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Abstract

Let G be a commutative group and C the field of complex numbers, R+ the set of positive real numbers
and f , g, h, k : G × R+ → C. In this paper, we first consider the Levi-Civitá functional inequality

| f (x + y, t + s) − g(x, t)h(y, s) − k(y, s)| ≤ Φ(t, s), x, y ∈ G, t, s > 0,

where Φ : R+ × R+ → R+ is a symmetric decreasing function in the sense that Φ(t2, s2) ≤ Φ(t1, s1) for
all 0 < t1 ≤ t2 and 0 < s1 ≤ s2. As an application, we solve the Hyers–Ulam stability problem of the
Levi-Civitá functional equation

u ◦ S − v ⊗ w − k ◦ Π ∈ D′L∞ (R2n) [respectivelyA′L∞ (R2n)]

in the space of Gelfand hyperfunctions, where u, v, w, k are Gelfand hyperfunctions, S (x, y) = x +

y,Π(x, y) = y, x, y ∈ Rn, and ◦, ⊗,D′L∞ (R2n) andA′L∞ (R2n) denote pullback, tensor product and the spaces
of bounded distributions and bounded hyperfunctions, respectively.

2010 Mathematics subject classification: primary 39B82; secondary 46F15.
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1. Introduction

A certain formula or equation is appropriate to model a physical process if a small
change in the formula or equation gives rise to a small change in the corresponding
result. When this happens we say the formula or equation is stable. In an application,
a functional equation like the additive Cauchy functional equation f (x + y) − f (x) −
f (y) = 0 may not be true for all x, y ∈ R but it may be true approximately, that is,

f (x + y) − f (x) − f (y) ≈ 0

for all x, y ∈ R. This can be stated mathematically as

| f (x + y) − f (x) − f (y)| ≤ ε
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for some small positive ε and for all x, y ∈ R. We would like to know when small
changes in a particular equation like the additive Cauchy functional equation have
only small effects on its solutions. This is the essence of stability theory.

In 1940, Ulam asked the following question: given a group G, a metric group H with
metric d(·, ·) and a positive number ε, does there exist a δ > 0 such that if f : G→ H
satisfies

d( f (xy), f (x) f (y)) ≤ ε

for all x, y ∈ G, then a homomorphism φ : G→ H exists with

d( f (x), φ(x)) ≤ δ

for all x ∈ G? These kinds of questions form the material for the stability theory of
functional equations (see [13]). For Banach spaces, Ulam’s problem was solved by
Hyers in 1941 [10] with δ = ε and the additive map

φ(x) = lim
n→∞

f (2nx)
2n .

In this paper, we consider the functional equation

f (x + y) = g(x)h(y) + k(y) (1.1)

in the space of Schwartz distributions and Gelfand hyperfunctions. Equation (1.1) is a
special case of the Levi-Civitá functional equation

f (x + y) = g1(x)h1(y) + g2(x)h2(y) + · · · + gn(x)hn(y), (1.2)

which was studied by Levi-Civitá in [11] under differentiability conditions. The Levi-
Civitá functional equation (1.2) was recently studied by Ebanks in [6] on nonabelian
groups. The stability of the Levi-Civitá functional equation was investigated by
Shulman on locally compact groups in [15]. In [3], we also studied the Ulam–Hyers
stability of the functional equation (1.1) on nonunital commutative semigroups G,
that is, we investigated the behaviour of f , g, h, k : G → C satisfying the functional
inequality

| f (x + y) − g(x)h(y) − k(y)| ≤ M ∀x, y ∈ G (1.3)

for some M > 0.
In 1950, Schwartz introduced the theory of distributions in his monograph Théorie

des distributions (see [14]). In this book, Schwartz systematises the theory of
generalised functions, basing it on the theory of linear topological spaces, and obtains
many important results. After his elegant theory appeared, many important concepts
and results on the classical spaces of functions have been generalised to the space of
distributions. For example, the space L∞(Rn) of bounded measurable functions on Rn

has been generalised to the space D′L∞(Rn) of bounded distributions as a subspace of
distributions and later the spaceD′L∞(Rn) was further generalised to the spaceA′L∞(Rn)
of bounded hyperfunctions. Also, positive functions and positive-definite functions
have been generalised to positive distributions and positive-definite distributions,
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respectively, and it was shown that every positive distribution is a positive measure
[9, page 38] and every positive-definite distribution is the Fourier transform of a
positive measure µ such that

∫
(1 + |x|)−p dµ <∞ for some p ≥ 0 [8, page 157]. This is

the Bochner–Schwartz theorem and is a natural generalisation of the famous Bochner
theorem stating that every positive-definite function is the Fourier transform of a
positive finite measure.

As in [1] and [2], using the pullback and the tensor product of distributions, we
generalise the functional inequality (1.3) as follows:

u ◦ S − v ⊗ w − k ◦ Π ∈ D′L∞(R2n) [respectivelyA′L∞(R2n)], (1.4)

where ◦ and ⊗ are the pullback and the tensor product of the generalised functions
u, v,w, k (see Section 2), respectively.

The main tool for controlling (1.4) is the heat kernel method initiated by
Matsuzawa [12], which represents the generalised functions in some class as the initial
values of solutions of the heat equation with appropriate growth conditions [5, 12].
Making use of the heat kernel method, we can convert (1.4) to the following classical
Hyers–Ulam stability problem: there exist C > 0 and N ≥ 0 (respectively, for every
ε > 0, there exists Cε > 0) such that

|ũ(x + y, t + s) − ṽ(x, t)w̃(y, s) − k̃(y, s)| ≤ C
(1

t
+

1
s

)N
[respectively Cεeε(1/t+1/s)]

(1.5)
for all x, y ∈ Rn, t, s > 0, where ũ, ṽ, w̃, k̃ : Rn × (0,∞)→ C are solutions of the heat
equation whose initial values are u, v,w, k, respectively. In Section 3, we consider
the stability problem (1.5) in a more general setting, combined with the heat kernel
method [5, 12], to solve the stability problem for (1.4).

2. Bounded distributions and hyperfunctions

We first introduce the spaces S′ of Schwartz tempered distributions and G′ of
Gelfand hyperfunctions (see [7–9, 12, 14] for more details of these spaces). We use

the notation |α| = α1 + · · · + αn, α! = α1! · · ·αn!, |x| =
√

x2
1 + · · · + x2

n, xα = xα1
1 · · · x

αn
n

and ∂α = ∂α1
1 · · · ∂

αn
n for x = (x1, . . . , xn) ∈ Rn, α = (α1, . . . , αn) ∈ Nn

0, where N0 is the
set of nonnegative integers and ∂ j = (∂/∂x j).

Definition 2.1 [14]. We denote by S or S(Rn) the Schwartz space of all infinitely
differentiable functions ϕ in Rn such that

‖ϕ‖α, β = sup
x
|xα∂βϕ(x)| <∞

for all α, β ∈ Nn
0, equipped with the topology defined by the seminorms ‖ · ‖α,β. The

elements of S are called rapidly decreasing functions and the elements of the dual
space S′ are called tempered distributions.
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Definition 2.2 [7, 8]. We denote by G or G(Rn) the Gelfand space of all infinitely
differentiable functions ϕ in Rn such that

‖ϕ‖h,k = sup
x∈Rn, α, β∈Nn

0

|xα∂βϕ(x)|
h|α|k|β|α!1/2β!1/2 <∞

for some h, k > 0. We say that ϕ j −→ 0 as j→∞ if ‖ϕ j‖h,k −→ 0 as j→∞ for some
h, k, and denote byG′ the dual space ofG and call its elements Gelfand hyperfunctions.

As a generalisation of the space L∞ of bounded measurable functions, Schwartz
introduced the space D′L∞ of bounded distributions as a subspace of tempered
distributions.

Definition 2.3 [14]. We denote by DL1 (Rn) the space of smooth functions on Rn such
that ∂αϕ ∈ L1(Rn) for all α ∈ Nn

0 equipped with the topology defined by the countable
family of seminorms

‖ϕ‖m =
∑
|α|≤m

‖∂αϕ‖L1 , m ∈ N0.

We denote byD′L∞ the dual space ofDL1 and call its elements bounded distributions.

Generalising bounded distributions, the space A′L∞ of bounded hyperfunctions has
been introduced as a subspace of G′.

Definition 2.4 [5]. We denote byAL1 the space of smooth functions on Rn satisfying

‖ϕ‖h = sup
α

‖∂αϕ‖L1

h|α|α!
<∞

for some constant h > 0. We say that ϕ j → 0 in AL1 as j→∞ if there is a positive
constant h such that

sup
α

‖∂αϕ j‖L1

h|α|α!
→ 0 as j→∞.

We denote byA′L∞ the dual space ofAL1 .

It is well known that the following topological inclusions hold:

G ↪→ S ↪→DL1 , D′L∞ ↪→ S
′ ↪→G′,

G ↪→AL1 ↪→DL1 , D′L∞ ↪→A
′
L∞ ↪→G

′.

It is known that the space G(Rn) consists of all infinitely differentiable functions
ϕ(x) on Rn which can be extended to an entire function on Cn satisfying

|ϕ(x + iy)| ≤ C exp(−a|x|2 + b|y|2), x, y ∈ Rn (2.1)

for some a, b,C > 0 (see [7]).
By virtue of [9, page 134, Theorem 6.12], we have the following definition.
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Definition 2.5. Let u j ∈ G
′(Rn j ) for j = 1, 2, with n1 ≥ n2, and let λ : Rn1 → Rn2 be a

smooth function such that for each x ∈ Rn1 , the Jacobian matrix ∇λ(x) of λ at x has
rank n2. Then there exists a unique continuous linear map λ∗ : G′(Rn2 )→G′(Rn1 ) such
that λ∗u = u ◦ λ when u is a continuous function. We call λ∗u the pullback of u by λ
and denote it by u ◦ λ.

In particular, let S : R2n → Rn be defined by S (x, y) = x + y for x, y ∈ Rn. In view
of the proof of [9, page 134, Theorem 6.12],

〈u ◦ S , ϕ(x, y)〉 =

〈
u,

∫
ϕ(x − y, y) dy

〉
.

Definition 2.6. Let u j ∈ G
′(Rn j ) for j = 1, 2. Then the tensor product u1 ⊗ u2 of u1 and

u2 is defined by
〈u1 ⊗ u2, ϕ(x1, x2)〉 = 〈u1, 〈u2, ϕ(x1, x2)〉〉

for ϕ(x1, x2) ∈ G(Rn1 × Rn2 ) and belongs to G′(Rn1 × Rn2 ).

For more details on the pullback and the tensor product of distributions, we refer
the reader to [9, Chs V–VI].

3. Stability of the Levi-Civitá functional equation with time variables
Let G be a commutative group, R+ the set of positive real numbers, C the set

of complex numbers and f , g, h, k : G × R+ → C. In this section, we investigate the
behaviour of functions f , g, h, k : G × R+ → C satisfying the functional inequality

| f (x + y, t + s) − g(x, t)h(y, s) − k(y, s)| ≤ Φ(t, s) (3.1)

for all x, y ∈ G, t, s > 0, where Φ : R+ → R+ satisfies the conditions

Φ(t2, s2) ≤ Φ(t1, s1), (3.2)
Φ(t, s) = Φ(s, t) (3.3)

for all 0 < t1 ≤ t2, 0 < s1 ≤ s2, t, s > 0.
In the following theorem, we exclude the cases when g or h is constant.

Theorem 3.1. Let f , g, h, k : G × R+ → C satisfy the functional inequality (3.1). Then
either there exist positive constants C1,C2,C3,C4 and δ > 0 such that

|h(x, t)| ≤ C1Φ(t, t), |g(x, t)| ≤ C2Φ(t, t),
|k(x, t)| ≤ C3Φ(t, t), | f (x, 2t)| ≤ C4Φ(t, t)2 (3.4)

for all x ∈ G, 0 < t < δ, or else

h(x, t) = βm1(t)m2(x),
g(x, t) = αβm1(t)m2(x) + γ,

|k(x, t) + βγm1(t)m2(x) − µ| ≤ 2Φ(t, t),

| f (x, t) − αβ2m1(t)m2(x) − µ| ≤ 3Φ

( t
2
,

t
2

) (3.5)

for all x ∈ G, 0 < t < δ, where α, β, γ, µ ∈ C, m1 : R+ → C and m2 : G → C are
exponential functions.
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Proof. Fix y0 ∈ G, s0 > 0 and let

D(x, y, t, s) = f (x + y, t + s) − g(x, t)h(y, s) − k(y, s).

Then

D(y, x, s, t) − D(x, y, t, s) − D(y0, x, s0, t) + D(x, y0, t, s0)
= (h(y, s) − h(y0, s0))g(x, t) − (g(y, s) − g(y0, s0))h(x, t) + k(y, s) − k(y0, s0).

Thus, using the triangle inequality and (3.3),

|(h(y, s) − h(y0, s0))g(x, t) − (g(y, s) − g(y0, s0))h(x, t)|
≤ |k(y, s) − k(y0, s0)| + |D(y, x, s, t)| + |D(x, y, t, s)|

+ |D(y0, x, s0, t)| + D(x, y0, t, s0)|
≤ |k(y, s) − k(y0, s0)| + 2Φ(t, s) + 2Φ(t, s0) (3.6)

for all x, y ∈ G, t, s > 0.
Choosing y1 ∈ G, s1 > 0 such that h(y1, s1) − h(y0, s0) , 0, putting y = y1, s = s1

in (3.6) and dividing the result by |h(y1, s1) − h(y0, s0)|,

|g(x, t)| ≤ b1|h(x, t)| + c1(Φ(t, s1) + Φ(t, s0)) + d1, (3.7)

where

b1 =

∣∣∣∣∣g(y1, s1) − g(y0, s0)
h(y1, s1) − h(y0, s0)

∣∣∣∣∣, c1 =
2

|h(y1, s1) − h(y0, s0)|
, d1 =

∣∣∣∣∣ k(y1, s1) − k(y0, s0)
h(y1, s1) − h(y0, s0)

∣∣∣∣∣.
From (3.2),

Φ(t, s1) + Φ(t, s0) ≤ 2Φ(t, t) (3.8)

for all 0 < t < δ1 := min{s1, s0}. Thus, from (3.7) and (3.8),

|g(x, t)| ≤ b1|h(x, t)| + 2c1Φ(t, t) + d1 (3.9)

for all x ∈ G, 0 < t < δ1. Similarly, there exist b2, c2, d2 ≥ 0 and δ2 > 0 such that

|h(x, t)| ≤ b2|g(x, t)| + 2c2Φ(t, t) + d2 (3.10)

for all x ∈ G, 0 < t < δ2.
Let δ = min{δ1, δ2} and assume that there exists C1 > 0 such that

Φ(t, t)−1|h(x, t)| ≤ C1

for all x ∈ G, 0 < t < δ. Then, dividing both sides of (3.9) by Φ(t, t),

Φ(t, t)−1|g(x, t)| ≤ b1Φ(t, t)−1|h(x, t)| + 2c1 + d1Φ(t, t)−1

≤ b1C1 + 2c1 + d1Φ(δ, δ)−1 := C2

for all x ∈ G, 0 < t < δ. Thus, Φ(t, t)−1g(x, t) is bounded in G × (0, δ). Now, using the
triangle inequality,

|h(y0, s0)g(x, t) − g(y0, s0)h(x, t) − k(x, t) + k(y0, s0)|
= |D(y0, x, s0, t) − D(x, y0, t, s0)| ≤ 2Φ(t, s0) ≤ 2Φ(t, t) (3.11)
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for all x ∈ G, 0 < t < δ. Dividing both sides of (3.11) by Φ(t, t) and using the triangle
inequality again,

Φ(t, t)−1|k(x, t)|
≤ Φ(t, t)−1|h(y0, s0)g(x, t) − g(y0, s0)h(x, t) + k(y0, s0)| + 2
≤ Φ(t, t)−1(|h(y0, s0)||g(x, t)| + |g(y0, s0)||h(x, t)| + |k(y0, s0)|) + 2
≤ C2|h(y0, s0)| + C1|g(y0, s0)| + Φ(δ, δ)−1|k(y0, s0)| + 2 := C3

for all x ∈ G, 0 < t < δ. Putting y = 0 and s = t in (3.1), dividing the result by Φ(t, t)2

and using the triangle inequality,

Φ(t, t)−2| f (x, 2t)| ≤ Φ(t, t)−2(|g(x, t)||h(0, t)| + |k(0, t)|) + Φ(t, t)
≤ C1C2 + (C3 + 1)Φ(t, t)−1

≤ C1C2 + (C3 + 1)Φ(δ, δ)−1 := C4

for all x ∈ G, 0 < t < δ. Thus, we obtain (3.4).
Now we assume that Φ(t, t)−1h(x, t) is unbounded in G × (0, ε) for all ε ≤ δ. Then

it follows from (3.10) that Φ(t, t)−1g(x, t) is unbounded in G × (0, ε) for all ε ≤ δ.
Dividing both sides of (3.6) by |h(y, s) − h(y0, s0)|,

|g(x, t) − α(y, s)h(x, t)| ≤ |γ(y, s)| +
2Φ(t, s) + 2Φ(t, s0)
|h(y, s) − h(y0, s0)|

(3.12)

for all (x, t) ∈ G × R+ and (y, s) ∈ J := {(y, s) ∈ G × R+ : h(y, s) , h(y0, s0)}, where

α(y, s) =
g(y, s) − g(y0, s0)
h(y, s) − h(y0, s0)

and γ(y, s) =
k(y, s) − k(y0, s0)
h(y, s) − h(y0, s0)

.

Replacing (y, s) by (y1, s1) and (y, s) by (y2, s2) in (3.12) gives two inequalities.
Using the triangle inequality and these two inequalities,

|α(y1, s1) − α(y2, s2)||h(x, t)|

≤ |γ(y1, s1)| + |γ(y2, s2)| +
2Φ(t, s1) + 2Φ(t, s0)
|h(y1, s1) − h(y0, s0)|

+
2Φ(t, s2) + 2Φ(t, s0)
|h(y2, s2) − h(y0, s0)|

(3.13)

for all (x, t) ∈ G × R+. Dividing both sides of (3.13) by Φ(t, t),

|α(y1, s1) − α(y2, s2)|Φ(t, t)−1|h(x, t)|
≤ Φ(t, t)−1|γ(y1, s1)| + Φ(t, t)−1|γ(y2, s2)|

+
4

|h(y1, s1) − h(y0, s0)|
+

4
|h(y2, s2) − h(y0, s0)|

(3.14)

for all x ∈G, 0 < t < ρ := min{s0, s1, s2}. Since the right-hand side of (3.14) is bounded
on (0, ρ) and Φ(t, t)−1|h(x, t)| is unbounded on G × (0, ρ),

α(y1, s1) = α(y2, s2).
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Thus, α(y, s) := α is independent of (y, s) ∈ J := {(y, s) ∈ G × R+ : h(y, s) , h(y0, s0)}
and

g(y, s) − g(y0, s0) = α(h(y, s) − h(y0, s0)) (3.15)

for all (y, s) ∈ J. Now we show that g(y, s) − g(y0, s0) = 0 if and only if h(y, s) −
h(y0, s0) = 0. Assume that g(y1, s1) − g(y0, s0) = 0 and h(y1, s1) − h(y0, s0) , 0 for some
y1 ∈ G, s1 > 0. Then, since b1 = 0 in (3.9),

Φ(t, t)−1|g(x, t)| ≤ 2c1 + d1Φ(δ, δ)−1

for all x ∈G, 0 < t < δ, which gives a contradiction since Φ(t, t)−1|g(x, t)| is unbounded
on G × (0, δ). Thus, g(y1, s1) − g(y0, s0) = 0 implies that h(y, s) − h(y0, s0) = 0. By
changing the role of g and h, we can prove that h(y1, s1) − h(y0, s0) = 0 implies that
g(y1, s1) − g(y0, s0) = 0. Thus, it follows from (3.15) that

g(y, s) = αh(y, s) + γ (3.16)

for all (y, s) ∈ G × R+, where γ = g(y0, s0) − αh(y0, s0). Putting (3.16) in (3.1),

| f (x + y, t + s) − αh(x, t)h(y, s) − γh(y, s) − k(y, s)| ≤ Φ(t, s). (3.17)

Replacing (x, y, t, s) by (y, x, s, t) in (3.17), using the triangle inequality and putting
y = y0, s = s0,

|k(x, t) + γh(x, t) − µ| ≤ 2Φ(t, s0) ≤ 2Φ(t, t) (3.18)

for all x ∈ G, 0 < t < δ, where µ = γk(y0, s0) + h(y0, s0).
Using the triangle inequality with (3.1) and (3.18),

| f (x + y, 2t) − αh(x, t)h(y, t) − µ| ≤ 3Φ(t, t) (3.19)

for all x, y ∈ G, 0 < t < δ.
Now we investigate h. Since Φ(t, t)−1g(x, t) is unbounded in G × (0, ε) for all

0 < ε ≤ δ, we can choose a sequence (zn, rn) ∈ G × (0, δ), n = 1, 2, 3, . . . , such that
rn → 0 and Φ(rn, rn)|g(zn, rn)|−1 → 0 as n→∞. Putting x = zn, t = rn in (3.1), dividing
the result by |g(zn, rn)| and using the triangle inequality,∣∣∣∣∣h(y, s) −

f (zn + y, rn + s)
g(zn, rn)

∣∣∣∣∣ ≤ Φ(rn, s) + |k(y, s)|
|g(zn, rn)|

≤
Φ(rn, rn) + |k(y, s)|
|g(zn, rn)|

(3.20)

for all y ∈ G, s > 0 and rn < s. Letting n→∞ in (3.20),

h(y, s) = lim
n→∞

f (zn + y, rn + s)
g(zn, rn)

(3.21)
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for all y ∈ G, s > 0. Thus, it follows from (3.1) and (3.21) that

h(x + y, t + s)h(z, r) = lim
n→∞

f (zn + x + y, rn + t + s)h(z, r)
g(zn, rn)

= lim
n→∞

h(x, t)g(zn + y, rn + s)h(z, r) + R1

g(zn, rn)

= lim
n→∞

h(x, t) f (zn + y, rn + s + r) + R1 + R2

g(zn, rn)

= h(x, t)h(y, s + r) + lim
n→∞

R1 + R2

g(zn, rn)
. (3.22)

Since |R1| ≤ |h(z, r)|(Φ(rn + s, t) + |k(x, t)|), |R2| ≤ |h(x, t)|(Φ(rn + s, r) + |k(z, r)|) and
Φ(rn, rn)|g(zn, rn)|−1 → 0 as n→∞,

lim
n→∞

∣∣∣∣∣R1 + R2

g(zn, rn)

∣∣∣∣∣ ≤ lim
n→∞

|R1| + |R2|

|g(zn, rn)|

≤ lim
n→∞

|h(z, r)|(Φ(rn, rn) + |k(x, t)|)
|g(zn, rn)|

+ lim
n→∞

|h(x, t)|(Φ(rn, rn) + |k(z, r)|)
|g(zn, rn)|

= 0. (3.23)

Thus, it follows from (3.22) and (3.23) that

h(x + y, t + s)h(z, r) = h(x, t)h(y + z, s + r) (3.24)

for all x, y, z ∈ G and t, s, r > 0. Assume that h(0, r) = 0 for all r > 0. Putting z = 0 and
replacing y by x and t by s + r in (3.24),

0 = h(2x, t + s)h(0, r) = h(x, s + r)2

for all x ∈ G, s, r > 0, which implies that h ≡ 0. Thus, we can choose r0 > 0 such that
h(0, r0) , 0. Putting x = y = z = 0, t = r0, s = r = r0/2 in (3.24),

h(0, 3r0/2)h(0, r0/2) = h(0, r0)2 , 0.

Putting z = 0, r = r0/2 in (3.24), multiplying the result by h(0, r0/2) and using (3.24)
again,

h(x + y, t + s)h(0, r0/2)2 = h(x, t)h(y, s + r0/2)h(0, r0/2)
= h(x, t)h(y, s)h(0, r0) (3.25)

for all x, y ∈ G and t, s > 0. Dividing both sides of (3.25) by h(0, r0/2)4/h(0, r0),

β−1h(x + y, t + s) = β−1h(x, t) · β−1h(y, s) (3.26)

for all x, y ∈ G and t, s > 0, where

β =
h(0, r0/2)2

h(0, r0)
, 0.
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Thus, it follows from (3.26) that

h(x, t) = βm(x, t) (3.27)

for all x ∈ G, t > 0, where m : G × R+ → C is an exponential function. Note that every
exponential function m : G × R+ → C can be written as

m(x, t) = m1(t)m2(x), x ∈ G, t > 0 (3.28)

for some exponential functions m1 : R+ → C and m2 : G → C. Now, from (3.16),
(3.18), (3.19) and (3.28), we get (3.5). This completes the proof. �

Remark 3.2. In particular, if g(x, t) ≡ γ is a constant function, then replacing (x, y) by
(y, x) in (3.1) and using the triangle inequality with (3.1) gives

|k(x, t) + γh(x, t) − k(y, s) − γh(y, s)| ≤ 2Φ(t, s)

for all x, y ∈ G, t, s > 0. Put y = y0, s = s0 and let µ = k(y0, s0) − γh(y0, s0). Then

|k(x, t) + γh(x, t) − µ| ≤ 2Φ(t, s0) ≤ 2Φ(t, t) (3.29)

for all x ∈ G, 0 < t < δ. Using the triangle inequality with (3.1) and (3.29),

| f (x, t) − µ| ≤ 2Φ(t, s0) + Φ(t, t) ≤ 3Φ(t, t) (3.30)

for all x ∈ G, 0 < t < δ.
If h is a constant function (without loss of generality, we may assume that h ≡ 1),

the inequality (3.1) is reduced to the Hyers–Ulam stability of the Pexider functional
equation

| f (x + y, t + s) − g(x, t) − k(y, s)| ≤ Φ(t, s)

for all x, y ∈ G, t, s > 0 (see [1]).

4. Stability of the Levi-Civitá equation in distributions and hyperfunctions

As the main result, we consider the stability of

u ◦ S − v ⊗ w − k ◦ Π ∈ D′L∞(R2n) [respectivelyA′L∞(R2n)], (4.1)

where u, v, w, k ∈ G′(Rn), D′L∞(R2n) and A′L∞(R2n) are the spaces of bounded
distributions and bounded hyperfunctions, respectively, S (x, y) = x + y, x, y ∈ Rn,
and ◦ and ⊗ denote the pullback and the tensor product of generalised functions,
respectively.

For the proof of our theorems, we employ the n-dimensional heat kernel Et(x) given
by

Et(x) = (4πt)−n/2 exp(−|x|2/4t), t > 0.

In view of (2.1), we see that the heat kernel Et belongs to the Gelfand space G(Rn) for
each t > 0. Thus, for each u ∈ G′(Rn), the convolution (u ∗ Et)(x) := 〈uy, Et(x − y)〉 is
well defined. We call (u ∗ Et)(x) the Gauss transform of u and denote it by ũ(x, t). It is
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well known that the Gauss transform ũ(x, t) is a smooth solution of the heat equation
such that ũ(x, t)→ u as t→ 0+, that is,

〈u, ϕ〉 = lim
t→0+

∫
ũ(x, t)ϕ(x) dx

for all ϕ ∈ G.

Example 4.1. Let u(x) = xα, α ∈ Nn
0, v(x) = ec·x,w(x) = a · xec·x, a = (a1, a2, . . . , an), c =

(c1, c2, . . . , cn) ∈ Cn. Then u, v,w ∈ G′(Rn) and simple calculations show that

ũ(x, t) = [ξα ∗ Et(ξ)](x) = α!
∑

0≤2γ≤α

t|γ|xα−2γ

γ!(α − 2γ)!
,

ṽ(x, t) = [ec·ξ ∗ Et(ξ)](x) = ec·x+(c2
1+···+c2

n)t

and
w̃(x, t) = [a · ξec·ξ ∗ Et(ξ)](x) = (a · x + 2a · ct)ec·x+(c2

1+···+c2
n)t.

The proof of [4, Theorem 2.3] works even when p =∞, giving the following result.

Lemma 4.2. The Gauss transform ũ(x, t) := (u ∗ E)(x, t) of u ∈ D′L∞(Rn) is a smooth
solution of the heat equation (∆ − ∂/∂t)ũ = 0 satisfying:

(i) there exist constants C > 0, N ≥ 0 and δ > 0 such that

|ũ(x, t)| ≤ Ct−N ∀x ∈ Rn, t ∈ (0, δ); (4.2)

(ii) ũ(x, t)→ u as t→ 0+ in the sense that for every ϕ ∈ DL1 ,

〈u, ϕ〉 = lim
t→0+

∫
ũ(x, t)ϕ(x) dx.

Conversely, every smooth solution ũ(x, t) of the heat equation satisfying the
estimate (4.2) can be uniquely expressed as ũ(x, t) = (u ∗ E)(x, t) for some
u ∈ D′L∞(Rn).

Similarly, we can represent bounded hyperfunctions as initial values of solutions of
the heat equation. The estimate (4.2) is replaced by the following: there exists δ > 0
such that, for every ε > 0, there exists Cε > 0 such that

|ũ(x, t)| ≤ Cε exp(ε/t) ∀x ∈ Rn, t ∈ (0, δ).

For the proof, we refer the reader to [5, Theorem 3.5].
For the proof of the following structure theorem, we refer the reader to [14,

Theorem 25 in Ch. 6] and [5, Theorem 3.4].
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Lemma 4.3 [5, 12, 14].
(i) Every u ∈ D′L∞(Rn) can be expressed as

u =
∑
|α|≤p

∂α fα (4.3)

for some p ∈ N0, where fα are bounded continuous functions on Rn. The equality (4.3)
implies that

〈u, ϕ〉 =
∑
|α|≤p

(−1)|α|
∫

fα(x)∂αϕ(x) dx

for all ϕ ∈ DL1 .

(ii) Every u ∈ A′L∞(Rn) can be expressed as

u =

( ∞∑
k=0

ak∆
k
)
g + h, (4.4)

where ∆ denotes the Laplacian, g, h are bounded continuous functions on Rn and
ak, k = 0, 1, 2, . . . , satisfy the following estimates: for every L > 0, there exists C > 0
such that

|ak| ≤ CLk/k!2

for all k = 0, 1, 2, . . . .

The following properties of the heat kernel will be useful.

Lemma 4.4 [12]. For each t > 0, Et(·) is an entire function and the following estimate
holds: there exists C > 0 such that

|∂αx Et(x)| ≤ C |α|t−(n+|α|)/2α!1/2 exp(−|x|2/8t). (4.5)

Also, for each t, s > 0,

(Et ∗ Es)(x) :=
∫

Et(x − y)Es(y) dy = Et+s(x). (4.6)

Proof. The equality (4.6) is proved by well-known calculus, which we omit. We
prove (4.5) for the case n = 1. By the Cauchy integral formula,

dk

dxk Et(x) =
k!

2πi

∫
Cr

Et(z)
(z − x)k+1 dz, (4.7)

where Cr is the circle of radius r with centre at z = x. Using (4.7) and the triangle
inequality,

|∂kEt(x)| ≤
k!
√

4πtrk
sup
z∈Cr

|exp(−z2/4t)|

≤
k!
√

4πtrk
sup

0≤θ≤2π
exp

(
−(x + r cos θ)2 + r2 sin2 θ

4t

)
≤

k!
√

4πtrk
exp

(r2

4t

)
exp

(
−

x2

8t

)
. (4.8)
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The right-hand side of (4.8) attains its minimum at r =
√

2kt. Thus, (4.8) is reduced to

|∂kEt(x)| ≤
(e/2)k/2

√
4π

k!1/2t−(1+k)/2 exp
(
−

x2

8t

)
.

The general case is proved in the same manner. This completes the proof. �

Now we state and prove the main theorem. If w is constant (without loss of
generality, we may assume that w ≡ 1), then the stability problem of (4.1) is reduced
to that of the Pexider equation (see [1] for the result). Thus, we exclude the case when
w is constant in the following theorem.

Theorem 4.5. Let u, v,w, k ∈ G′(Rn). Then (u, v,w, k) satisfies (4.1) if and only if
(u, v,w, k) satisfies one of the following:

(i) u, v,w, k are all bounded distributions [respectively bounded hyperfunctions];
(ii) there exist α, β, γ ∈ C, a ∈ Cn such that

w = βea·x, v = αβea·x + γ,

k = βγea·x + k0, u = αβ2ea·x + u0,
(4.9)

where k0, u0 ∈ D
′
L∞(Rn) [respectivelyA′L∞(Rn)];

(iii) there exists γ ∈ C such that

v ≡ γ, k = −γw + k0, u = u0, (4.10)

where k0, u0 ∈ D
′
L∞(Rn) [respectivelyA′L∞(Rn)].

Proof. We first convert the stability of (4.1) to the following classical functional
inequalities: there exist C > 0 and d > 0 [respectively for every ε > 0 there exists
Cε > 0] such that

|ũ(x + y, t + s) − ṽ(x, t)w̃(y, s) − k̃(y, s)|

≤ C
(1

t
+

1
s

)N
+ d [respectively Cεeε(1/t+1/s)] (4.11)

for all x, y ∈ Rn, t, s > 0, where ũ, ṽ, w̃, k̃ denote the Gauss transforms of u, v,w, k,
respectively, given in Lemma 4.2.

Convolving the tensor product Et(x)Es(y) of n-dimensional heat kernels in the left-
hand side of (4.1) and using the semigroup property (4.6),

[(u ◦ S ) ∗ (Et(ξ)Es(η))](x, y) =

〈
uξ,

∫
Et(x − ξ + η)Es(y − η) dη

〉
= 〈uξ, (Et ∗ Es)(x + y − ξ)〉
= ũ(x + y, t + s).

Similarly,
[(v ⊗ w) ∗ (Et(ξ)Es(η))](x, y) = ũ(x, t)ṽ(y, s),

[(k ◦ Π) ∗ (Et(ξ)Es(η))](x, y) = k̃(y, s),

where ũ, ṽ, ṽ and k̃ are the Gauss transforms of u, v,w and k, respectively.
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Let τ := u ◦ S − v ⊗ w − k ◦ Π. Then τ ∈ D′L∞(R2n) [respectivelyA′L∞(R2n)]. First,
we suppose that τ ∈ D′L∞(R2n). Using (4.3) and (4.5),

|[τ ∗ (Et(ξ)Es(η))](x, y)| ≤
∑
|α|≤p

|[∂α fα ∗ (Et(ξ)Es(η))](x, y)|

≤
∑
|α|≤p

|[ fα ∗ ∂αξ,η(Et(ξ)Es(η))](x, y)|

≤
∑
|α|≤p

‖ fα‖L∞‖∂αξ,η(Et(ξ)Es(η))‖L1

≤ C1

∑
|β|+|γ|≤p

‖∂
β
ξEt(ξ)‖L1‖∂

γ
ηEs(η)‖L1

≤ C2

∑
|β|+|γ|≤p

t−|β|/2s−|γ|/2

≤ C(1/t + 1/s)N + d,

where N = p/2 and the constants C and d depend only on p. Secondly, we suppose
that τ ∈ A′L∞(R2n). Then, using (4.5),

‖∆k(Et(ξ)Es(η))‖L1 ≤
∑
|α|=k

k!
α!
‖∂2α(Et(ξ)Es(η))‖L1

≤
∑
|β|+|γ|=k

k!
β!γ!
‖∂

β
ξEt(ξ)‖L1‖∂

γ
ηEs(η)‖L1

≤
∑
|β|+|γ|=k

k!(2β)!1/2(2γ)!1/2M2k

β!γ!
t−|β|s−|γ|

≤
∑
|β|+|γ|=k

k!(2M)2kt−|β|s−|γ|

≤ k!(2
√

nM)2k(1/t + 1/s)k.

Now, by the structure (4.4) of bounded hyperfunctions together with the growth
condition of ak, k = 0, 1, 2, . . . ,

|[τ ∗ (Et(ξ)Es(η))](x, y)|

≤

∞∑
k=0

‖ak(∆kg) ∗ (Et(ξ)Es(η))‖L∞ + ‖h ∗ (Et(ξ)Es(η))‖L∞

≤ ‖g‖L∞
∞∑

k=0

‖ak∆
k(Et(ξ)Es(η))‖L1 + ‖h‖L∞‖Et(ξ)Es(η)‖L1

≤ C1

∞∑
k=0

1
k!

(4nM2L)k(1/t + 1/s)k + ‖h‖L∞

≤ C2

∞∑
k=0

1
k!
εk(1/t + 1/s)k + ‖h‖L∞ ≤ Cεeε(1/t+1/s),
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where L is chosen so that 4nM2L < ε and the constant Cε depends only on τ and ε.
Thus, we have the inequality

|ũ(x + y, t + s) − ṽ(x, t)w̃(y, s) − k̃(y, s)| ≤ Φ(t, s)

for all x, y ∈ Rn, t, s > 0, where Φ(t, s) = C(1/t + 1/s)N [respectively Cεeε(1/t+1/s)].
Assume that v is not constant. Then ṽ is not constant. Thus, we can apply Theorem
3.1, replacing f , g, h, k by ũ, ṽ, w̃, k̃, respectively, in (3.1). If ũ, ṽ, w̃, k̃ satisfy (3.4),
then, by Lemma 4.2, we have u, v,w, k ∈ D′L∞(Rn) [respectivelyA′L∞(Rn)]. This gives
case (i).

Assume that ũ, ṽ, w̃, k̃ satisfy (3.5). Since w̃ is a smooth solution of the heat equation,
we have w̃(x, t) = ebt+a·x, where a = (a1, . . . , an) ∈ Cn, b = a2

1 + · · · + a2
n. Thus,

w̃(x, t) = βebt+a·x, ṽ(x, t) = αβebt+a·x + γ, (4.12)
|k̃(x, t) + αγebt+a·x − µ| ≤ 2Φ(t, t),
|ũ(x, t) − αβ2ebt+a·x − µ| ≤ 3Φ(t, t)

for all x ∈ Rn, 0 < t < δ. Letting t→ 0+ in (4.12),

w = βea·x, v = αβea·x + γ.

Since k̃(x, t) + αγebt+a·x − µ is the Gauss transform of k + αγea·x − µ, by applying
Lemma 4.2,

k0 := k + αγea·x ∈ D′L∞(Rn) [respectivelyA′L∞(Rn)].

Similarly,
u0 := u − αβ2ea·x ∈ D′L∞(Rn) [respectivelyA′L∞(Rn)].

Thus, we have (4.9). Finally, we assume that v :≡ γ is constant. Then ṽ ≡ γ. By (3.29)
and (3.30) in Remark 3.2,

|k̃(x, t) + γw̃(x, t) − µ| ≤ 2Φ(t, t), (4.13)
|ũ(x, t) − µ| ≤ 3Φ(t, t) (4.14)

for all x ∈ Rn, 0 < t < δ. By Lemma 4.2, it follows from (4.13) and (4.14) that

k + γw := k0, u ∈ D′L∞(Rn) [respectivelyA′L∞(Rn)].

Thus, we have (4.10). This completes the proof. �

Let f be a Lebesgue measurable function on Rn. If, for every ε > 0, there exists
Cε > 0 such that the inequality

| f (x)| ≤ Cεeε|x|
2

holds for all x ∈ Rn, then the function f is said to be an infra-exponential function of
order two. It is easy to see that every infra-exponential function f of order two defines
an element of G′(Rn) via the correspondence

〈 f , ϕ〉 =

∫
f (x)ϕ(x) dx, ϕ ∈ G.
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Lemma 4.6 [16, page 122]. Let f̃ (x, t) be a solution of the heat equation satisfying

| f̃ (x, t)| ≤ M, x ∈ Rn, t ∈ (0, δ)

for some M > 0 and δ > 0. Then f̃ can be written as

f̃ (x, t) = ( f ∗ Et)(x) =

∫
f (y)Et(x − y) dy

for some bounded measurable function f defined in Rn. In particular, f̃ (x, t)→ f (x)
almost everywhere in x ∈ Rn as t→ 0+.

As a consequence of Theorem 4.5 together with Lemma 4.6, we have the following
L∞-version of the Hyers–Ulam stability theorem.

Corollary 4.7. Nonconstant infra-exponential functions f , g, h, k : Rn → C of order
two satisfy

‖ f (x + y) − g(x)h(y) − k(y)‖L∞(R2n) ≤ M (4.15)

for some M > 0 if and only if either

f , g, h, k ∈ L∞(Rn)

or else
h(x) = βea·x, g(x) = αβea·x + γ,

k(x) = βγea·x + r1(x), f (x) = αβ2ea·x + r2(x),

where α, β, γ ∈ C, a ∈ Cn and r1, r2 ∈ L∞(Rn).

Proof. As in the proof of Theorem 4.5, convolving Et(x)Es(y) in (4.15) yields

| f̃ (x + y, t + s) − g̃(x, t)h̃(y, s) − k̃(y, s)| ≤ M

for all x, y ∈ Rn, t, s > 0, where f̃ , g̃, h̃, k̃ denote the Gauss transforms of f , g, h, k,
respectively. Thus, the proof of Theorem 4.5 is reduced to the case when Φ(s, t) ≡ M.
Now, using Lemma 4.6, we get the result. �

Acknowledgement

This work was supported by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (MEST) (no. 2012008507).

References
[1] J. Chung, ‘Hyers–Ulam stability on a generalized quadratic functional equation in distributions

and hyperfunctions’, J. Math. Phys. 50 (2009), 113519.
[2] J. Chung, ‘A heat kernel approach to the stability of exponential equations in Schwartz

distributions and hyperfunctions’, J. Math. Phys. 51 (2010), 053523.
[3] J. Chung, H. Hunt, A. Perkins and P. K. Sahoo, ‘Stability of a simple Levi-Civitá functional on
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