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Abstract

The main goal is to illustrate that the so-called indirect function of a cooperative game in characteristic
function form is applicable to determine the nucleolus for a subclass of coalitional games called
compromise stable transferable utility (TU) games. In accordance with the Fenchel–Moreau theory on
conjugate functions, the indirect function is known as the dual representation of the characteristic function
of the coalitional game. The key feature of a compromise stable TU game is the coincidence of its core
with a box prescribed by certain upper and lower core bounds. For the purpose of the determination of
the nucleolus, we benefit from the interrelationship between the indirect function and the prekernel of
coalitional TU games. The class of compromise stable TU games contains the subclasses of clan games,
big boss games and 1- and 2-convex n-person TU games. As an adjunct, this paper reports the indirect
function of clan games for the purpose of determining their nucleolus.
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1. Compromise stable TU games

Fix the finite player set N and its power set P(N) = {S | S ⊆ N} consisting of all the
subsets of N (including the empty set ∅). A cooperative transferable utility game,
or TU game for short, is given by the so-called characteristic function v : P(N)→ R
satisfying v(∅) = 0. That is, the TU game v assigns to each coalition S ⊆ N its worth
v(S ) amounting to the monetary benefits achieved by cooperation among the members
of S .

In the framework of set-valued solution concepts for TU games, we aim to
determine the prekernel for a special subclass of TU games called compromise stable
TU games [10] using a new mathematical tool called the indirect function [1, 6].
The economic interpretation of this function is the following. An employer has to
select among the players those who will produce the maximum profit to him. In case
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the nonempty coalition S ⊆ N is selected, then its members will produce, using the
resources that are available to the employer, a total amount of output whose monetary
utility is represented by the worth v(S ). The expression ev(S , ~y ) = v(S ) −

∑
k∈S yk,

called the excess of coalition S at the payoff vector ~y = (yk)k∈N ∈ R
N in the TU game

v, is thus the net profit the employer would obtain from the coalition S if the (possibly
negative) salary required by the player i amounts to yi for i ∈ N. Write ev(∅, ~y) = 0.
In accordance with the Fenchel–Moreau theory on conjugate functions, the indirect
function provides a dual representation to TU games in the sense that indirect functions
provide the same information as characteristic functions because a simple formula
permits us to recover any characteristic function from its associated indirect function.

Definition 1.1 [6, page 292]. With every TU game v : P(N)→ R, there is associated
the indirect function πv : RN → R, given by

πv(~y) = max
S⊆N

ev(S , ~y) = max
S⊆N

[
v(S ) −

∑
k∈S

yk

]
for all ~y = (yk)k∈N ∈ R

N .

Definition 1.2. The Core(v) of the TU game v : P(N)→ R consists of efficient salary
vectors of which all the excesses are nonpositive, that is,

Core(v) = {~y ∈ RN | ev(N, ~y) = 0 and ev(S , ~y) ≤ 0 for all S $ N, S , ∅}. (1.1)

Equivalently, ~y ∈ Core(v) if and only if ev(N, ~y) = 0 and πv(~y) = 0.

Concerning the definition of compromise stable TU games, we follow the notation
used in [10].

Definition 1.3. Let v : P(N)→ R be a TU game.

(i) The utopia demand vector ~Mv = (Mv
k)k∈N ∈ R

N is given by Mv
i = v(N) − v(N\{i})

for all i ∈ N.
(ii) The minimum right vector ~mv = (mv

k)k∈N ∈ R
N is given by

mv
i = max

[
v(S ) −

∑
k∈S \{i}

Mv
k | S ⊆ N, i ∈ S

]
for all i ∈ N. (1.2)

(iii) The core cover CC(v) ⊆ RN consists of efficient payoff vectors representing
compromises between utopia demands as well as minimum rights, that is,

CC(v) = {~y ∈ RN | ev(N, ~y) = 0 and mv
i ≤ yi ≤ Mv

i for all i ∈ N}.

(iv) The TU game v is called compromise stable if CC(v) = Core(v).

We remark that the inclusion Core(v) ⊆ CC(v) holds in general because the utopia
demand vector ~Mv and the minimum right vector ~mv are well known to be an upper and
a lower bound for the core, respectively. As a first main contribution, we provide an
alternative proof of the following characterisation of compromise stable TU games.
For any nonempty coalition T ⊆ N and any payoff vector ~z = (zk)k∈N ∈ R

N , write
~z(T ) =

∑
k∈T zk, where ~z(∅) = 0.
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Theorem 1.4. A TU game v : P(N)→ R is compromise stable if and only if

v(S ) ≤ max
[∑

k∈S

mv
k, v(N) −

∑
k∈N\S

Mv
k

]
for all S ⊆ N, S , ∅. (1.3)

Proof. (i) Suppose that (1.3) holds. We prove the coincidence CC(v) = Core(v). It
suffices to prove the inclusion CC(v) ⊆ Core(v). Suppose ~y = (yk)k∈N ∈ CC(v). Then
mv

i ≤ yi ≤ Mv
i for all i ∈ N. Let S ⊆ N, S , ∅. Clearly, ~y(S ) ≥ ~mv(S ), whereas ~y(S ) =

v(N) − ~y(N\S ) ≥ v(N) − ~Mv(N\S ). Hence, ~y(S ) ≥ max[~mv(S ), v(N) − ~Mv(N\S )].
From (1.3), ~y(S ) ≥ v(S ) for all S ⊆ N, S , ∅, and so ~y ∈ Core(v), provided ~y ∈ CC(v).

(ii) For the converse statement, suppose that the coincidence CC(v) = Core(v) holds.
We aim to prove (1.3). Let S ⊆ N, S , ∅. We distinguish two cases.

Case 1. Assume v(N) − ~Mv(N\S ) < ~mv(S ). We prove that v(S ) ≤ ~mv(S ). For that
purpose, construct the efficient payoff vector ~y = (yk)k∈N ∈ R

N such that yi = mv
i for all

i ∈ S and

yi = mv
i +

v(N) − ~mv(N)

( ~Mv − ~mv)(N\S )
· (Mv

i − mv
i )

for all i ∈ N\S . Then mv
i ≤ yi ≤ Mv

i for all i ∈ N\S , by our assumption. So, ~y ∈ CC(v)
and so ~y ∈ Core(v); thus, ~y(S ) ≥ v(S ) or, equivalently, ~mv(S ) ≥ v(S ).

Case 2. Assume v(N) − ~Mv(N\S ) ≥ ~mv(S ). We prove that v(S ) ≤ v(N) − ~Mv(N\S ).
We distinguish two subcases. Put gv(N) = ~Mv(N) − v(N).

Subcase 2.1. Suppose that there exists at least one player i ∈ S with Mv
i −mv

i ≥ gv(N).
Construct the efficient payoff vector ~y = (yk)k∈N ∈ R

N such that yi = Mv
i − gv(N) and

y j = Mv
j for all j ∈ N\{i}. Then mv

j ≤ y j ≤ Mv
j for all j ∈ N. So, ~y ∈ CC(v) and so ~y ∈

Core(v). Thus, ~y(S ) ≥ v(S ) or, equivalently, v(S ) ≤ ~Mv(S ) − gv(N) = v(N) − ~Mv(N\S ).

Subcase 2.2. Suppose Mv
i −mv

i < gv(N) for all i ∈ S . Without loss of generality, write
S = {i1, i2, . . . , is} such that Mv

i1
− mv

i1
≤ Mv

i2
− mv

i2
≤ · · · ≤ Mv

is
− mv

is
. Then there exists

2 ≤ t ≤ s such that
t−1∑
k=1

[Mv
ik − mv

ik ] < gv(N) and
t∑

k=1

[Mv
ik − mv

ik ] ≥ gv(N).

Construct the efficient payoff vector ~y = (yk)k∈N ∈ R
N such that yi = Mv

i for all i ∈ N\S ,
and

yik =



mv
ik

for all ik ∈ S , k < t,

Mv
ik

for all ik ∈ S , k > t,

Mv
it

+

t−1∑
k=1

[Mv
ik − mv

ik ] − gv(N) for k = t.

Then mv
j ≤ y j ≤ Mv

j for all j ∈ N. So, ~y ∈ CC(v) and so ~y ∈ Core(v). Thus, ~y(S ) ≥ v(S )

or, equivalently, v(S ) ≤ ~Mv(S ) − gv(N) = v(N) − ~Mv(N\S ). This completes the proof.
�
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Remark 1.5. With every TU game v : P(N)→ R, there is associated its gap function
gv : P(N)→ R defined by gv(S ) = ~Mv(S ) − v(S ) for all S ⊆ N, where gv(∅) = 0. An
adapted version of (1.3) is well known as the so-called 1-convexity constraint as
follows:

v(S ) ≤ v(N) − ~Mv(N\S ) or, equivalently, gv(N) ≤ gv(S ) for all S ⊆ N, S , ∅.

In words, the TU game v is said to be 1-convex if its corresponding (nonnegative) gap
function gv attains its minimum at the grand coalition. Clearly, the class of compromise
stable TU games contains the subclass of 1-convex n-person games [3, 4], as well as
the 2-convex n-person games [3, 5] and the big boss and clan games [2, 8, 9].

Further, from (1.2), we deduce that Mv
i − mv

i = min[gv(S ) | S ⊆ N, i ∈ S ] for all
i ∈ N. Thus, mv

i ≤ Mv
i if and only if gv(S ) ≥ 0 for all S ⊆ N with i ∈ S . In particular,

~mv ≤ ~Mv if and only if gv(S ) ≥ 0 for all S ⊆ N, S , ∅. Throughout the next section we
tacitly assume a nonnegative gap function.

2. The indirect function as a tool for the determination of the nucleolus of
compromise stable TU games

Theorem 2.1. Let the TU game v : P(N)→ R be compromise stable. Then its indirect
function πv : RN → R has the following properties:

(i) πv(~y) = max[0, v(N) −
∑

k∈N yk] for all ~y = (yk)k∈N ∈ R
N with ~mv ≤ ~y ≤ ~Mv;

(ii) for all ~y = (yk)k∈N ∈ R
N such that there exist unique i, j ∈ N with yi < mv

i , y j > Mv
j

and mv
k ≤ yk ≤ Mv

k for all k ∈ N\{i, j},

πv(~y) = max
[
mv

i − yi, v(N\{ j}) −
∑

k∈N\{ j}

yk

]
(2.1)

= max
[
mv

i − yi, v(N) −
∑
k∈N

yk + y j − Mv
j

]
; (2.2)

(iii) with any efficient payoff vector ~x = (xk)k∈N ∈ R
N satisfying ~mv ≤ ~x ≤ ~Mv, any

pair i, j ∈ N of players and any transfer δ ≥ 0 from i to j, there is associated the
adapted payoff vector ~x i jδ

= (xi jδ
k )k∈N ∈ R

N given by xi jδ
i = xi − δ, xi jδ

j = x j + δ

and xi jδ
k = xk for all k ∈ N\{i, j}. Then, for δ ≥ 0 sufficiently large,

πv(~x i jδ) = δ + max[mv
i − xi, x j − Mv

j] for all i, j ∈ N, i , j; (2.3)

(iv) for δ ≥ 0 sufficiently large, the pairwise equilibrium condition πv(~x i jδ) = πv(~x jiδ)
is equivalent to

min[xi − mv
i ,M

v
j − x j] = min[x j − mv

j,M
v
i − xi] for all i, j ∈ N, i , j. (2.4)

Proof. From Theorem 1.4, we see that for every vector ~y ∈ RN with ~mv ≤ ~y ≤ ~Mv and
every coalition S ⊆ N, S , N, S , ∅,

v(S ) − ~y(S ) ≤ max[(~mv − ~y)(S ), v(N) − ~y(N) + (~y − ~Mv)(N\S )] ≤ max[0, v(N) − ~y(N)]
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and so πv(~y) = max[0, v(N) − ~y(N)] for all ~mv ≤ ~y ≤ ~Mv. This completes the proof of
part (i).

In order to prove part (ii), let ~y = (yk)k∈N ∈ R
N be such that there exist i, j ∈ N with

yi < mv
i , y j > Mv

j and mv
k ≤ yk ≤ Mv

k for all k ∈ N\{i, j}. In order to study the excesses
ev(S , ~y), S ⊆ N, S , N, S , ∅, we distinguish three cases.

Case 1. Assume ~mv(S ) ≤ v(N) − ~Mv(N\S ). Then v(S ) ≤ v(N) − ~Mv(N\S ) and so

v(S ) − ~y(S ) ≤ v(N) − ~Mv(N\S ) − ~y(S ) = v(N) − ~y(N) + (~y − ~Mv)(N\S )
≤ v(N) − ~y(N) + (y j − Mv

j) = v(N\{ j}) − ~y(N\{ j}). (2.5)

By (2.5), ev(S , ~y) ≤ ev(N\{ j}, ~y) for all S ⊆ N with ~mv(S ) ≤ v(N) − ~Mv(N\S ).

Case 2. Assume ~mv(S ) > v(N) − ~Mv(N\S ). Then v(S ) ≤ ~mv(S ). We distinguish two
subcases.

Subcase 2.1. Assume i < S . Then we derive v(S ) − ~y(S ) ≤ (~mv − ~y)(S ) ≤ 0.

Subcase 2.2. Assume i ∈ S . Then we derive v(S ) − ~y(S ) ≤ (~mv − ~y)(S ) ≤ mv
i − yi.

In summary, ev(S , ~y) ≤ mv
i − yi for all S ⊆ N with ~mv(S ) > v(N) − ~Mv(N\S ). In

particular, ev({i},~y) = v({i}) − yi ≤ mv
i − yi. Notice that mv

i ≥ v(N) − ~Mv(N\{i}) because
Mv

i − mv
i ≤ gv(N). Due to the forthcoming Remark 2.2, we claim, without loss of

generality, that mv
i − yi equals the excess ev({i}, ~y). Hence, (2.1) holds or, equivalently,

(2.2). As a direct consequence, (2.3)–(2.4) hold. �

Remark 2.2. Whenever mv
i , v({i}), the latter part of the proof of Theorem 2.1 has

to be adapted by means of a slight change of the worth of player i without changing
the core and nucleolus concept. Formally, with a TU game v : P(N)→ R and a fixed
player i ∈ N, there is associated the TU game w : P(N)→ R given by w({i}) = mv

i and
w(S ) = v(S ) for all S ⊆ N, S , {i}. Clearly, ~Mw = ~Mv as well as ~mw = ~mv. Moreover, by
(1.1), both games possess the same core because mv

i ≥ v({i}) and as well ~mv represents a
lower bound for Core(v). Consequently, the intersection of the core with the prekernel
is the same for both games [7] and, for the classes under consideration, it follows from
the uniqueness part that both games have the same nucleolus. Finally, by Theorem 1.4,
if the game v is compromise stable, then the game w is compromise stable, too: that
is, w({i}) = mv

i = mw
i ≤ max[mw

i ,w(N) − ~Mw(N\{i})] and, for all S ⊆ N, S , ∅, S , {i},

w(S ) = v(S ) ≤ max[~mv(N), v(N) − ~Mv(N\S )] = max[~mw(N),w(N) − ~Mw(N\S )].

Without going into details, we state that the pairwise equilibrium conditions,
πv(~x i jδ) = πv(~x jiδ) for all pairs i, j ∈ N of players and for δ ≥ 0 sufficiently large, fully
determine the so-called prekernel of the TU game v [7]. As a matter of fact, the set
of efficient solutions of the nonlinear system of equations (2.4) is unique and it is a
so-called constrained equal award rule of the parametric form

xi = mv
i + max

[
Mv

i − mv
i − λ,

Mv
i − mv

i

2

]
for all i ∈ N,
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where the parameter λ ∈ R is determined by the efficiency constraint ~x(N) = v(N). This
unique solution within the prekernel is well known as the nucleolus of the TU game
v. In [10], the approach to determine the nucleolus of compromise stable TU games
is totally different and strongly based on the study of (convex) bankruptcy games [10,
Theorem 4.2, pages 497–498].

3. The indirect function and nucleolus of clan TU games

Definition 3.1 ([8, 9] and [2, page 59]). An n-person TU game v : P(N)→ R is said
to be a clan game if Mv

i ≥ v({i}) for all i ∈ N and there exists a coalition T ⊆ N, called
the clan, such that v(S ) = 0 whenever T * S and

v(S ) ≤ v(N) − ~Mv(N\S ) for all S ⊆ N, S , ∅ with T ⊆ S . (3.1)

A clan game v with an empty clan reduces to an 1-convex game, provided gv(N) ≥ 0.
A clan game in which the clan is a singleton is known as a big boss game.

Throughout this section we suppose that the clan T consists of at least two players.

Theorem 3.2. Let the n-person TU game v : P(N)→ R be a clan game. Then its
indirect function πv : RN → R has the following properties:

(i) πv(~y) = max[0, v(N) −
∑

k∈N yk] for all ~y = (yk)k∈N ∈ R
N with yi ≥ 0 for all i ∈ N

and yi ≤ Mv
i for all i ∈ N\T;

(ii) πv(~y) = max[0, v(N\{`}) −
∑

k∈N\{`} yk] = max[0, v(N) −
∑

k∈N yk + y` − Mv
`
] for

all ~y = (yk)k∈N ∈ R
N such that there exists a unique ` ∈ N\T with y` > Mv

`
≥ 0,

yi ≤ Mv
i for all i ∈ N\T, i , `, and yi ≥ 0 for all i ∈ N;

(iii) πv(~y) = max[−y`, v(N) −
∑

k∈N yk] for all ~y = (yk)k∈N ∈ R
N such that there exists

a unique ` ∈ N with y` < 0, yi ≥ 0 for all i ∈ N\{`} and yi ≤ Mv
i for all i ∈ N\T;

(iv) πv(~y) = max[−y j, v(N\{`}) −
∑

k∈N\{`} yk] = max[−y j, v(N) −
∑

k∈N yk + y` − Mv
`
]

for all ~y = (yk)k∈N ∈ R
N such that there exist unique j ∈ N, ` ∈ N\T with y j < 0,

yi ≥ 0 for all i ∈ N\{ j} and y` > Mv
`
≥ 0, yi ≤ Mv

i for all i ∈ N\T, i , `.

Proof. Let ~y = (yk)k∈N ∈ R
N .

Suppose that yi ≥ 0 for all i ∈ N and yi ≤ Mv
i for all i ∈ N\T . We distinguish two

types of coalitions S ⊆ N, S , ∅. In case T * S , then v(S ) − ~y(S ) = −~y(S ) ≤ 0. In case
T ⊆ S , then we derive from (3.1),

v(S ) − ~y(S ) ≤ v(N) − ~Mv(N\S ) − ~y(S ) = v(N) − ~y(N) + (~y − ~Mv)(N\S ) ≤ v(N) − ~y(N).
(3.2)

This proves part (i).
To prove part (ii), suppose that there exists a unique ` ∈ N\T with y` > Mv

`
≥ 0,

yi ≤ Mv
i for all i ∈ N\T , i , `, and yi ≥ 0 for all i ∈ N. We distinguish three types of

coalitions S ⊆ N, S , ∅. In case T * S , then v(S ) − ~y(S ) = −~y(S ) ≤ 0. In case T ⊆ S ,
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together with ` ∈ S , then v(S ) − ~y(S ) ≤ v(N) − ~y(N), as shown in (3.2). In case T ⊆ S ,
together with ` < S , then we derive from (3.1)

v(S ) − ~y(S ) = v(S ) − ~y(N) + y` + ~y(N\(S ∪ {`}))
≤ v(S ) − ~y(N) + y` + ~Mv(N\(S ∪ {`}))
= v(S ) − ~y(N) + y` − Mv

` + ~Mv(N\S )
≤ v(N) − ~y(N) + y` − Mv

` = v(N\{`}) − ~y(N\{`}).

In this setting, the indirect function πv attains its maximum for S = N, S = N\{`} or
S = ∅, but S = N cancels. The similar proof of part (iii) is left for the reader.

For part (iv), suppose that there exist unique j ∈ N, ` ∈ N\T with y j < 0, yi ≥ 0
for all i ∈ N\{ j} and y` > Mv

`
≥ 0, yi ≤ Mv

i for all i ∈ N\T , i , `. We distinguish three
types of coalitions S ⊆ N, S , ∅. In case T * S, then v(S ) − ~y(S ) = −~y(S ) ≤ −y j. In
case T ⊆ S , the proof is similar to the proof of part (ii) and is left for the reader, too. �

Corollary 3.3. For every n-person clan game v : P(N) → R, with clan T , the
following three statements concerning a payoff vector ~y = (yk)k∈N ∈ R

N are equivalent:

(i) ~y ∈ Core(v), that is, ~y(N) = v(N) and ~y(S ) ≥ v(S ) for all S ⊆ N, S , ∅;
(ii) ~y(N) = v(N) and πv(~y) = 0;
(iii) ~y(N) = v(N), yi ≥ 0 for all i ∈ N and yi ≤ Mv

i for all i ∈ N\T.

Theorem 3.4. Let the n-person TU game v : P(N)→ R be a clan game with clan
T . From the explicit formula for the indirect function of clan games, as presented
in Theorem 3.2(ii)–(iv), we conclude that, for δ ≥ 0 sufficiently large, the pairwise
equilibrium conditions πv(~x i jδ) = πv(~x jiδ) for all pairs i, j ∈ N of players reduce to the
following system of equations:

Case Pairwise equilibrium equation πv(~x i jδ) = πv(~x jiδ)

i ∈ T, j ∈ T max{−(xi − δ), 0} = max{−(x j − δ), 0}
i < T, j ∈ T max{−(xi − δ), 0} = max{−(x j − δ), (xi + δ) − Mv

i }

i < T, j < T max{−(xi − δ), (x j + δ) − Mv
j } = max{−(x j − δ), (xi + δ) − Mv

i }

Case Resulting pairwise equation for ~x = (xk)k∈N ∈ R
N

i ∈ T, j ∈ T xi = x j

i < T, j ∈ T xi = min{x j, Mv
i − xi}

i < T, j < T min{xi, Mv
j − x j} = min{x j, Mv

i − xi}

In summary, the unique solution is a so-called constrained equal reward rule of the
form xi = λ for all i ∈ T and xi = min[λ, 1

2 bv
i ] for all i ∈ N\T, where the parameter

λ ∈ R is determined by the efficiency condition ~x(N) = v(N).

The indirect function is also a helpful tool for the determination of the nucleolus for
the subclasses of big boss games as well as 1-convex and 2-convex n-person games [5].
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