∈ Aψ | x ∈ Aψi ⇔ i ∈ I},

then |µ(DI)− |D̃σ
I |/d| ≤ c2(F, n)N`δ, so∣∣∣ |Dσ

I |
d
− |D̃

σ
I |

d

∣∣∣ ≤ 2c2(F, n)N`δ.

Let a(I) :=
∑

i∈I ai . Then∥∥∥ pAψ −
∑̀
i=1

ai pAψi

∥∥∥
2

=
∥∥∥ pAψ −

∑
I⊂{1,...`}

(
∑
i∈I

ai)pDσ
I

∥∥∥
2

≤
∥∥∥ pAψ −

∑
a(I)=1

pDσ
I

∥∥∥
2

+
∥∥∥ ∑

a(I) /∈{0,1}
(
∑
i∈I

ai)pDσ
I

∥∥∥
2

≤
∥∥∥ pAψ −

∑
a(I)=1

pD̃σ
I

∥∥∥
2

+
∥∥∥ ∑

a(I)=1
pD̃σ

I
−
∑

a(I)=1
pDσ

I

∥∥∥
2

+ κ`
∑

a(I) /∈{0,1}
|Dσ

I |/d

≤

√∣∣∣ |Aψ|
d
−
∑

a(I)=1

|D̃σ
I |

d

∣∣∣ +
∑

a(I)=1

√∣∣∣ |D̃σ
I |

d
− |D

σ
I |

d

∣∣∣ + κ`Be(`)c2(F, n)δN`

≤

√∣∣∣ |Aψ|
d
− µ(Bψ)

∣∣∣ +
∣∣∣ ∑

a(I)=1
µ(DI)−

∑
a(I)=1

|D̃σ
I |

d

∣∣∣
+
√

Be(`)2c2(F, n)δN` + κ`Be(`)c2(F, n)δN`
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≤

√
c2(F, n)δ +

∑
a(I)=1

∣∣∣µ(DI)−
|D̃σ

I |
d

∣∣∣ +
√

Be(`)2c2(F, n)δN`

+ κ`Be(`)c2(F, n)δN`

≤ c2(F, n)
√
δ + (3 + κ`)Be(`)N`c2(F, n)

√
δ

= c3(F, n)
√
δ.

7 Sofic Dimension and Groupoid Actions

We now briefly recall the group action formulation of s(G n X) given in [DKP2,
Section 5], rephrasing it here in the framework of groupoid actions.

Let G y X be a pmp action of a pmp groupoid. Let 1 ∈ F ⊂ JGK and let P
be a partition of X. We write HA(F, P, n, δ, d) for the set of all pairs (σ, ϕ), where
σ ∈ SA(F, n, δ, d) and ϕ is a map ϕ : Σ PFn

±
→ JdK defined on Σ PFn

±
⊂ JGK and

satisfying

(a) | tr ◦ϕ(p)− µ(p)| < δ for all p ∈ PFn
±

(b) |ϕ ◦ s(p)− σ(s) ◦ ϕ(p)| < δ for all p ∈ P and s ∈ Fn
±

(c) |ϕ(p1 p2)− ϕ(p1)ϕ(p2)| < δ for all p1, p2, p1 p2 ∈ Σ PFn
±

.
(d) |ϕ(pX)− pd| < δ, where pd := p{1,...,d}.

(Note that since P partitions X and F contains the identity, we have pX ∈ span PFn
±

.)
We observe that if ϕ satisfies these conditions, then it is automatically approxi-

mately linear.

Lemma 7.1 If (σ, ϕ) ∈ HA(F, 4n, δ, d), then

|ϕ(p1 + p2)− (ϕ(p1) + ϕ(p2))| < 146δ

for all p1, p2, p1 + p2 ∈ Σ PFn
±

with p1 p2 = 0 and with ϕ(p1) + ϕ(p2) defined as in
[DKP1, Def. 3.3].

Proof Using (p1 + p2)pi = pi , we have

|ϕ(pi)− ϕ(p1 + p2)ϕ(pi)| < δ

for i = 1, 2. Let πi(ϕ(p1), ϕ(p2)) be defined as in [DKP1, Def. 3.3], so

ϕ(p1) + ϕ(p2) := ϕ(p1)π1(ϕ(p1), ϕ(p2)) + ϕ(p2)π2(ϕ(p1), ϕ(p2)).

By [DKP1, Lemma 3.4], using the approximate homomorphism property of ϕ, we
obtain

|πi(p1, p2)− ϕ(pi)ϕ(pi)
−1| < 40δ

for i = 1, 2. Since |ϕ(pi)− ϕ(pi)ϕ(pi)−1| < 8δ we obtain

|ϕ(p1 + p2)πi(p1, p2)− ϕ(pi)| < 48δ

and so

|ϕ(p1 + p2)π(p1, p2)− (ϕ(p1) + ϕ(p2))| < 48δ,

with π(p1, p2) := π1(ϕ(p1), ϕ(p2)) + π2(ϕ(p1), ϕ(p2)).
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Then

tr(ϕ(p1 + p2)π(p1, p2)) = tr(ϕ(p1 + p2)π1(p1, p2))) + tr(ϕ(p1 + p2)π2(p1, p2))

> tr(ϕ(p1)) + tr(ϕ(p2))− 96δ

> τ (p1) + τ (p2)− 98δ

= τ (p1 + p2)− 98δ.

Therefore,
|ϕ(p1 + p2)− (ϕ(p1) + ϕ(p2))| < 146δ.

(Similarly one can also show that ϕ(p) is approximately a projection for every p ∈
Σ PFn

±
.)

Definition 7.2 Given E,Q, F, P, n, and δ, define successively

sE,Q(F, P, n, δ) := lim sup
d→∞

1

d log(d)
log(|HA(F, P, n, δ, d)|E,Q),

sE,Q(F, P, n) := inf
δ>0

sE,Q(F, P, n, δ),

sE,Q(F, P) := inf
n∈N

sE,Q(F, P, n).

If K ⊂ JGK is a transversally generating set and R is a dynamically generating family
of projections of L∞(X, µ) define

s(K,R) := sup
E

sup
Q

inf
F

inf
P

sE,Q(F, P),

where E and F range over finite subsets of K and P, Q range over finite subpartitions
of R. Set s(G,X) = s(JGK, L∞(X, {0, 1})).

Since JGK ∪ L∞(X, {0, 1}) is a transversally generating set of the crossed product
groupoid, we obtain by Theorem 2.7 (if the action G y X is essentially free) and
[DKP2, Theorem 2.11] in general (compare [DKP2, Proposition 5.2]).

Proposition 7.3 s(G n X) = s(G,X).

Moreover, if F is a finite transversally generating subset of JGK and P is a finite and
dynamically generating partition of unity, then s(G n X) = sF,P(F, P).

Proposition 7.4 s(G n X) ≤ s(G).

Proof For every (σ, ϕ) ∈ HA(F, P, n, δ, d) there are at most |Q|d restrictions ϕ|Q,
and hence

|HA(F, P, n, δ, d)|E,Q ≤ |Q|d| SA(F, n, δ, d)|E
so we have sE,Q(F, P) ≤ sE(F), and the result follows directly by the proposition above.

Remark 7.5 The set HA differs from the set HA introduced in [DKP2] in that we
do not assume ϕ to be a strict homomorphism. Furthermore, the maps in [DKP2]
are defined on L∞(X) with values in Md using the 2-norm. It is often convenient
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to adopt the latter point of view for computational purposes, and we will do so be-
low. The definition of HA given above has the advantage of being purely finitary, in
the spirit of the sofic property. We have maintained the notation HA in view of (c)
and (d).

8 The Computation of s(G n (X0, µ0)G)

Lemma 8.1 If G y {1, . . . , q}G, then s(G n ({1, . . . , q}, µ0)G) = s(G) for any
probability measure µ0 on {1, . . . , q} and pmp groupoid G. The same holds true for s
and sω .

Proof Let X = {1, . . . , q}G. By Proposition 7.4 we have to prove s(G n X) ≥ s(G).
Let P = {pBi} where Bi = {x ∈ {1, . . . , q}G | xe = i}. Let {pBψ1

, pBψ2
. . . pBψ`

} be a
basis for span(PFn

±
) ⊂ L∞(X, µ), where ψi : Fψ j → {1, . . . , q}.

Let σ ∈ SA(Fn, 4n|Fn
±| + 1, δ, d). Let κ be as defined before Lemma 6.1. Let

γ1 = min
{∣∣∑

i∈T
ai

∣∣ : ψ,ψ1, . . . .ψ`, a1 . . . , a`,T ⊂ {1, . . . , `}

and pBψ =
∑̀
i=1

ai pBψi

}
/{0},

γ2 = min
{∣∣∑

i∈T
ai − 1

∣∣ : ψ,ψ1, . . . .ψ`, a1 . . . , a`,T ⊂ {1, . . . , `}

and pBψ =
∑̀
i=1

ai pBψi

}
/{0},

γ3 = min
{∣∣ ∑

i∈T, j∈T′
aib j

∣∣ : ψ,ψ′ψ1, . . . .ψ`, a1 . . . , a`,T,T
′ ⊂ {1, . . . , `}

andpBψ =
∑̀
i=1

ai pBψi
, pBψ′ =

∑̀
i=1

bi pBψi

}
/{0}

γ = min{γ1, γ2, γ3},

so that γ depends only on F and n and γ ≤ 1. We want to find ϕ such that

(σ, ϕ) ∈ HA(F, P, n, 9|PFn
±
|2 1

γ2
κ5`2qc3(F, n)2

√
δ, d)

(for sufficiently large d). Using Proposition 7.3 will complete the proof.
Take a partition {A1, . . . ,Aq} such that the conclusion of Lemma 5.1 holds

(namely a random partition for d large). For each pBψi
, i = 1, . . . , `, let ϕ0(pBψi

) :=
pAψi

and extend ϕ0 linearly to span(PFn
±

) ⊂ L∞(X, µ) with values in Md. We will

check that ϕ0 satisfies the following properties, where δ0 = 3 1
γκ

2`2qc3(F, n)2
√
δ

(compare Remark 7.5):

(1) | tr ◦ϕ0(p)− µ(p)| < δ0 for all p ∈ PFn
±
,

(2) ‖ϕ0 ◦ s(p)− σ(s) ◦ ϕ0(p)‖2 < δ0 for all p ∈ P and s ∈ Fn
±,

(3) ‖ϕ0(p1 p2)− ϕ0(p1)ϕ0(p2)‖2 < δ0 for all p1, p2 ∈ span PFn
±
,

(4) ‖ϕ0(pX)− pd‖2 < δ0, where pd := p{1,...,d}.

One can see (as shown below) that properties (1)–(4) are closely related to the prop-
erties (a)–(d) defined above.
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(1) Note that for any x ∈ {1, . . . , d}, ψ and a1, . . . , an, if∣∣∣(∑̀
i=1

ai pAψi
− pAψ

)
x
∣∣∣ 6= 0,

then ∣∣∣(∑̀
i=1

ai pAψi
− pAψ

)
x
∣∣∣ ≥ min{γ1, γ2} ≥ γ.

Let pBψ ∈ PFn
±

, say pBψ =
∑̀
i=1

ai pBψi
. Then

ϕ0(pBψ ) =
∑̀
i=1

ai pAψi
,

so ∣∣ tr ◦ϕ0(pBψ )− µ(pBψ )
∣∣ ≤ ∣∣∣ tr(∑̀

i=1
ai pAψi

)
− tr ◦pAψ

∣∣∣ +
∣∣∣ |Aψ|

d
− µ(Bψ)

∣∣∣
≤ 1

γ

∥∥∥∑̀
i=1

ai pAψi
− pAψ

∥∥∥ 2

2
+ c2(F, n)δ

≤ 1

γ
c3(F, n)2δ2 + c2(F, n)δ ≤ 1

γ
c3(F, n)2

√
δ, for δ < 1,

where we use Lemmas 5.1 and 6.1
(2) Here we use Lemma 6.1. Let s ∈ Fn

± and suppose

spBi =
∑̀
i=1

ai pBψi
.

Then

ϕ0(spBi ) =
∑̀
i=1

ai pAψi
and

∥∥∥∑̀
i=1

ai pAψi
− σ(s)pAi

∥∥∥
2
< c3(F, n)

√
δ.

On the other hand,

pBi =
∑̀
i=1

bi pBψi
⇒ ϕ0(pBi ) =

∑̀
i=1

bi pAψi

and ∥∥∥∑̀
i=1

bi pAψi
− σ(1)pAi

∥∥∥
2
< c3(F, n)

√
δ.

Thus,

‖ϕ0(spBi )− σ(s)ϕ0(pBi )‖2

≤ ‖ϕ0(spBi )− σ(s)pAi‖2 + ‖σ(s)pAi − σ(s)σ(1)pAi‖2

+ ‖σ(s)σ(1)pAi − σ(s)ϕ0(pBi )‖2

< 2c3(F, n)
√
δ +
√
δ = 3c3(F, n)

√
δ
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(3) Let p1 =
∑`

i=1 ai pBψi
and p2 =

∑`
i=1 bi pBψi

. Then∥∥ϕ0(p1 p2)− ϕ0(p1)ϕ0(p2)
∥∥

2
=
∥∥ ∑̀

i, j=1
aibi(ϕ0(pBψi

pBψ j
)− pAψi

pAψ j
)
∥∥

2

≤ κ2 ∑̀
i, j=1
‖ϕ0(pBψi

pBψ j
)− pAψi

pAψ j
‖2.

So it is enough to show that for all i, j,

‖ϕ0(pBψi
pBψ j

)− pAψi
pAψ j
‖2 < c3(F, n)

√
δ.

But as we have seen in the proof of Lemma 6.1, either pBψi
pBψ j

and pAψi
pAψ j

are both

0, in which case we are done, or pBψi
pBψ j

= pBψ′ and pAψi
pAψ j

= pAψ′ for some ψ′,

in which case if pBψ′ =
∑`

i=1 ci pBψi
, then by Lemma 6.1,

‖ϕ0(pBψi
pBψ j

)− pAψi
pAψ j
‖2 =

∥∥ ∑̀
i=1

ci pAψi
− pAψ′

∥∥
2
< c3(F, n)

√
δ.

(4) pX =
∑q

i=1 pBi and Id =
∑q

i=1 pAi so by the triangle inequality it suffices to
show

‖ϕ0(pBi )− pAi‖2 < 2c3(F, n)
√
δ

By Lemma 6.1

‖ϕ0(pBi )− σ(1)pAi‖2 < c3(F, n)
√
δ

so

‖ϕ0(pBi )− pAi‖2 ≤ ‖ϕ0(pBi )− σ(1)pAi‖2 + ‖σ(1)pAi − pAi‖2

< 2c3(F, n)
√
δ +
√
δ < 2c3(F, n)

√
δ.

We now show how to define ϕ using ϕ0. For each pBψ ,∥∥ϕ0(pBψ )− pAψ

∥∥
2
≤ c3(F, n)

√
δ

by Lemma 6.1. Let M be the number of x ∈ {1, . . . , d} such that ϕ0(pBψ )x = pAψx.
Then ∥∥ϕ0(pBψ )− pAψ

∥∥
2
≥
√

d−M

d
γ2,

hence

M ≥ d
(

1− c3(F, n)2 1

γ2
δ
)
.

Similarly for pBψ , pBψ′ we have∥∥ϕ0(pBψ )ϕ0(pBψ′ )− ϕ(pBψ )ϕ(pBψ′ )
∥∥

2
≤ 2κ2c3(F, n)

√
δ

by (3), so ∣∣{x ∈ [d] : ϕ0(pBψ )ϕ0(pBψ′ )x = 0}
∣∣ ≥ d

(
1− c3(F, n)2κ4δ

1

γ2

)
.

Let V be the set of all x ∈ {1, . . . , d} such that for all pBψ (arbitrarily represented) we
have ϕ0(pBψ )x = pAψx, and for all pBψ , pBψ′ with pBψ pBψ′ = 0 we have

ϕ0(pBψ )ϕ0(pBψ′ )x = 0.
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Then

|V | ≥ d
(

1− |PFn
±
|c3(F, n)2δ

1

γ2
− |PFn

±
|2c3(F, n)2κ4δ

1

γ2

)
≥ d
(

1− 2|PFn
±
|2c3(F, n)2κ4δ

1

γ2

)
,

and for any p ∈ Σ PFn
±

, ϕ0(p)
∣∣

V
⊂ JdK. We finally define

ϕ : Σ PFn
±
→ JdK

p 7→ ϕ0(p)
∣∣

V
.

Let us check that ϕ satisfies (i)–(iv):

(i)

| tr ◦ϕ(pBψ )− µ(Bψ)| ≤ | tr ◦ϕ(pBψ )− tr ◦ϕ0(pBψ )| + δ0

≤ κ`2|PFn
±
|2c3(F, n)2κ4δ

1

γ2
+ δ0,

(ii)

|ϕ(spBi )− σ(1)ϕ(pBi )| ≤ ‖ϕ(spBi )− σ(1)ϕ(pBi )‖2

≤ ‖ϕ(spBi )− ϕ0(spBi )‖2

+ ‖σ(1)ϕ(pBi )− σ(1)ϕ0(pBi )‖2 + δ0

≤ κ`4|PFn
±
|c3(F, n)κ2

√
δ

1

γ
+ δ0,

(iii)

|ϕ(p1)ϕ(p2)− ϕ(p1 p2)| ≤ ‖ϕ(p1)ϕ(p2)− ϕ(p1 p2)‖2

≤ ‖ϕ(p1)ϕ(p2)− ϕ0(p1)ϕ0(p2)‖2

+ ‖ϕ(p1 p2)− ϕ0(p1 p2)‖2 + δ0

≤ κ2`2q4|PFn
±
|c3(F, n)κ2

√
δ

1

γ
+ δ0,

(iv)

|ϕ(pX)− pd| ≤ κ`2|PFn
±
|c3(F, n)κ2

√
δ

1

γ
+ δ0.

Thus for every σ ∈ SA(Fn, 4n|Fn
±| + 1, δ, d) with d sufficiently large, we found ϕ

so that (σ, ϕ) ∈ HA(F, P, n, 9|PFn
±
|2 1
γ2κ

5`2qc3(F, n)2
√
δ, d).

We now check that

s(G) = sup
E

inf
F

inf
n∈N

inf
δ>0

lim sup
d→∞

1

d log d

∣∣SA(Fn, 4n|Fn
±| + 1, δ, d)

∣∣
E
.

Recall that Fn := F ∪ {pF0|π | F0 ⊂ Fn
±, π partition of F0}.

The right-hand side equals

sup
E

inf
F

inf
n∈N

sE(Fn, 4n|Fn
±| + 1).
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Let ε > 0 and choose n0 so that

|sE(Fn0 , 4n0|Fn0
± | + 1)− inf

n
sE(Fn, 4n|Fn

±| + 1)| < ε

and
|SE(F, 4n0|Fn0

± | + 1)− inf
n

sE(F, 4n|Fn
±| + 1)| < ε.

Clearly sE(Fn0 , 4n0|Fn0
± | + 1) ≤ sE(F, 4n0|Fn0

± | + 1), but on the other hand if

σ ∈ SA(Fn0 , 4n0|(Fn0 )n0
±| + 1, δ, d),

then σ ∈ SA(Fn0 , 4n0|Fn0
± | + 1, δ, d) since 4n0|(Fn0 )n0

±| + 1 ≥ 4n0|Fn0
± | + 1. So

inf
F

sE(F, 4n0|Fn0
± | + 1) = inf

F
sE(Fn0 , 4n0|Fn0

± | + 1).

Since ε was arbitrary

inf
F

inf
n

sE(Fn, 4n|Fn
±| + 1) = inf

F
inf

n
sE(F, 4n|Fn

±| + 1) = sE(G),

since
inf

n
sE(F, n) = inf

n
sE(F, 4n|Fn

±| + 1).

However,∣∣SA(Fn, 4n|Fn
±| + 1, δ, d)

∣∣
E
≤ |HA

(
F, P, n, 9|PFn

±
|2 1

γ2
κ5`2qc3(F, n)2

√
δ, d
)
|E,

so s(G) ≤ s(GnX) by Proposition 7.3. Replacing lim sup by lim inf or limd→ω above,
we get a similar inequality for s and sω .

Theorem 8.2 Let G be a pmp groupoid, let (X0, µ0) be a standard probability space,
and let G y XG

0 be the corresponding a Bernoulli action. Then s(G n XG
0 ) = s(G). The

same holds true for s and sω .

Proof Again we only need to prove s(G) ≤ s(G n XG
0 ). Let U = {U1,U2, . . . ,Uq}

be any finite partition of X0 into measurable sets. Let

BU = {BU1 , . . . ,BUq}
where

BUi = {x ∈ XG
0 | ∀e ∈ G0, xe ∈ Ui}.

Let M := {pUi} for all possible choices of U and all i, so that M is a dynamically
generating *-subalgebra of L∞(X, µ). Now if PU := {pU1 , . . . , pUq}, then

s(G n X) = sup
E

sup
Q

inf
F

inf
PU

sE,Q(F, PU ) = sup
E

sup
Q

inf
PU

inf
F

sE,Q(F, PU ).

Since the map X0 → {1, . . . , q} defined by Ui 3 x 7→ i extends G-equivariantly to
XG

0 → {1, . . . , q}G, we have

inf
F

s(F) ≤ inf
F

sE,Q(F, PU ).

Hence s(G) ≤ s(G n X). The same holds for s and sω .

Corollary 8.3 A pmp groupoid G is s-regular if and only if the crossed product
groupoid G n XG

0 associated with the Bernoulli action G y XG
0 is s-regular for any

base space (X0, µ0).
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Proof Since

s(G) = s(G× XG
0 ) ≤ s(G× XG

0 ) = s(G),

s(G) = s(G) if and only if s(G× XG
0 ) = s(G× XG

0 ).

9 The Scaling Formula

Proposition 9.1 (Scaling formula) Let G be an ergodic pmp groupoid, 0 6= p ∈
L∞(G0). Then

s(G)− 1 = h(p)(s(pGp)− 1),

where pGp is endowed with the normalized Haar measure
h|pGp

h(p) . Furthermore, the same
equality holds for s and sω ; therefore,

G is s-regular ⇔ pGp is s-regular.

We will start by showing≥ in the rational case, which is easier to handle:

Lemma 9.2 If h(p) ∈ Q , then

s(pGp) ≤ 1

h(p)
s(G) + 1− 1

h(p)
.

Furthermore the same inequality holds for s and sω .

Proof Write h(p) = N−k
N and choose s1, s2, . . . , sk ∈ JGK with

s−1
i si ≤ p, h(s−1

i si) =
1

N
and

k∑
i=1

sis
−1
i = 1− p.

Let S = {s1, . . . , sk}, so pGp∪S is generating G and let E, F ⊂ JpGpK be finite subsets.
We may assume that p ∈ E∩F and s−1

i si ∈ E∩F for all i. Let σ ∈ SApGp(F, 4n+5, δ, d).
In light of [DKP2, Lemma 2.13] we may also assume that N − k|d. Let d′ = N

N−k d

and partition {1, . . . , d′} into sets A0, . . . ,Ak with A0 = {1, . . . , d} and |Ai | = d′

N .
Since

| Fix
(
σ(s−1

i si)
)
| ≥ h(s−1

i si)

h(p)
d− δd,

we can choose a subset Bi ⊂ A0 with exactly d′

N elements such that∣∣Fix
(
σ(s−1

i si)
) a

Bi

∣∣ < δd′.

For each i = 1 . . . k let γ(si) be a bijection Bi → Ai (we have ( d′

N !)k choices).
As

s−1
j s−1

i = sis j = 0 i, j ≥ 1,

s−1
i s j = 0 i 6= j ≥ 1,

ssi = s−1
i s = 0 i ≥ 1, s ∈ pGp,

s−1
i si ∈ F,
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each element of
⋃

n(JpGpK ∪ S)n can be written (not necessarily uniquely) as si f s−1
j

for i, j ≥ 0, where s0 = p and f ∈ JpGpK. Let γ(s0) = pA0 We define a map

σγ : (F ∪ S)2n+5
± → Jd′K

by

σγ(si f s−1
j ) := γ(si)σ

′(s−1
i si f s−1

j s j)γ(s j)
−1,

where we denote σ′( f ) the permutation
(
σ( f ) 0

0 0

)
acting in A0 ⊂ {1, . . . , d′}. Note

that σγ is well defined: if si1 f1s−1
j1

= si2 f2s−1
j2

, then since the si have disjoint ranges,

we have i1 = i2 j1 = j2 so si1 f1s−1
j1

= si1 f2s−1
j1

, hence s−1
i1

si1 f1s−1
j1

s j1 = s−1
i1

si1 f2s−1
j1

s j1

so that

γ(si1 )σ′(s−1
i1

si1 f1s−1
j1

s j1 )γ(s j1 )−1 = γ(si1 )σ′(s−1
i1

si1 f2s−1
j1

s j1 )γ(s j1 )−1.

Then extend σγ linearly to Σ(F ∪ S)2n+5
± .

Let δ′ = 5N2δ + 150N2(2|F ∪ S| + 1)2(2n+5)δ. We claim that

σγ ∈ SAG(F ∪ S, n, δ′, d′).

Let us first see what this implies. Note if σ1( f ) 6= σ2( f ), then

σ1
γ( f ) = pA0σ

1
γ( f )pA0 = σ1

γ( f ) 6= σ2
γ( f ).

Next note if γ1(si) 6= γ2(si) : Bi → Ai are two bijections, then if we have

σγ1 (si) = γ1(si)σ
′(p) = γ2(si)σ

′(p) = σγ2 (si),

we must have

γ1(si)
∣∣

f ix(σ(p))
= γ2(si)

∣∣
f ix(σ(p))

.

But since | Fix(σ(p))4{1, . . . , d}| ≤ δd we have at most
∣∣JdδdeK

∣∣ ≤ (dδde + 1)dδde

choices for γ2 such that γ2(si) 6= γ1(si) and σγ2 (si) = σγ1 (si). Therefore, there
are at most (dδde + 1)dδdek choices for γ2 such that σγ1

∣∣
E∪S
6= σγ2

∣∣
E∪S

Thus each

σ|E ∈ SApGp(F, n, δ, d) gives at least ( d′

N !)k/(dδde + 1)dδdek distinct elements σ′|E∪S ∈
SAG(F ∪ S, n, δ′, d′), so we obtain

| SApGp(F, n, δ, d)|E ≤ | SAG(F ∪ S, 4n + 5, δ′, d′)|E∪S

/ ( d′

N !)k

(dδde + 1)dδdek

So let us show that σγ ∈ SAG(F ∪ S, n, δ′, d′). We first show that σγ is approxi-
mately linear. Suppose in the span we have

si f s j =
M∑̀
=1

si` f`s j` ,

then if we let L(u, v) be the set of all `with i` = u j` = v then si f s j =
∑

`∈L(i, j) si f`s
−1
j

and su0sv = 0 =
∑

`∈L(u,v) sp f`s−1
q for (u, v) 6= (i, j). So we may assume that i` =
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i, j` = j for all `. Then

σγ(si f s j) = γ(si)σ
′(s−1

i si f s−1
j s j)γ(s j)

−1

= γ(si)σ
′
(

s−1
i

( M∑̀
=1

si f`s
−1
j

)
s j

)
γ(s j)

−1

= γ(si)σ
′
( M∑̀

=1
s−1
i si f`s

−1
j s j

)
γ(s j)

−1

so by [DKP1, Lemma 3.5],∣∣∣σγ(si f s j)−
M∑̀
=1
σγ(si f`s j)

∣∣∣ =
∣∣∣σγ(si f s j)−

M∑̀
=1
γ(si)σ

′(s−1
i si f`s

−1
j s j)γ(s j)

−1
∣∣∣

< 150(2|F ∪ S| + 1)2(n+5)δ.

Thus if f =
∑M

`=1 f`, then∣∣∣σγ( f )−
M∑̀
=1
σγ( f`)

∣∣∣ =
∣∣∣σγ(

N∑
i, j=1

si f s j)−
M∑̀
=1
σγ(

N∑
i, j=1

si f`s j)
∣∣∣

≤
N∑

i, j=1

∣∣∣σγ(si f s j)−
M∑̀
=1
σγ(si f`s j)

∣∣∣
< 150N2(2|F ∪ S| + 1)2(n+5)δ.

Thus to show that σγ is δ′-multiplicative it will suffice to show that for a, b ∈
(F ∪ S)n

± such that ab ∈ (F ∪ S)n
± we have

|σγ(ab)− σγ(a)σγ(b)| < 5δ.

Indeed then for
∑

i ai ,
∑

i bi ∈ Σ(F ∪ S)n
± with (

∑
i ai)(

∑
j b j) ∈ Σ(F ∪ S)n

±∣∣∣σγ((∑
i

ai

)(∑
j

b j

))
− σγ

(∑
i

ai

)
σγ

(∑
j

b j

)∣∣∣
≤
∣∣∣σγ(∑

i, j
aib j

)
−
(∑

i
σγ(ai)

)(∑
j
σγ(b j)

)∣∣∣
+
(

150N2(2|F ∪ S| + 1)2(2n+5)δ
) 2

≤
∣∣∣∑

i, j
σγ(aib j)−

∑
i, j
σγ(ai)σγ(b j)

∣∣∣ + 2
(

150N2(2|F ∪ S| + 1)2(2n+5)
) 2
δ

(assuming δ < 1)

≤ 5N2δ + 2
(

150N2(2|F ∪ S| + 1)2(2n+5)
) 2
δ = δ′.

So say we have a = si1 f1s−1
j1

and b = si2 f2s−1
j2

, where f1, f2 ∈ Fn
±. If j1 6= i2, then

s−1
j1

si2 = γ(s j1 )−1γ(si2 ) = 0, so we are done. Suppose otherwise; then

|σγ(ab)− σγ(a)σγ(b)| = |γ(si1 )σ′(s−1
i1

si1 f1(s−1
j1

s j1 )3 f2s−1
j2

s j2 )γ(s j2 )−1

− γ(si1 )σ′(s−1
i1

si1 f1s−1
j1

s j1 )γ(s j1 )−1γ(s j1 )σ′(s−1
j1

s j1 f2s−1
j2

s j2 )γ(s j2 )−1|.
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Note first that for any i > 0,

|γ(si)
−1γ(si)− σ′(s−1

i si)| ≤
1

d′
| Fix(σ(s−1

i si))
a

Bi | + |σ(s−1
i si)− pFix(σ(s−1

i si ))|

≤ 2δ,

and for g1, g2 ∈ F2n+5
± such that g1g2 ∈ F2n+5

± ,

|σ′(g1g2)− σ′(g1)σ′(g2)| = 1

d′
d|σ(g1g2)− σ(g1)σ(g2)| ≤ δ,

so by repeated applications of the triangle inequality

|σγ(ab)− σγ(a)σγ(b)| ≤ 2δ + 3δ = 5δ.

Let us now show that σγ is δ′-trace-preserving. Let si f s−1
j ∈ (F ∪ S)n

±. If i 6= j,
then

tr(si f s−1
j ) = tr(γ(si)σ

′(s−1
i si f s−1

j s j)γ(s j)
−1) = 0.

Suppose otherwise; then∣∣ tr(σγ(si f s−1
i ))− τ (si f s−1

i )
∣∣

=
∣∣ tr(γ(si)σ

′(s−1
i si f s−1

i si)γ(si)
−1
)
− τ (si f s−1

i )
∣∣

=
∣∣ tr(σ′(s−1

i si f s−1
i si)γ(si)

−1γ(si)
)
− τ ( f s−1

i si)
∣∣

≤
∣∣ tr(σ′(s−1

i si f s−1
i si)γ(si)

−1γ(si)
)

)− tr
(
σ′(s−1

i si f s−1
i si)

) ∣∣
+
∣∣∣ tr(σ′(s−1

i si f s−1
i si)

)
− (N − k)τ ( f s−1

i si)

Nh(p)

∣∣∣
≤ (2δ + δ) + δ < δ′,

where we used the computation above.
We have proved that

| SApGp(F, 4n + 5, δ, d)|E ≤ | SAG(F ∪ S, n, δ′, d′)|E∪S

/ (
d′

N !
) k

(dδde + 1)dδdek ,

so

log | SApGp(F, 4n + 5, δ, d)|E
d log d

≤
log
(
| SAG(F ∪ S, n, δ′, d′)|E∪S

/ (
d′
N !
) k

(dδde+1)dδdek

)
d log d

=
N

N − k

log | SAG(F ∪ S, n, δ′, d′)|E∪S

d′ log d

− k
log( d′

N )!

d log d
+ dδdek log(dδd + 1e)

d log d
.

Now for ε > 0 arbitrary and d sufficiently large we have 1
log d ≤

1
log d′ + ε

log d′ , so
the left-hand side is at most

N

N − k
(1 + ε)

log | SAG(F ∪ S, n, δ′, d′)|E∪S)

d′ log d′
− k

log( d′

N )!

d log d
+ dδdek log(dδd + 1e)

d log d
.
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By Stirling’s approximation,

log
( d′

N

)
! =

d′

N
log

d′

N
+

d′

N
+ O
(

log
d′

N

)
,

therefore

spGp,E(F, 2n + 5, δ) ≤ N

N − k
(1 + ε) lim sup

d→∞
sG,E∪S(F ∪ S, n, δ′, d′) +

k

N
+ kδ

which gives

spGp,E(F, 4n + 5) ≤ 1

h(p)
(1 + ε)sG,E∪S(F ∪ S, n) +

k

N

=
1

h(p)
(1 + ε)sG,E∪S(F ∪ S, n) + 1− 1

h(p)
.

From here it is clear that

s(pGp) ≤ 1

h(p)
s(G) + 1− 1

h(p)
.

The same proof works with lim infd→∞ and limd→ω instead of lim supd→∞.

Next we prove the other direction in the general case.

Lemma 9.3 s(G) ≤ h(p)s(pGp) + 1− h(p) and similarly for s and sω .

Proof Let S = {s1, s2, . . . , sk} ⊂ JGK be such that

s−1
i si ≤ p and

k∑
i=1

sis
−1
i = 1− p,

and let E, F ⊂ JpGpK be finite subsets. We may assume that p ∈ E ∩ F and
sis
−1
i , s−1

i si ∈ E ∩ F for all i.
Let σ ∈ SAG(F ∪ S, n + 4, δ, d) and assume that d is large enough so that d′ :=

bh(p)dc > δ−1. Let B0 = Fixσ(p) so that∣∣∣ |B0|
d
− h(p)

∣∣∣ < δ.

Thus we can arbitrarily extend or shrink B0 to a subset B such that either B ⊂ B0 or
B ⊃ B0 and |B| = d′, where∣∣σ(p)− pB

∣∣ ≤ ∣∣σ(p)− pFix σ(p)

∣∣ +
∣∣ pFix σ(p) − pB

∣∣
=

1

d
|{x ∈ {1, . . . , d} | σ(p)2x 6= σ(p)}|

+
∣∣∣ 1

d

∣∣∣B0| − h(p)| +
∣∣∣ 1

d

∣∣∣B| − h(p)|

< 3δ.

Let δ′ = 20δ
h(p) . We will show that

σ′ := σ|B ∈ SApGp(F, n, δ′, d′).
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Clearly σ′ is well defined. Let us show it is δ′-multiplicative; that is, for a, b ∈
Σ Fn

± with ab ∈ Σ Fn
±, ∣∣σ′(ab)− σ′(a)σ′(b)

∣∣ < δ′,

so ∣∣σ′(ab)− σ′(a)σ′(b)
∣∣ =

1

d′

∑
x∈B

∣∣{x ∈ B | σ′(ab)x 6= σ′(a)σ′(b)x}
∣∣

=
d

d′
∣∣ pBσ(ab)pB − pBσ(a)pBσ(b)pB

∣∣
≤ δ

h(p)
(15δ + 5δ) =

20δ2

h(p)
< δ′ for δ < 1.

We now show σ′ is δ′-trace-preserving. Let a ∈ Fn
±. Then∣∣∣ | Fixσ′(a)|

d′
− τG(a)

h(p)

∣∣∣
=

1

h(p)

∣∣∣ | Fixσ′(a)|
d′/h(p)

− τG(a)
∣∣∣

≤ 1

h(p)

∣∣∣ h(p)

d′
− 1

d

∣∣∣ +
1

h(p)

∣∣∣ | Fixσ′(a)|
d

− τG(a)
∣∣∣

≤ 1

h(p)

(∣∣∣ | Fix pBσ(a)pB|
d

− | Fixσ(a)|
d

∣∣∣ +
∣∣ tr ◦σ(a)− τG(a)

∣∣ + δ2
)

≤ 1

h(p)

(
|pBσ(a)pB − σ(a)| + δ + δ2

)
≤ 1

h(p)

(
(6δ + 2δ) + δ + δ2

)
=

9δ + δ2

h(p)
< δ′ for δ < 1,

so σ′ ∈ SApGp(F, n, δ′, d′), as claimed.
Next we study the map

SAG(F ∪ S, n + 4, δ, d)→ SApGp(F, n, δ′, d′)

σ 7→ σ′.

Note that∣∣∣ | Fixσ(si)σ(si)−1|
d

− h(sis
−1
i )
∣∣∣

≤
∣∣∣ | Fixσ(si)σ(si)−1|

d
− | Fixσ(sis

−1
i )|

d

∣∣∣ +
∣∣ tr ◦σ(sis

−1
i )− h(sis

−1
i )
∣∣

≤
∣∣σ(si)σ(si)

−1 − σ(sis
−1
i )
∣∣ + δ

≤ 5δ + δ < 6δ

and for i 6= j

| ran(σ(si)) ∩ ran(σ(s j))| =
∣∣{x ∈ {1, . . . , d} | σ(s j)σ(s j)

−1σ(si)σ(si)
−1x 6= 0}

∣∣
≤ d
∣∣σ(s j)σ(s j)

−1σ(si)σ(si)
−1
∣∣ < 9δd,
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so

| ran(σ(si)) ∩ B| =
∣∣{x ∈ {1, . . . , d} | pBσ(si)σ(si)

−1x 6= 0}
∣∣

≤ d
∣∣ pBσ(si)σ(si)

−1
∣∣ ≤ (3δ + 5δ)d ≤ 8δd.

So for all d sufficiently large,

ran(σ(si)) \
( ⋃

j 6=i
ran(σ(s j)) ∪ B

)
contains at least di := bh(sis

−1
i )d− (14δ + 9δk)dc elements so we can find a subset

Ai ⊂ ran(σ(si)) \
( ⋃

j 6=i
ran(σ(s j)) ∪ B

)
with size |Ai | = di and Ai ∩ A j = ∅ for i 6= j and Ai ∩ B = ∅. Similarly we have∣∣∣ | Fixσ(si)−1σ(si)

d
− h(s−1

i si)
∣∣∣ < 6δ

and

| domσ(si)
a

Fixσ(s−1
i si) ∩ B|

≤
∣∣{x ∈ {1, . . . , d} | PBPFix σ(s−1

i si )
x 6= σ(si)

−1σ(si)x}
∣∣

≤ d
∣∣PBPFix σ(s−1

i si )
− σ(si)

−1σ(si)
∣∣ < d6δ,

so we can find subsets Bi ⊂ dom(σ(si)) ∩ Fixσ(s−1
i si) ∩ B with |Bi | = di . Let

dk+1 = d− d′ −
∑k

i=1 di . Also recall that | Fixσ(sis
−1
i )| ≤ d(h(s−1

i si) + δ).

Let | SAG(F∪S, n+4, δ, d)
∣∣ ′

E∪S
be the number of elements of SAG(F ∪ S, n + 4, δ, d)

where we distinguish elements by their values on {pBσ( f )pB | f ∈ E} and
{pAiσ(si)pBi}. We have shown with the above computations that

| SAG(F ∪ S, n + 4, δ, d)
∣∣ ′

E,S
≤(

d

d′, d1, . . . , dk+1

)∣∣SApGp(F, n, δ′, d′)
∣∣

E

k∏
i=1

(
d(h(s−1

i si) + δ)

di

)
k∏

i=1
di !,

where the former term accounts for the choice of the Ai and B and the latter terms
for the choice of the Bi and σ(si), respectively.

Now note that for f ∈ E,∣∣ pBσ( f )pB − σ( f )
∣∣ ≤ (6δ + 2δ) = 8δ,

and, similarly, for i 6= j,∣∣ pAiσ(si)pBi − σ(si)
∣∣

≤
∣∣ pAi − σ(si)

−1σ(si)
∣∣ +
∣∣ pBi − σ(si)σ(si)

−1
∣∣ + 3δ

≤ (14δ + 9kδ + 6δ) + (14δ + 9kδ + 6δ) + δ + 3δ, for d sufficiently large

= (44 + 18k)δ
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so we can find κ > 0 with κ → 0 as δ → 0 so that for a given choice of pBσ( f )pB

there are dκd choices for σ( f ). Similarly, for σ(si) (see [DKP2, Lemma 2.5]) so

| SAG(F ∪ S, n + 4, δ, d)
∣∣

E,S
≤(

d

d′, d1, . . . , dk+1

)∣∣SApGp(F, n, δ′, d′)
∣∣

E

k∏
i=1

(
d(h(s−1

i si) + δ)

di

)
k∏

i=1
(di !)dκd|E∪S|.

Therefore,

log | SAG(F ∪ S, n + 4, δ, d)
∣∣

E,S
≤ log

d!

d′!dk+1!
+ log

∣∣SApGp(F, n, δ′, d′)
∣∣

E

+
k∑

i=1

log
d(h(s−1

i si) + δ)!

di !(d(h(s−1
i si) + δ)− di)!

+ κd|E ∪ S| log d,

hence

log | SAG(F ∪ S, n + 4, δ, d)
∣∣

E,S
+ log d′! ≤ log d! + log

∣∣SApGp(F, n, δ′, d′)
∣∣

E
+ ε(δ, d)

with

ε(δ, d) :=
k∑

i=1

log
d(h(s−1

i si) + δ)!

di !(d(h(s−1
i si) + δ)− di)!

+ κd|E ∪ S| log d.

So since limd→∞
log d′!
d log d = h(p) and infδ limd→∞ ε(δ, d) = 0, we finally obtain

sG,E∪S(F ∪ S, n + 4) + h(p) ≤ 1 + inf
δ>0

lim sup
d→∞

| SApGp(F, n, δ′, d′)|E
d log d

.

Using [DKP2, Lemma 2.13]

sG,E∪S(F ∪ S, n + 4) + h(p) ≤ 1 + h(p)spGp,E(F, n),

and we deduce

s(G) ≤ h(p)s(pGp) + 1− h(p).

The same proof works with lim infd→∞ and limd→ω instead of lim supd→∞.

Finally we deduce the scaling formula.

Proof of Proposition 9.1 Let pn ≤ p ≤ qn be projections with h(pn), h(qn) ∈ Q
and |pn − qn| → 0. We have

h(p)s(pGp) ≤ h(pn)s(pnGpn) + h(p)− h(pn)

by the previous lemma, so lim infn→∞ s(pnGpn) ≥ s(pGp). Similarly,

h(qn)s(qnGqn) ≤ h(p)s(pGp) + h(qn)− h(p)

by the previous lemma, so lim supn→∞ s(qnGqn) ≤ s(pGp). However, the two lem-
mas combined imply that

s(G) = h(pn)s(pnGpn) + 1− h(pn),
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so

lim sup
n→∞

s(pnGpn) =
1

h(p)
(s(g)− 1) + 1

and

s(G) = h(qn)s(qnGqn) + 1− h(qn),

so

lim inf
n→∞

s(qnGqn) =
1

h(p)
(s(G)− 1) + 1.

Therefore,

s(pGp) =
1

h(p)
(s(G)− 1) + 1,

and the same argument works for s and sω .
So

s(G) = s(G)⇔ s(pGp) = s(pGp),

and G is s-regular if and only if pGp is s-regular.

10 Applications of the Correspondence Principle and the Proof of
Theorem 1.1

Since the work of [Dye], orbit equivalence relations have been used to prove results
in group theory on several occasions, with the Bernoulli action Γ y XΓ

0 serving as a
link. A recent example is the use of the Gaboriau–Lyons theorem [GL] (that the orbit
relation of Γ y [0, 1]Γ of a nonamenable group Γ contains a nonamenable subtree-
ing) as a way to replace the assumption “contains a nonamenable free group” on Γ
by “Γ is nonamenable”. The ‘correspondence principle’ discussed here is a straight-
forward but useful extension of this well-known idea from groups to groupoids.

For example, let us prove the following result using the principle.

Proposition 10.1 Let G y X be a pmp action of an amenable pmp groupoid G.
Then s(G) = s(G n X). In particular s(G n X) does not depend on the action.

Let us first observe that the measure of the set of finite orbits of an action G y X
does not depend on the action.

Lemma 10.2 If G y X is an essentially free pmp action of a pmp groupoid G and
D ⊂ X is a fundamental domain for the set of finite orbits of G in X, then

µ(D) :=

∫
G0

1

|Ge|
dh(e),

so µ(D) depends only on G.

Proof Let

Xf := {x ∈ X | |Gx| <∞}.
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Since G y X is free, |Gx| = |Gr(x)| almost surely, so

µe(Xe
f ) =

{
0 if |Ge| =∞,

1 otherwise,

for ae e ∈ G0 and if D ⊂ Xf is a fundamental domain then if e1, e2 . . . , en are the units
isomorphic to e, we have

n∑
i=1

µei (Dei ) =
n

|Ge|
.

Therefore,

µ(D) =

∫
G0

1

|Ge|
dh(e)

using invariance of µ.

Remark 10.3 An analogue of the so-called “fixed price problem” [Gab] for s is
the question of whether s(G n X) depends on G only and not on the essentially free
pmp action G y X. This “fixed sofic dimension problem” holds for example for
groupoids with fixed price 1 (i.e., all their free pmp actions have cost 1) provided
all their free pmp actions are sofic, but it is open in general. Also open is whether a
groupoid is sofic if and only if all its free pmp actions are sofic.

Proof of Proposition 10.1 Since the Bernoulli action G y [0, 1]G is essentially free
G n [0, 1]G is a pmp equivalence relation, so by Theorem 8.2 and [DKP1, Corol-
lary 5.2]

s(G) = s(G n [0, 1]G) = 1− µ(D) = 1−
∫

G0

1

|Ge|
dh(e),

where D is the fundamental domain of the set of finite classes of the amenable pmp
equivalence relation G n [0, 1]G.

If G y X is a pmp action, then the action G n X y [0, 1]GnX is pmp and
essentially free, so by Theorem 8.2

s(G n X) = s
(

(G n X) n [0, 1]GnX
)
.

Now the measure isomorphism

(G n X) n [0, 1]GnX → G n
(

X × [0, 1]GnX
)

((s, x), y) 7→ (s, (x, y))

is an isomorphism of pmp equivalence relations, where the action G y X×[0, 1]GnX

is diagonal and G y [0, 1]GnX on the first coordinate.
Then

s(G n X) = s
(

G n
(

X × [0, 1]GnX
))

= 1− µ(D′)

= 1−
∫

G0

1

|Ge|
dh(e),

where D′ is the is the fundamental domain of the set of finite classes of the amenable
pmp equivalence relation G y X × [0, 1]GnX . So s(G) = s(G n X).

https://doi.org/10.4153/CJM-2014-019-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-019-5


A Free Product Formula for the Sofic Dimension 401

Another example is the proof that the invariance of s under orbit equivalence
(Theorem 2.7) established in [DKP1, Theorem 4.1] is equivalent to the statement
for groupoids in [DKP2, Theorem 2.1].

Theorem 10.4 Let G be a pmp groupoid and let E, F be transversally generating sets.
Then s(E) = s(F), s(E) = s(F) and sω(E) = sω(F).

Proof If F is a transversally generating set of G (which we assume to have infinite
fibers) then F ∪{pB0 , pB1} (as defined in Lemma 3.5) is a transversally generating set
of the pmp equivalence relation G n {0, 1}G. By Theorem 8.2

s(F) = s(F ∪ {pB0 , pB1})

so by Theorem 2.7 we have

s(E) = s(E ∪ {pB0 , pB1}) = s(F ∪ {pB0 , pB1}) = s(F).

The same applies to s and sω .

We conclude with the proof Theorem 1.1, which is our main illustration of the
correspondence principle.

Proof of Theorem 1.1 Let G̃i := Gi |G0
3

and G̃ := G|G0
3

= G̃1 ∗G3 G̃2 then for every

essentially free pmp action G̃ y X of G̃ we have

s(G)− 1 = h(G0
3)
(

s(G̃1 ∗G3 G̃2)− 1
)

by Proposition 9.1

≥ h(G0
3)
(

s(G̃1 ∗G3 G̃2 n X)− 1
)

by Proposition 7.4

= h(G0
3)
(

s
(

(G̃1 n X|1) ∗(G3nX|3) (G̃2 n X|2)
)
− 1
)

by Lemma 3.8

= h(G0
3)
(

s(R1 ∗R3 R1)− 1
)

where Ri := G̃i n X|i are pmp equivalence relations by Lemma 3.4

= h(G0
3)
(

s(R1) + s(R2)− s(R3)− 1
)

by [DKP1, Theorem 1.2]

= h(G0
3)
(

s(R1) + s(R2)− s(G3)− 1
)

by Proposition 10.1

If G̃ y X is Bernoulli, then

s(G̃1 ∗G3 G̃2) = s(G̃1 ∗G3 G̃2 n X)
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by Theorem 8.2 and G̃i y X|i for i = 1, 2 are (isomorphic to) Bernoulli actions by

Lemma 3.3. Therefore, s(Ri) = s(G̃i), i = 1, 2 by Theorem 8.2. Then

s(G)− 1 = h(G0
3)
(

s(R1) + s(R2)− s(G3)− 1
)

= h(G0
3)
(

s(G̃1) + s(G̃2)− s(G3)− 1
)

by Lemma 3.3 and

Theorem 8.2

= h(G0
3)
(

s(G̃1)− 1
)

+ h(G0
3)
(

s(G̃2)− 1
)
− h(G0

3)
(

s(G3)− 1
)

= h(G0
1)
(

s(G1)− 1
)

+ h(G0
2)
(

s(G2)− 1
)
− h(G0

3)
(

s(G3)− 1
)

by Proposition 9.1

= h(G0
1)s(G1) + h(G0

2)s(G2)− h(G0
3)s(G3)− h(G0

1)− h(G0
2) + h(G0

3)

= h(G0
1)s(G1) + h(G0

2)s(G2)− h(G0
3)s(G3)− 1.

(We note that the inequality s(G) ≤ h(G0
1)s(G1) + h(G0

2)s(G2)− h(G0
3)s(G3) can also

be proved by a direct argument.)

Acknowledgment We are grateful to the referee for his comments on the paper.
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[Gab] D. Gaboriau, Coût des relations d’équivalence et des groupes. Invent. Math. 139(2000), no. 1,
41–98. http://dx.doi.org/10.1007/s002229900019

[GL] D. Gaboriau and R. Lyons, A measurable-group-theoretic solution to von Neumann’s problem.
Invent. Math. 177(2009), no. 3, 533–540. http://dx.doi.org/10.1007/s00222-009-0187-5

[Jun1] K. Jung, A free entropy dimension lemma. Pacific J. Math. 211(2003), no. 2, 265–271.
http://dx.doi.org/10.2140/pjm.2003.211.265

[Jun2] , The free entropy dimension of hyperfinite von Neumann algebras. Trans. Amer. Math. Soc.
355(2003), no. 12, 5053–5089. http://dx.doi.org/10.1090/S0002-9947-03-03286-0

[MS] I. Mineyev and D. Shlyakhtenko, Non-microstates free entropy dimension for groups. Geom.
Funct. Anal. 15(2005), no. 2, 476–490. http://dx.doi.org/10.1007/s00039-005-0513-z

[OW] D. S. Ornstein and B. Weiss. Entropy and isomorphism theorems for actions of amenable groups. J.
Analyse Math. 48(1987), 1–141. http://dx.doi.org/10.1007/BF02790325

[Oz] N. Ozawa, Hyperlinearity, sofic groups and applications to group theory. Notes from a 2009 talk.
http://people.math.jussieu.fr/∼pisier/taka.talk.pdf

[Pe] V. Pestov, Hyperlinear and sofic groups: a brief guide. Bull. Symbolic Logic 14(2008), no. 4,
449–480. http://dx.doi.org/10.2178/bsl/1231081461

https://doi.org/10.4153/CJM-2014-019-5 Published online by Cambridge University Press

http://dx.doi.org/10.1007/s00222-002-0281-4
http://dx.doi.org/10.1090/S0894-0347-09-00637-7
http://arxiv.org/abs/1210.1992
http://dx.doi.org/10.1112/plms/pdm054
http://dx.doi.org/10.2307/2372852
http://arxiv.org/abs/1102.2556
http://arxiv.org/abs/1111.2842
http://dx.doi.org/10.1016/j.jfa.2009.10.013
http://dx.doi.org/10.1017/S0143385700004958
http://dx.doi.org/10.1007/s002229900019
http://dx.doi.org/10.1007/s00222-009-0187-5
http://dx.doi.org/10.2140/pjm.2003.211.265
http://dx.doi.org/10.1090/S0002-9947-03-03286-0
http://dx.doi.org/10.1007/s00039-005-0513-z
http://dx.doi.org/10.1007/BF02790325
http://people.math.jussieu.fr/~pisier/taka.talk.pdf
http://dx.doi.org/10.2178/bsl/1231081461
https://doi.org/10.4153/CJM-2014-019-5


A Free Product Formula for the Sofic Dimension 403

[Ram] A. Ramsay, Virtual groups and group actions. Advances in Math. 322(1971), 253–322.
http://dx.doi.org/10.1016/0001-8708(71)90018-1

[Shl] D. Shlyakhtenko, Microstates free entropy and cost of equivalence relations. Duke Math. J.
118(2003), no. 3, 375–425. http://dx.doi.org/10.1215/S0012-7094-03-11831-1

[Voi91] D. Voiculescu, Limit laws for random matrices and free products. Invent. Math. 104(1991), no. 1,
201–220. http://dx.doi.org/10.1007/BF01245072

[Voi96] , The analogues of entropy and of Fisher’s information measure in free probability theory.
III. The absence of Cartan subalgebras. Geom. Funct. Anal. 6(1996), no. 1, 172–199.
http://dx.doi.org/10.1007/BF02246772

[Voi98] , A strengthened asymptotic freeness result for random matrices with applications to free
entropy. Internat. Math. Res. Notices 1998, no. 1, 41–63.

Department of Mathematics and Statistics, McGill University, Montréal, QC H3A 0B9
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