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In this paper we consider the minimization of a novel class of fractional linear
growth functionals involving the Riesz fractional gradient. These functionals lack the
coercivity properties in the fractional Sobolev spaces needed to apply the direct
method. We therefore utilize the recently introduced spaces of bounded fractional
variation and study the extension of the linear growth functional to these spaces
through relaxation with respect to the weak* convergence. Our main result
establishes an explicit representation for this relaxation, which includes an integral
term accounting for the singular part of the fractional variation and features the
quasiconvex envelope of the integrand. The role of quasiconvexity in this fractional
framework is explained by a technique to switch between the fractional and classical
settings. We complement the relaxation result with an existence theory for
minimizers of the extended functional.

Keywords: linear growth functionals; Riesz fractional gradient; spaces of bounded
variation; relaxation; quasiconvexity

2020 Mathematics Subject Classification: 49J45; 35R11; 26B30

1. Introduction

Motivated from both the practical and theoretical point of view, the study of non-
local aspects in the calculus of variations has received widespread attention in the
literature recently. From applications in peridynamics [35, 44], imaging processing
[6, 8, 26] and machine learning [5, 30], to the abstract study of lower semiconti-
nuity [12, 31, 32, 38] and localization [2, 10, 13] of various nonlocal functionals.
Especially the introduction of the so-called Riesz fractional gradient by Shieh &
Spector [42, 43], which for ϕ ∈ C∞

c (Rn) and α ∈ (0, 1) is defined as

∇αϕ(x) = μn,α

∫
Rn

ϕ(y) − ϕ(x)
|y − x|n+α

y − x

|y − x| dy for x ∈ R
n,

has seen a dramatic rise in interest and has opened up the possibility to study new
types of fractional problems. We refer to just a few of the recent works [9, 11,
22, 23, 32]. The Riesz fractional gradient provides an alternative to the more well-
known fractional Laplacian and shares many similarities with the classical gradient.
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In fact, it is the unique translationally and rotationally invariant α-homogeneous
operator [46], which makes it a canonical choice for a fractional gradient.

The definition of the fractional gradient can be extended in a distributional way
to define the naturally associated fractional Sobolev spaces

Sα,p(Rn; Rm) = {u ∈ Lp(Rn; Rm) : ∇αu ∈ Lp(Rn; Rm×n)}, (1.1)

with α ∈ (0, 1) and p ∈ [1, ∞], see [14, 16, 17, 32] for more details. With these
new spaces came an inherent class of variational problems to study, that is, integral
functionals depending on the Riesz fractional gradient. Precisely, with Ω ⊂ R

n open
and bounded, p ∈ (1, ∞) and g ∈ Sα,p(Rn; Rm), one defines the functions subjected
to a typical complementary-value condition

Sα,p
g (Ω; Rm) = {u ∈ Sα,p(Rn; Rm) : u = g a.e. in Ωc},

and aims to minimize the functional

Sα,p
g (Ω; Rm) � u �→

∫
Rn

f(x,∇αu(x)) dx; (1.2)

here f : R
n × R

m×n → R is a Carathéodory integrand with suitable p-growth and
coercivity bounds.

The weak lower semicontinuity and existence of minimizers of these functionals
was initially shown in the scalar setting in [42, 43] under the condition of convexity
in the second argument of f and later extended to the vectorial case under polycon-
vexity in [9]. More recently, in [32] the weak lower semicontinuity of the functional
in (1.2) was fully characterized in terms of the notion α-quasiconvexity, which is a
condition on a function h : R

m×n → R that requires that

h(A) �
∫

(0,1)n

h(A+ ∇αϕ(y)) dy for all A ∈ R
m×n and ϕ ∈ C∞

per((0, 1)n; Rm),

see [32, Definition 4.6]. The proof of this result relied on a method to translate
fractional gradients into classical gradients and back by using the identities

∇αϕ = ∇I1−αϕ and ∇ϕ = ∇α(−Δ)
1−α

2 ϕ for ϕ ∈ C∞
c (Rn), (1.3)

and actually revealed that the notion of α-quasiconvexity is independent of α ∈
(0, 1) and equivalent to Morrey’s well-known quasiconvexity [37]. Therefore, the
weak lower semicontinuity of the functionals in (1.2) can be characterized in the
same way as the classical integral functionals in the calculus of variations.

Inspired by the rich history on classical linear growth problems, cf. [3, 21, 25, 28,
33, 39, 41], we build upon the above results and exploit the distributional character
of the fractional Sobolev spaces to consider the first class of fractional linear growth
functionals in the literature. This class constitutes the natural extension of (1.2) to
p = 1, namely, functionals of the form

Fα(u) =
∫

Rn

f(x,∇αu(x)) dx for u ∈ Sα,1
g (Ω; Rm), (1.4)

with f : R
n × R

m×n → R a linear growth Carathéodory integrand and g ∈
Sα,1(Rn; Rm).
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The immediate difficulty in the minimization of the above functional is the non-
reflexivity of Sα,1

g (Ω; Rm), which prevents the direct method from being used with
respect to the weak convergence in Sα,1(Rn; Rm). Therefore, taking up a similar
approach as in the classical case, one can suitably extend the functional Fα to
a larger space of bounded fractional variation, in which compactness holds with
respect to the weak* convergence.

These spaces of bounded fractional variation and their properties have already
been thoroughly studied by Comi & Stefani and coauthors in [14, 16, 17] and can
be understood as

BV α(Rn; Rm) = {u ∈ L1(Rn; Rm) : Dαu ∈ M(Rn; Rm×n)},

with Dαu the so-called fractional variation measure of u defined in a distributional
sense. We also use the notation

Dαu = ∇αu dx+Dα
s u,

where ∇αu ∈ L1(Rn; Rm×n) is the absolutely continuous part of Dαu with respect
to the Lebesgue measure and Dα

s u ∈ M(Rn; Rm×n) is the singular part. This new
class of bounded variation spaces possesses interesting similarities and differences
with the classical BV -spaces and has sparked a lot of further investigations. Aspects
such as the description of precise representatives [15], Leibniz rules [19], and the
failure of a local chain rule [18] have been considered. Very recently, the fractional
total variation has been used in the context of image processing providing a nonlocal
alternative to the total variation regularization [6].

For the sake of finding an extension of Fα, we introduce the complementary-value
space

BV α
g (Ω; Rm) = {u ∈ BV α(Rn; Rm) : u = g a.e. in Ωc};

bounded sequences in Sα,1
g (Ω; Rm) will converge up to subsequence to an element

of BV α
g (Ω; Rm) with respect to the weak* convergence (see § 3). Therefore, with

an eye towards minimization, the natural extension of Fα to BV α
g (Ω; Rm) is the

relaxation defined by

F rel
α (u) = inf

{
lim inf
j→∞

Fα(uj) : (uj)j ⊂ Sα,1
g (Ω; Rm), uj

∗
⇀ u in BV α

g (Ω; Rm)
}

(1.5)

for u ∈ BV α
g (Ω; Rm). The useful features of the functional F rel

α are that it admits
a minimizer under suitable coercivity conditions and that minimizing sequences of
Fα converge up to subsequence to minimizers of F rel

α .
To benefit from these attributes, it is key to find an explicit representation of the

relaxed functional. For this, one must, in particular, account for the concentration
effects that fractional gradients of sequences in Sα,1

g (Ω; Rm) can exhibit and how
they relate to the singular part of the limiting fractional variation measure. The
well-known concept of the (strong) recession function (cf. [33]), which describes the
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way an integrand f behaves at infinity, is capable of this and is defined as

f∞(x,A) = lim
(x′,A′)→(x,A)

t→∞

f(x′, tA′)
t

for x ∈ R
n and A ∈ R

m×n, (1.6)

whenever it exists. We also recall the upper recession function f#, which is always
well-defined, by replacing the limit in (1.6) with a limit superior. In addition,
throughout the paper we use the following growth and coercivity bounds

|f(x,A)| � M |A| + a(x) for all x ∈ R
n and A ∈ R

m×n, (G)

with M > 0 and a ∈ L1(Rn) ∩ L∞(Rn) and

μ|A| − c � f(x,A) for all x ∈ R
n and A ∈ R

m×n, (C)

with μ, c > 0. Note that the growth bound ensures that f has linear growth and
Fα is well-defined and finite. We now state the following representation result for
the relaxation of Fα, which is the main result of the paper.

Theorem 1.1. Let α ∈ (0, 1), Ω ⊂ R
n be a bounded Lipschitz domain and g ∈

Sα,1(Rn; Rm). Assume f : R
n × R

m×n → R is a Carathéodory integrand that satis-
fies (G) and (C), and that

f∞(x,A) exists and (fqc)#(x,A) = lim sup
A′→A
t→∞

fqc(x, tA′)
t

for all (x,A) ∈ Ω × R
m×n,

(1.7)

with fqc the quasiconvex envelope of f with respect to its second argument. Then,
the relaxation of Fα in (1.4) given by (1.5) can be represented as

F rel
α (u) =

∫
Ω

fqc(x,∇αu) dx+
∫

Ω

(fqc)#
(
x,

dDα
s u

d|Dα
s u|
)

d|Dα
s u| +

∫
Ωc

f(x,∇αu) dx,

(1.8)
for u ∈ BV α

g (Ω; Rm).

This theorem provides a fractional analogue to the relaxation result in the classi-
cal BV -setting [7, 34] and an extension of the p-growth fractional relaxation in [32,
Theorem 1.2]. The reason that the quasiconvex envelope arises in the relaxation
is related to the fact that quasiconvexity is the correct characterizing notion for
lower semicontinuity similarly as in the p-growth case from [32]. However, the inte-
grand remains unchanged for x ∈ Ωc, since fractional gradients of weak* convergent
sequences in BV α

g (Ω; Rm) converge strongly in sets with a positive distance from Ω
(lemma 3.5). Furthermore, the second integral relating to the singular part of the
fractional variation is only integrated over Ω, because for u ∈ BV α

g (Ω; Rm) the mea-
sure Dα

s u is supported on Ω. This follows since the singular part of the fractional
variation actually behaves locally, cf. remark 3.4, implying that Dα

s u = Dα
s g = 0

outside of Ω. A sufficient condition for (1.7) only in terms of f is given in remark
5.1 (c).
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The proof of the lower bound of the relaxation result hinges on a characterization
of the weak* lower semicontinuity of functionals of the form

Fα(u) =
∫

Rn

f(x,∇αu) dx+
∫

Ω

f∞
(
x,

dDα
s u

d|Dα
s u|
)

d|Dα
s u| for u ∈ BV α

g (Ω; Rm),

(1.9)

see Theorem 4.1. It states that the lower semicontinuity is equivalent to f(x, ·)
being quasiconvex for a.e. x ∈ Ω and is proven by using an analogue of the identities
in (1.3) for functions of bounded variation as established in [17]. In addition, we
make substantial use of the theory of generalized Young measures developed in
[1, 24, 33] for linear growth problems, which allow one to capture the oscillation
and concentration effects of sequences of measures. A technical issue arises from the
fact that we only assume that f∞ exists for x ∈ Ω, requiring some care to account
for the possible mass that comes from outside Ω and concentrates on the boundary
∂Ω.

The construction of a recovery sequence for the upper bound is carried out in
two steps. We first find for u ∈ BV α

g (Ω; Rm) a sequence (uj)j ⊂ Sα,1
g (Ω; Rm) that

converges to u in a strong enough sense so that the values of the functional along
the sequence converge. The natural notion, which has been utilized in the classical
case [34], is that of area-strict convergence (definition 3.7). To exploit the properties
of area-strict convergence, we prove that Sα,1

g (Ω; Rm) (and even g + C∞
c (Ω; Rm))

is dense in the larger space BV α
g (Ω; Rm) with respect to this convergence, see

Theorem 3.9. The second step can then restrict to smooth functions to recover the
quasiconvexification of the integrand and relies on adaptations of the argument in
[32, Theorem 1.2] and the identities in (1.3).

Finally, we complement the relaxation and lower semicontinuity result with
corresponding statements about the existence of minimizers under the coerciv-
ity condition (C), see Corollary 4.2 and remark 5.1 (a). This actually requires
an improved version of the fractional Poincaré inequality (proposition 3.6) that
only involves the fractional variation over a bounded domain. In particular, the
area-integrand f(A) =

√
1 + |A|2 − 1 in example 4.3 is an admissible candidate,

providing a fractional analogue to the famous Plateau problem [27].
An interesting open problem for further study is the relaxation of Fα when

the integrand admits additional dependence on the values of u. Indeed, in the
introduction of [15] it is mentioned for u ∈ BV α(Rn; Rm) that Dαu can be non-
zero on sets of Hausdorff dimension n− 1, just as the classical variation, while the
precise representative of u is only defined for Hn−α+ε-a.e. x ∈ R

n for any ε > 0.
This discrepancy between n− 1 and n− α is not present in the classical case and
makes it hard to deal with the singular part of the relaxation.

The structure of the text is as follows. In § 2 we present the notation and necessary
preliminaries such as generalized Young measure theory and fractional calculus.
Section 3 revolves around the spaces of bounded fractional variation and contains
the proof of the density result with respect to area-strict convergence. The next
section is devoted to the characterization of the weak* lower semicontinuity of
extended functionals as in (1.9), and § 5 rounds off the paper with the proof of
Theorem 1.1.
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2. Preliminaries

2.1. Notation

The ball centred at x ∈ R
n with radius r > 0 is denoted by Br(x) = {y ∈ R

n :
|x− y| < r}. The notation E � F for sets E, F ⊂ R

n means that E is compactly
contained in F , i.e. E ⊂ F and E is compact. We denote by

1E(x) =

{
1 for x ∈ E,

0 otherwise,
x ∈ R

n,

the indicator function of a set E ⊂ R
n.

By Lipb(Rn) and Lipc(Rn), we refer to all the functions ψ : R
n → R that are

Lipschitz continuous and bounded or Lipschitz continuous with compact support
on R

n, respectively; we write Lip(ψ) for the Lipschitz constant of ψ. Furthermore,
forX ⊂ R

n open or closed we denote by C0(X) the Banach space obtained by taking
the closure of the smooth compactly supported functions C∞

c (X) with respect to
the supremum norm. In particular, if X is compact then C0(X) consists of all
continuous functions from X to R.

The space M(X) consists of all finite Radon measures on X and is the dual space
of C0(X). As such, we say that (μj)j ⊂ M(X) converges weak* to μ ∈ M(X) if∫

X
ϕdμj → ∫

X
ϕdμ for all ϕ ∈ C0(X). More generally, one can define for f : X → R

Borel measurable and μ ∈ M(X) the duality bracket 〈f, μ〉 =
∫

X
f dμ. By M+(X)

and M1(X) we denote the space of positive and probability measures, respectively.
We utilize the usual notation for the Radon-Nikodým derivative and for μ ∈ M(X)
the Radon-Nikodým derivative with respect to the Lebesgue measure is written as
dμ
dx ∈ L1(X), while μs ∈ M(X) represents the singular part of μ with respect to
the Lebesgue measure. The measure |μ| ∈ M+(X) constitutes the total variation
measure of μ ∈ M(X).

Finally, for U ⊂ R
n open we write BV (U) for the space of functions of bounded

variation and denote by Du the total variation measure of a function u ∈ BV (U).
We use in this instance ∇u for the absolutely continuous part of Du and Dsu for the
singular part of Du with respect to the Lebesgue measure. The variant BVloc(Rn)
consists of the functions that lie in BV (U) for all open and bounded U ⊂ R

n.
We refer to [4, 47] for more details on functions of bounded variation. All of the
mentioned spaces also possess vector-valued counterparts, which are denoted in the
second argument like, for example, BV (U ; Rm) and M(X; RN ) with m, N ∈ N.

2.2. Generalized young measures

Generalized Young measures are a tool to study the asymptotic behaviour of
sequences of functions or even measures and are able to capture both the oscillation
and concentration effects. Therefore, they are very well suited for studying linear
growth problems in the calculus of variations. In this section we recall the basic
definitions and properties that we need in the paper. We refer to [33, 40] for more
on this topic.

We begin with the definition of the (strong) recession function, which encodes the
values of an integrand at infinity. For U ⊂ R

n open and bounded and f : U × R
N →
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R it is defined as

f∞(x,A) = lim
(x′,A′)→(x,A)

t→∞

f(x′, tA′)
t

for x ∈ U and A ∈ R
N ,

provided the limit exists. If the limit exists, then f∞ : U × R
N → R is automat-

ically jointly continuous and positively homogeneous in the second argument.
We now present the definition of a generalized Young measure, see [33] or [7,
Definition 2.3].

Definition 2.1. Let U ⊂ R
n be open and bounded, then a triple ν = (νx, λν , ν

∞
x )

is called a (generalized) Young measure on U with values in R
N , we write ν ∈

Y (U ; RN ), if:

(i) (νx)x∈U ⊂ M1(RN ) is a parametrized family of probability measures on R
N ;

(ii) λν ∈ M+(U) is a positive measure on U ;

(iii) (ν∞x )x∈U ⊂ M1(SN−1) is a parametrized family of probability measures on
S

N−1.

Additionally, it is required that x �→ 〈|·|, νx〉 ∈ L1(U) and the maps x �→
〈f(x, ·), νx〉 and x �→ 〈f∞(x, ·), ν∞x 〉 are respectively Lebesgue measurable and
λν-measurable for all Carathéodory integrands f : U × R

N → R for which f∞

exists.

Intuitively, the Young measure is designed so that (νx)x∈U encodes the oscilla-
tions, while λν determines the location and size of the concentrations, and (ν∞x )x∈U

the direction of the concentrations. The main result about generalized Young
measures is that bounded sequences of measures generate Young measures up to
subsequence. Precisely, the following statement is a combination of [33, Theorem
7 and Proposition 2].

Theorem 2.2. Let U ⊂ R
n be open and bounded and (μj)j ⊂ M(U ; RN ) a sequence

such that supj |μj |(U) <∞. Then, there exists a subsequence (not relabelled) and a
Young measure ν ∈ Y (U ; RN ) with

lim
j→∞

∫
U

f

(
x,

dμj

dx

)
dx+

∫
U

f∞
(
x,

dμs
j

d|μs
j |

)
d|μs

j |

=
∫

U

〈f(x, ·), νx〉dx+
∫

U

〈f∞(x, ·), ν∞x 〉dλν ,

for all Carathéodory integrands f : U × R
N → R for which f∞ exists.

In the setting of the above theorem, we say that (μj)j generates the Young
measure ν. We can also associate to a μ ∈ M(U ; RN ) the elementary Young measure
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δ[μ] ∈ Y (U ; RN ) with

(δ[μ])x = δ dμ
dx (x), λδ[μ] = |μs| and (δ[μ])∞x = δ dμs

d|μs| (x), (2.1)

with δA the dirac measure at a point A ∈ R
N . One can then interpret the conver-

gence in Theorem 2.2 as weak* convergence of δ[μj ] to ν in Y (U ; RN ), where the
duality arises from testing Young measures with integrands f . When we have an
integrand without a well-defined strong recession function, we can still define the
upper recession function

f#(x,A) = lim sup
(x′,A′)→(x,A)

t→∞

f(x′, tA′)
t

for x ∈ U and A ∈ R
N . (2.2)

Then, if (μj)j ∈ M(U ; RN ) generates the Young measure ν ∈ Y (U ; RN ) and f :
U × R

N → R is jointly upper semicontinuous, it holds that

lim sup
j→∞

∫
U

f

(
x,

dμj

dx

)
dx+

∫
U

f#

(
x,

dμs
j

d|μs
j |

)
d|μs

j |

�
∫

U

〈f(x, ·), νx〉dx+
∫

U

〈f#(x, ·), ν∞x 〉dλν ,

(2.3)

see [7, Corollary 2.10].

2.3. Fractional calculus

Here we introduce the fractional operators and their properties, which we use
throughout the paper. Firstly, for an integrable function u ∈ L1(Rn), the Riesz
potential Iαu of order α ∈ (0, n) is defined as

Iαu(x) =
1

γn,α

∫
Rn

u(y)
|x− y|n−α

dy for x ∈ R
n,

where γn,α = πn/22α Γ(α/2)
Γ((n−α)/2) . It is well-known that the above integral is finite

for a.e. x ∈ R
n and Iαu ∈ L1

loc(R
n), cf. [36, 45]. Next up, we have the three dif-

ferent fractional differential operators: The Riesz fractional gradient, the fractional
divergence and the fractional Laplacian. We introduce these notions for the class of
bounded Lipschitz functions. Precisely, for α ∈ (0, 1) and ϕ ∈ Lipb(Rn) the Riesz
fractional gradient ∇αϕ : R

n → R
n is given by

∇αϕ(x) = μn,α

∫
Rn

ϕ(y) − ϕ(x)
|y − x|n+α

y − x

|y − x| dy for x ∈ R
n, (2.4)

with μn,α = 2απ−n/2 Γ((n+α+1)/2)
Γ((1−α)/2) , and the fractional Laplacian (−Δ)α/2ϕ : R

n →
R is defined as

(−Δ)α/2ϕ(x) = νn,α

∫
Rn

ϕ(y) − ϕ(x)
|y − x|n+α

dy for x ∈ R
n,
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with νn,α = 2απ−n/2 Γ((n+α)/2)
Γ(−α/2) . Both these operators are well-defined and bounded

functions for ϕ ∈ Lipb(Rn), see [16, Section 2.2]. Finally, for a vector-valued func-
tion ϕ ∈ Lipb(Rn; Rn), the fractional divergence divαϕ : R

n → R is the natural
analogue of the fractional gradient

divαϕ(x) = μn,α

∫
Rn

ϕ(y) − ϕ(x)
|y − x|n+α

· y − x

|y − x| dy for x ∈ R
n, (2.5)

which is also a well-defined bounded function. We note that it is proven in [46] that
these three fractional differential operators are the unique operators that satisfy
translational and rotational invariance, α-homogeneity and a weak requirement of
continuity. The fractional gradient and divergence are dual, in the sense that for
all ϕ ∈ C∞

c (Rn) and ψ ∈ C∞
c (Rn; Rn) the integration by parts∫

Rn

ϕdivαψ dx = −
∫

Rn

∇αϕ · ψ dx (2.6)

holds. For more on these differential operators, such as composition rules and
extension to different orders than α ∈ (0, 1), we refer to [46].

3. Spaces of bounded fractional variation

The spaces of bounded fractional variation were first introduced by Comi & Stefani
in the recent series of papers [14, 16, 17]. We recall the definition of these spaces,
which is based on the fractional divergence in (2.5).

Definition 3.1. Let α ∈ (0, 1). A function u ∈ L1(Rn) belongs to BV α(Rn) if

sup
{∫

Rn

u divαϕdx : ϕ ∈ C∞
c (Rn; Rn), ‖ϕ‖L∞(Rn;Rn) � 1

}
<∞. (3.1)

It follows from the structure theorem [16, Theorem 3.2] that u ∈ BV α(Rn) if
and only if u ∈ L1(Rn) and there exists a (necessarily unique) finite vector-valued
Radon measure Dαu ∈ M(Rn; Rn) such that∫

Rn

u divαϕdx = −
∫

Rn

ϕ · dDαu for all ϕ ∈ C∞
c (Rn; Rn).

The measure Dαu is called the fractional variation measure of u and it constitutes
a natural extension of the Riesz fractional gradient (2.4) to the space BV α(Rn)
based on the integration by parts formula (2.6). The space BV α(Rn) endowed with
the norm

‖u‖BV α(Rn) = ‖u‖L1(Rn) + |Dαu|(Rn)

is a Banach space [16, Corollary 3.4], where |Dαu|(Rn) denotes the total variation
of Dαu on R

n and equals the left-hand side of (3.1). One can also decompose

Dαu = ∇αu dx+Dα
s u,

where ∇αu ∈ L1(Rn; Rn) is the absolutely continuous part of Dαu with respect
to the Lebesgue measure and Dα

s u ∈ M(Rn; Rn) is the singular part. We write
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BV α(Rn; Rm) for the vector-valued analogue with matrix-valued fractional varia-
tion. We also introduce the fractional Sobolev space with exponent p = 1

Sα,1(Rn) = {u ∈ BV α(Rn) : Dα
s u = 0},

which consists of those BV α-functions with an absolutely continuous fractional vari-
ation. In fact, this corresponds to the space Sα,p(Rn) defined in (1.1) when p = 1,
that is, the functions u ∈ Lp(Rn) with weak fractional gradient ∇αu ∈ Lp(Rn; Rn);
see e.g. [14, 16, 17, 32] for more on these fractional Sobolev spaces.

As in [32], the main tool we use to prove the lower semicontinuity and relaxation
result is a method to transform the fractional gradient into the classical gradient
and back. It relies on the Riesz potential and fractional Laplacian and is proven in
the BV -framework in [16, Lemma 3.28].

Proposition 3.2. Let α ∈ (0, 1), then the following holds:

(i) For u ∈ BV α(Rn) one has that v = I1−αu ∈ BVloc(Rn) with Dv = Dαu in
M(Rn; Rn).

(ii) For v ∈ BV (Rn) one has that u = (−Δ)
1−α

2 v ∈ BV α(Rn) with Dαu = Dv in
M(Rn; Rn) and

‖u‖BV α(Rn) � cn,α‖v‖BV (Rn).

Another ingredient we need is the Leibniz rule for the fractional variation, in order
to employ localization techniques. We define for ϕ ∈ C∞

c (Rn) and ψ ∈ Lipc(Rn) the
operator

∇α
NL(ϕ,ψ)(x) = μn,α

∫
Rn

(y − x)(ϕ(y) − ϕ(x))(ψ(y) − ψ(x))
|y − x|n+α+1

dy, for x ∈ R
n,

which can be continuously extended to ϕ ∈ L1(Rn). The following Leibniz rule for
BV α-functions is from [15, Lemma 5.6], see also [19] for more general Leibniz rules.

Lemma 3.3. Let α ∈ (0, 1), ψ ∈ Lipc(Rn) and u ∈ BV α(Rn). Then, ψu ∈
BV α(Rn) with

Dα(ψu) = ψDαu+ (u∇αψ + ∇α
NL(u, ψ)) dx

and there is a constant C = C(n, α) > 0 such that

‖u∇αψ + ∇α
NL(u, ψ)‖L1(Rn;Rn) � C‖ψ‖1−α

L∞(Rn)Lip(ψ)α‖u‖L1(Rn). (3.2)

Remark 3.4. Even though the fractional variation is a nonlocal object, the above
Leibniz rule implies that the singular part of the fractional variation behaves locally.
Indeed, if we have u, v ∈ BV α(Rn) with u = v in an open set U ⊂ R

n, we find for
all χ ∈ C∞

c (U) (extended to R
n as zero) that

χDα
s u = Dα

s (χu) = Dα
s (χv) = χDα

s v.
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For our minimization problems, we restrict to functions satisfying a
complementary-value condition, which is a nonlocal counterpart of the common
Dirichlet boundary conditions. For Ω ⊂ R

n open and bounded we define

BV α
0 (Ω) = {u ∈ BV α(Rn) : u = 0 a.e. in Ωc},

and for g ∈ Sα,1(Rn)

BV α
g (Ω) = g +BV α

0 (Rn).

Here, we take g ∈ Sα,1(Rn) since our initial motivation comes from studying linear
growth functionals on the fractional Sobolev space. With this in mind, we also intro-
duce the spaces Sα,1

0 (Ω) and Sα,1
g (Ω) in a similar way as above. For u ∈ BV α

g (Ω),
it follows that the singular part Dα

s u has support inside Ω, because of the local
behaviour of the singular part of the fractional variation (cf. remark 3.4).

A key reason to consider the fractional BV -spaces as extension of the fractional
Sobolev spaces, is the property that bounded sequences have convergent subse-
quences in BV α

g (Ω) in an appropriate sense. We say that (uj)j ⊂ BV α
g (Ω) converges

weak* to u ∈ BV α
g (Ω) if

uj → u in L1(Rn) and Dαuj
∗
⇀ Dαu in M(Rn; Rn) as j → ∞.

A direct application of the Banach-Alaoglu theorem and the compactness result
[16, Theorem 3.16] shows that bounded sequences in BV α

g (Ω) admit weak* con-
vergent subsequences. Moreover, we have the following result stating that weak*
convergence improves to strong L1-convergence outside Ω. We omit the proof as it
is almost identical to that of [32, Lemma 2.12].

Lemma 3.5. Let α ∈ (0, 1), Ω be open and bounded and g ∈ Sα,1(Rn). If (uj)j ⊂
BV α

g (Ω) converges weak* to u in BV α
g (Ω), then for every open Ω′ � Ω we find

∇αuj → ∇αu in L1((Ω′)c; Rn) as j → ∞.

We also need an improved version of the Poincaré inequality for fractional BV -
functions in [17], which only requires a bound on the fractional variation on some
open and bounded set as opposed to the whole space R

n. This allows us to consider
interesting integrands with slightly weaker coercivity properties, such as the area-
integrand in example 4.3.

Proposition 3.6. Let α ∈ (0, 1) and Ω be open and bounded, then there exists an
open and bounded set Ω′ � Ω and a constant C = C(Ω, n, α) > 0 such that

‖u‖BV α(Rn) � C|Dαu|(Ω′),

for all u ∈ BV α
0 (Ω).
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Proof. Define for r > 0 the function

χ : R
n → R, χ(x) = max{1 − r d(x,Ω), 0},

with d(x, Ω) the distance from x to Ω. Then, we have χ ∈ Lipc(Rn), Lip(χ) � r,
χ ≡ 1 on Ω and

supp(χ) = Ωr := {x ∈ R
n : d(x,Ω) � 1/r}.

We deduce that u = χu and conclude from the Leibniz rule (lemma 3.3) that

Dαu = Dα(χu) = χDαu+ (u∇αχ+ ∇α
NL(u, χ)) dx.

Therefore, we find by (3.2) that

‖∇αu‖L1(Ωc
r;Rn) = ‖u∇αχ+ ∇α

NL(u, χ)‖L1(Ωc
r;Rn) � Crα‖u‖L1(Rn). (3.3)

Now using Hölder’s inequality on the scale of Lorentz spaces, see [29, Chapter 1.4]
for an introduction on Lorentz spaces, in combination with the weak Gagliardo-
Nirenberg-Sobolev inequality from [17, Theorem 3.8] yields

‖u‖L1(Ω) � ‖1Ω‖L
n
α

,1(Rn)
‖u‖

L
n

n−α
,∞

(Rn)

� n|Ω|α/n

α
cn,α|Dαu|(Rn) = cn,α,Ω|Dαu|(Rn), (3.4)

for all u ∈ BV α
0 (Ω). If we choose r > 0 such that Crα � (2cn,α,Ω)−1 we obtain from

(3.3) and (3.4) that

‖u‖L1(Ω) � cn,α,Ω (|Dαu|(Ωr) + |Dαu|(Ωc
r))

� cn,α,Ω

(
|Dαu|(Ωr) +

1
2cn,α,Ω

‖u‖L1(Ω)

)
,

which, after rewriting, becomes

‖u‖L1(Ω) � 2cn,α,Ω|Dαu|(Ωr). (3.5)

Therefore, we obtain

‖u‖BV α(Rn) = ‖u‖L1(Ω) + |Dαu|(Ωr) + |Dαu|(Ωc
r)

�
(

1 +
1

2cn,α,Ω

)
‖u‖L1(Ω) + |Dαu|(Ωr)

� (2cn,α,Ω + 2)|Dαu|(Ωr),

which proves the result with any open set Ω′ � Ωr. �

Next, to extend the linear growth functionals from Sα,1
g (Ω; Rm) to BV α

g (Ω; Rm)
we need to be able to approximate functions in BV α

g (Ω; Rm) with functions in
Sα,1

g (Ω; Rm) in a strong enough sense to also have convergence of the functional
values. However, since Sα,1

g (Ω; Rm) is closed with respect to the BV α-norm, we
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have to consider a convergence notion that is also weaker than the one induced by
the norm. The relevant notion here is a type of area-strict convergence, which is
in between norm convergence and weak* convergence. Like in [34], we define the
area-functional for μ ∈ M(Rn; RN ) and U ⊂ R

n Borel measurable as

〈μ〉(U) :=
∫

U

√
1 +

∣∣∣∣ dμ
dx

∣∣∣∣
2

dx+ |μs|(U),

with μs the singular part of μ with respect to the Lebesgue measure. We also write
〈A〉 :=

√
1 + |A|2 for A ∈ R

m×n.

Definition 3.7 area-strict convergence. We say that a sequence (uj)j ⊂
BV α

g (Ω; Rm) converges area-strictly to u ∈ BV α
g (Ω; Rm) if uj → u in L1(Rn; Rm),

〈Dαuj〉(Ω) → 〈Dαu〉(Ω) and ∇αuj → ∇αu in L1(Ωc; Rm×n) as j → ∞.

Remark 3.8. The key property of area-strict convergence is that when restricted
to Ω, the sequence (Dαuj)j ⊂ M(Ω; Rm×n) generates the elementary Young mea-
sure δ[Dαu] (cf. (2.1) and [40, Proposition 12.4]). The convergence ∇αuj →
∇αu in L1(Ωc; Rm×n) also excludes any concentration effects happening outside
Ω, which are in general not ruled out by lemma 3.5.

We now prove a density result with respect to the area-strict convergence, which
plays a key role in the construction of a recovery sequence when extending the
linear growth functionals. The proof exploits the fractional Leibniz rule and invari-
ance properties of the fractional variation to incorporate the partition of unity and
mollification techniques from the classical case (as in e.g. [40, Lemma 11.1]). Note
that we implicitly assume that functions in C∞

c (Ω; Rm) are extended to R
n as zero.

Theorem 3.9. Let α ∈ (0, 1), Ω ⊂ R
n be a bounded Lipschitz domain and g ∈

Sα,1(Rn; Rm). For every u ∈ BV α
g (Ω; Rm) there exists a sequence (uj)j ⊂ g +

C∞
c (Ω; Rm) such that

uj → u area-strictly in BV α
g (Ω; Rm).

Proof. Step 1: Shrinking the support. We show that for every ε > 0, we can find a
v ∈ BV α

g (Ω; Rm) such that supp(v − g) � Ω,

‖u− v‖L1(Rn;Rm) + ‖∇αu−∇αv‖L1(Ωc;Rm×n) � ε

and 〈Dαv〉(Ω) � 〈Dαu〉(Ω) + ε.
(3.6)

To this aim, we take a representative of u that is identical to g in Ωc and set
u0 := u− g. Then, since Ω is a Lipschitz domain, we find a partition of unity
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χ0, χ1, · · · , χN ⊂ C∞
c (Rn) and vectors ζ1, · · · , ζN ⊂ R

n such that

N∑
i=0

χi = 1 on Ω, χ0 ∈ C∞
c (Ω), and supp(τλζi

(χiu0)) � Ω, (3.7)

for all λ > 0 small enough, where τζ(w)(x) := w(x+ ζ) denotes translation by ζ ∈
R

n. In view of lemma 3.3 we can define the function

v = g + χ0u0 +
N∑

i=1

τλζi
(χiu0) ∈ BV α

g (Ω; Rm),

which satisfies supp(v − g) � Ω due to (3.7). Using the first identity from (3.7), we
have that

‖u− v‖L1(Rn;Rm) �
N∑

i=1

‖χiu0 − τλζi
(χiu0)‖L1(Rn;Rm) � ε/2,

for λ small enough given the continuity of translation on L1(Rn; Rm). Moreover,
we have by the translation invariance of ∇α that

∇αv = ∇αu+
N∑

i=1

τλζi
(∇α(χiu0)) −∇α(χiu0)

so that the continuity of translation on L1(Rn; Rm×n) again yields

‖∇αv −∇αu‖L1(Rn;Rm×n) =
N∑

i=1

‖τλζi
(∇α(χiu0)) −∇α(χiu0)‖L1(Rn;Rm×n) � ε/2

for λ small enough. This shows the first part of (3.6) and at the same time that∫
Ω

〈∇αv〉dx �
∫

Ω

〈∇αu〉dx+ ‖∇αv −∇αu‖L1(Ω;Rm×n) �
∫

Ω

〈∇αu〉dx+ ε/2,

(3.8)

where we have exploited the 1-Lipschitz continuity of A �→ 〈A〉. Finally, for the
singular part we note that

Dα
s v = χ0D

α
s u0 +

N∑
i=1

τλζi
(χiD

α
s u0) = χ0D

α
s u+

N∑
i=1

τλζi
(χiD

α
s u)

in virtue of lemma 3.3. Hence, it follows with (3.7) that

|Dα
s v|(Ω) �

∫
Ω

χ0 d|Dα
s u| +

N∑
i=1

∫
τ−λζi

(Ω)

χi d|Dα
s u|

�
N∑

i=0

∫
Rn

χi d|Dα
s u| = |Dα

s u|(Ω),
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which proves the second part of (3.6) in combination with (3.8).

Step 2: Mollification. Let v be as in Step 1, then we show that there is a w ∈
g + C∞

c (Ω; Rm) such that

‖v − w‖L1(Rn;Rm) + ‖∇αv −∇αw‖L1(Ωc;Rm×n) � ε

and 〈Dαw〉(Ω) � 〈Dαv〉(Ω) + ε.
(3.9)

Let ηδ ∈ C∞
c (Bδ(0)) for δ > 0 be a standard mollifier and choose δ small enough

such that

ηδ ∗ (v − g) ∈ C∞
c (Ω; Rm),

which is possible since supp(v − g) � Ω. Setting w = g + ηδ ∗ (v − g), standard
properties of mollification show that

‖v − w‖L1(Rn;Rm) � ε/2,

for δ small enough. Furthermore, by [16, Lemma 3.5] we have

∇αw = ∇αg + ηδ ∗ ∇α(v − g) + ηδ ∗Dα
s v.

In particular, since ηδ ∗Dα
s v has support inside Ω we have

‖∇αv −∇αw‖L1(Ωc;Rm×n) = ‖∇α(v − g) − ηδ ∗ ∇α(v − g)‖L1(Ωc;Rm×n) � ε/2,

for small δ, thus proving the first part of (3.9). Furthermore,

〈Dαw〉(Ω) =
∫

Ω

〈∇αg + ηδ ∗ ∇α(v − g) + ηδ ∗Dα
s v〉dx

�
∫

Ω

〈∇αg + ηδ ∗ ∇α(v − g)〉dx+
∫

Ω

|ηδ ∗Dα
s v|dx

�
∫

Ω

〈∇αg + ηδ ∗ ∇α(v − g)〉dx+ |Dα
s v|(Ω)

�
∫

Ω

〈∇αv〉dx+ ε+ |Dα
s v|(Ω) = 〈Dαv〉(Ω) + ε,

where in the last line we utilize Lebesgue’s dominated convergence for small enough
δ, recalling the fact that ηδ ∗ ∇α(v − g) → ∇α(v − g) in L1(Rn; Rm×n). This yields
(3.9).

Step 3: Conclusion. By combining Step 1 and 2 we may find a sequence (uj)j ⊂
g + C∞

c (Ω; Rm) such that

uj → u in L1(Rn; Rm), ∇αuj → ∇αu in L1(Ωc; Rm×n) as j → ∞
and

lim sup
j→∞

〈Dαuj〉(Ω) � 〈Dαu〉(Ω).

In view of this bound we have that uj
∗
⇀ u in BV α

g (Ω; Rm). Therefore, we may
use the weak* lower semicontinuity of the area-functional on M(Ω′; Rm×n) for
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some Ω′ � Ω open and bounded, which follows from the convexity of A �→ 〈A〉, and
Lebesgue’s dominated convergence theorem to conclude that

lim inf
j→∞

〈Dαuj〉(Ω) = lim inf
j→∞

〈Dαuj〉(Ω′) − lim
j→∞

∫
Ω′\Ω

〈∇αuj〉dx

� 〈Dαu〉(Ω′) −
∫

Ω′\Ω
〈∇αu〉dx = 〈Dαu〉(Ω),

which finishes the proof. �

4. Lower semicontinuity

In this section we characterize the weak* lower semicontinuity of functionals as in
(1.9), which is interesting in its own right and is used in the proof of the main
relaxation result in § 5. Recall that a continuous function h : R

m×n → R is called
quasiconvex if

h(A) �
∫

(0,1)n

h(A+ ∇ϕ(y)) dy for all A ∈ R
m×n and ϕ ∈W 1,∞

0 ((0, 1)n; Rm),

see [20, 37]. We prove the following statement, whose proof relies on the connection
between the classical and fractional variation and the theory of generalized Young
measures. We note that even though f∞(x, A) is only assumed to exist for x ∈ Ω,
we do allow the sequences x′ → x from (1.6) to approach from outside Ω.

Theorem 4.1. Let α ∈ (0, 1), Ω ⊂ R
n be open and bounded with |∂Ω| = 0, g ∈

Sα,1(Rn; Rm) and f : R
n × R

m×n → R a Carathéodory integrand that satisfies (G).
If

f∞(x,A) exists for all (x,A) ∈ Ω × R
m×n,

then the functional

Fα(u) =
∫

Rn

f(x,∇αu) dx+
∫

Ω

f∞
(
x,

dDα
s u

d|Dα
s u|
)

d|Dα
s u| for u ∈ BV α

g (Ω; Rm),

is weak* lower semicontinuous if and only if f(x, ·) is quasiconvex for a.e. x ∈ Ω.

Proof. Step 1: Necessity. The weak* lower semicontinuity of Fα implies, in
particular, that

Fα(u) =
∫

Rn

f(x,∇αu(x)) dx for u ∈ Sα,1
g (Ω; Rm),

is weakly lower semicontinuous on Sα,1
g (Ω; Rm). A simple adaptation of

[32, Theorem 4.5] to the case p = 1 yields that f(x, ·) is quasiconvex for a.e. x ∈ Ω.

Step 2: Sufficiency. Let uj
∗
⇀ u in BV α

g (Ω; Rm) and fix Ω′ � Ω open and bounded.
By proposition 3.2 (i) we can find a sequence (vj)j ⊂ BV (Ω′; Rm) and v ∈
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BV (Ω′; Rm) such that

Dvj = Dαuj on Ω′ for j ∈ N and Dv = Dαu on Ω′; (4.1)

we can also ensure that vj
∗
⇀ v in BV (Ω′; Rm) by continuity properties of the

Riesz potential, see [36, Theorem 2.1 (i)]. Up to a non-relabelled subsequence,
(Dvj)j ⊂ M(Ω′; Rm×n) generates a BV -Young measure ν ∈ Y (Ω′; Rm×n) on Ω′.
Before we proceed, we can redefine f , similarly to [40, Proof of Theorem 12.25],
such that its recession function is defined in a larger region. Indeed, by definition
of the strong recession function f∞ : Ω × R

m×n → R, it is automatically jointly
continuous, so that we can continuously extend it to Ω′ × R

m×n. If we set
f ′ : Ω′ × R

m×n → R equal to f on Ω × R
m×n and f∞ on (Ω′ \ Ω) × R

m×n, then
f ′ is a Carathéodory integrand with a well-defined strong recession function on
Ω′ × R

m×n. Now, applying Theorem 2.2 to f ′ and Ω′ yields

lim inf
j→∞

∫
Ω′
f(x,∇αuj) dx+

∫
Ω

f∞
(
x,

dDα
s uj

d|Dα
s uj |

)
d|Dα

s uj |

� lim inf
j→∞

∫
Ω′
f ′(x,∇αuj) dx+

∫
Ω′

(f ′)∞
(
x,

dDα
s uj

d|Dα
s uj |

)
d|Dα

s uj |

− sup
j∈N

∫
Ω′\Ω

|(f − f ′)(x,∇αuj)|dx

�
∫

Ω′
〈f ′(x, ·), νx〉dx+

∫
Ω′
〈(f ′)∞(x, ·), ν∞x 〉dλν

− sup
j∈N

∫
Ω′\Ω

|(f − f ′)(x,∇αuj)|dx.

(4.2)

Due to the strong convergence ∇vj = ∇αuj → ∇αu = ∇v in sets away from Ω
(lemma 3.5), we also find that the support of the concentration measure λν is
contained inside Ω and νx = δ∇αu(x) for a.e. x ∈ Ω′ \ Ω; that is, we find∫

Ω′\Ω
〈f ′(x, ·), νx〉dx =

∫
Ω′\Ω

f ′(x,∇αu) dx. (4.3)

Furthermore, since ν is a BV -Young measure generated by (Dvj)j , we may argue
as in [33, Theorem 10] and [40, Theorem 12.25] using the generalized Jensen’s
inequalities from [33, Theorem 9] in combination with the quasiconvexity, conti-
nuity and linear growth of f(x, ·) for a.e. x ∈ Ω and of f∞(x, ·) for all x ∈ Ω (by
continuity of f∞) to conclude∫

Ω

〈f(x, ·), νx〉dx+
∫

Ω

〈f∞(x, ·), ν∞x 〉dλν

�
∫

Ω

f(x,∇v) dx+
∫

Ω

f∞
(
x,

dDsv

d|Dsv|
)

d|Dsv|

=
∫

Ω

f(x,∇αu) dx+
∫

Ω

f∞
(
x,

dDα
s u

d|Dα
s u|
)

d|Dα
s u|,

(4.4)
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with the last equality exploiting (4.1). Additionally, since ∇αuj → ∇αu strongly in
L1((Ω′)c; Rm×n) by lemma 3.5, the growth bound (G) and Lebesgue’s dominated
convergence theorem yields

lim
j→∞

∫
(Ω′)c

f(x,∇αuj) dx =
∫

(Ω′)c

f(x,∇αu) dx.

Combining this with (4.2), (4.3) and (4.4) results in

lim inf
j→∞

Fα(uj) �
∫

Ω′
f ′(x,∇αu) dx

+
∫

(Ω′)c

f(x,∇αu) dx+
∫

Ω

f∞
(
x,

dDα
s u

d|Dα
s u|
)

d|Dα
s u|

− sup
j∈N

∫
Ω′\Ω

|(f − f ′)(x,∇αuj)|dx.

(4.5)

Finally, since

(f − f ′)∞(x,A) = 0 for all x ∈ Ω and A ∈ R
m×n,

we may choose Ω′ potentially smaller and find a R > 0 such that

|(f − f ′)(x,A)| � ε|A| for all x ∈ Ω′ and A ∈ R
m×n with |A| � R,

for any given ε > 0. With C := supj‖∇αuj‖L1(Rn;Rm×n) <∞, we obtain

sup
j∈N

∫
Ω′\Ω

|(f − f ′)(x,∇αuj)|dx � (MR+ ‖a‖L∞(Rn))|Ω′ \ Ω| + εC,

so that we can deduce the result by first letting Ω′ ↓ Ω, given that f = f ′ on Ω ×
R

m×n, and secondly letting ε ↓ 0 in (4.5). �

In order to get the existence of minimizers, we also impose the coercivity bound
(C) and utilize the improved Poincaré inequality from proposition 3.6.

Corollary 4.2. Let α ∈ (0, 1), Ω ⊂ R
n be open and bounded with |∂Ω| = 0, g ∈

Sα,1(Rn; Rm) and f : R
n × R

m×n → R a Carathéodory integrand that satisfies (G)
and (C). If

f∞(x,A) exists for all (x,A) ∈ Ω × R
m×n,

and f(x, ·) is quasiconvex for a.e. x ∈ Ω, then

Fα(u) =
∫

Rn

f(x,∇αu) dx+
∫

Ω

f∞
(
x,

dDα
s u

d|Dα
s u|
)

d|Dα
s u| for u ∈ BV α

g (Ω; Rm),

admits a minimizer on BV α
g (Ω; Rm).

Proof. We fix Ω′ � Ω large enough as in proposition 3.6 and such that
M |Dαv|((Ω′)c) � μ

2 |Dαv|(Ω′) for all v ∈ BV α
0 (Ω; Rm), which is possible by (3.3)
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and (3.5). Now using the coercivity condition of f on Ω′, the growth bound on
(Ω′)c and proposition 3.6, we find for all u ∈ BV α

g (Ω; Rm) that

Fα(u) � μ|Dαu|(Ω′) −M |Dαu|((Ω′)c) − C ′

� μ|Dα(u− g)|(Ω′) −M |Dα(u− g)|((Ω′)c) − C ′′

� μ

2C
‖u− g‖BV α(Rn;Rm) − C ′′.

Hence, a standard argument using the direct method and the weak* lower
semicontinuity from Theorem 4.1 finishes the proof. �

Example 4.3. An example integrand that satisfies all the hypotheses of Corollary
4.2 is

f : R
n × R

m×n → [0,∞), f(x,A) =
√

1 + |A|2 − 1,

since f is convex, f∞(x, A) = |A| and

|A| − 1 � f(x,A) � |A| for all x ∈ R
n and A ∈ R

m×n.

Hence, the following type of fractional area-functional

Fα(u) =
∫

Rn

√
1 + |∇αu|2 − 1 dx+ |Dα

s u|(Ω),

is weak* lower semicontinuous on BV α
g (Ω; Rm) and admits a minimizer.

5. Relaxation

We are now in the position to give the proof of the main result. For a Carathéodory
integrand f : R

n × R
m×n → R that satisfies the bounds (G) and (C), it follows from

[20, Proposition 9.5] that

fqc(x,A) = inf

{∫
(0,1)n

f(x,A+ ∇ϕ(y)) dy : ϕ ∈W 1,∞
0 ((0, 1)n; Rm)

}

for (x, A) ∈ R
n × R

m×n, is a Carathéodory integrand and from [20, Theorem 6.9]
that the function fqc(x, ·) is the largest quasiconvex function below f(x, ·). Note
also that fqc still satisfies (G) and (C) for x ∈ Ω since fqc � f and the lower bound
in (C) is quasiconvex in the second argument.

Proof of Theorem 1.1. Denote the functional on the right-hand side of (1.8) by Fα.
We split up the proof into the lower and upper bound.

Step 1: Lower bound. Let (uj)j ⊂ Sα,1
g (Ω; Rm) with uj

∗
⇀ u in BV α

g (Ω; Rm) as j →
∞, then we can completely follow the proof of Theorem 4.1 without using the
generalized Jensen’s inequalities to conclude (up to a non-relabelled subsequence)
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that

lim inf
j→∞

Fα(uj) �
∫

Ω

〈f(x, ·), νx〉dx+
∫

Ω

〈f∞(x, ·), ν∞x 〉dλν +
∫

Ωc

f(x,∇αu) dx,

with ν the generalized Young measure generated by the sequence (∇αuj)j (on
some domain containing Ω). Using the bounds f � fqc and f∞ � (fqc)#, we can
now proceed as in Theorem 4.1 by using the Jensen’s inequalities for the quasi-
convexification fqc, to obtain the lower bound. Here, we make crucial use of the
second part of (1.7), since the Jensen’s inequalities for upper recession functions in
[33, Theorem 9] can only be directly applied in the x-independent case.

Step 2: Upper bound. We first show that we can restrict to the case u ∈ g +
C∞

c (Ω; Rm) for the upper bound. To this aim, we take u ∈ BV α
g (Ω; Rm) and a

sequence (uj)j ⊂ g + C∞
c (Ω; Rm) which converges area-strictly to u, possible by

Theorem 3.9. Hence, Lebesgue’s dominated convergence theorem and the growth
bound (G) yields

lim
j→∞

∫
Ωc

f(x,∇αuj) dx =
∫

Ωc

f(x,∇αu) dx. (5.1)

Next, if we denote by g : Ω × R
m×n → R the (jointly) upper semicontinuous enve-

lope of fqc restricted to Ω × R
m×n, then it is not hard to verify that g# = (fqc)#

via the definition of the upper recession function in (2.2). We take for R > 0 a
truncation function TR ∈ C∞

c (Rm×n) with 0 � TR(A) � 1 and TR ≡ 1 on BR(0)
and bound

fqc(x,A) � TR(A)fqc(x,A) + T c
R(A)g(x,A),

with T c
R(A) := 1 − TR(A). The first integrand on the right-hand side has zero reces-

sion function, whereas the second integrand is jointly upper semicontinuous with
upper recession function g# = (fqc)#. Applying Theorem 2.2 and (2.3) then gives,
in combination with the fact that (Dαuj)j ⊂ M(Ω; Rm×n) generates the elementary
Young measure δ[Dαu] (cf. remark 3.8),

lim inf
j→∞

∫
Ω

fqc(x,∇αuj) dx

� lim
j→∞

∫
Ω

TR(∇αuj)fqc(x,∇αuj) dx+ lim sup
j→∞

∫
Ω

T c
R(∇αuj)g(x,∇αuj) dx

�
∫

Ω

TR(∇αu)fqc(x,∇αu) + T c
R(∇αu)g(x,∇αu) dx

+
∫

Ω

(fqc)#
(
x,

dDα
s u

d|Dα
s u|
)

d|Dα
s u|.

Letting R→ ∞, using the dominated convergence theorem and adding the limit in
(5.1) results in

lim inf
j→∞

Fα(uj) � Fα(u).

Therefore, if we find for each j ∈ N a recovery sequence for uj , then we can conclude
the result using a diagonal argument; here, the coercivity of f is important to be
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able to extract convergent diagonal sequences. We can restrict to the case u ∈
g + C∞

c (Ω; Rn) from now on.
The remaining argument is an adaptation of [32, Theorem 1.2] to the linear

growth setting. To prove the upper bound when u ∈ g + C∞
c (Ω; Rm), we take a

Lipschitz domain O � Ω and apply proposition 3.2 (i) to find a v ∈W 1,1(O; Rm)
such that

∇v = ∇αu on O. (5.2)

Then, we apply a classical relaxation theorem [20, Theorem 9.8] to find a sequence
(vk)k ⊂W 1,1(O; Rm) with the same trace values as v on the boundary ∂Ω such
that vk → v in L1(O; Rm) and

lim
k→∞

∫
O

f(x,∇vk) dx =
∫

O

fqc(x,∇v) dx. (5.3)

In view of the coercivity of f we may also suppose that vk
∗
⇀ v in BV (O; Rm).

Now define the auxiliary sequence (ṽk)k ⊂W 1,1(Rn; Rm) via ṽk := vk − v on O and
ṽk = 0 in Oc. By proposition 3.2 (ii) and [32, Eq. (3.3)], we find that the sequence
(ũk)k ⊂ Sα,1(Rn; Rm) defined by ũk = (−Δ)

1−α
2 ṽk satisfies

ũk → 0 in L1(Rn; Rm) as k → ∞ (5.4)

and its fractional gradients are given by

∇αũk = ∇(vk − v) in O and ∇αũk = 0 in Oc. (5.5)

Take a cut-off function χ ∈ C∞
c (Ω) such that 0 � χ � 1 and χ|O ≡ 1. Then, we

define the sequence (wk)k ⊂ Sα,1
g (Ω; Rm) by

wk = u+ χũk
∗
⇀ u in BV α

g (Ω; Rm) as k → ∞,

where the convergence follows from (5.4) and the Leibniz rule (lemma 3.3).
Moreover, we have by (3.2) the convergence of the residuals

Rk := ∇αwk −∇αu− χ∇αũk → 0 in L1(Rn; Rm×n). (5.6)

In O, we find in view of (5.2) and (5.5) that ∇αwk = ∇vk +Rk. Due to the
strong convergence of Rk to zero it follows by testing with the Lipschitz basis from
[33, Lemma 3] that the sequences (∇vk)k and (∇αwk)k when restricted to O gen-
erate (up to a non-relabelled subsequence) the same generalized Young measure
ν ∈ Y (O; Rm×n). As a result, we use Theorem 2.2 twice to conclude

lim inf
k→∞

∫
O

f(x,∇αwk) dx �
∫

O

〈f(x, ·), νx〉dx+
∫

O

〈f∞(x, ·), ν∞x 〉dλν

= lim
k→∞

∫
O

f(x,∇vk) dx =
∫

O

fqc(x,∇v) dx

=
∫

O

fqc(x,∇αu) dx,

(5.7)

https://doi.org/10.1017/prm.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.14


Extending Linear Growth Functionals to Functions of Bounded Fractional 325

where we use (5.3) and (5.2) in the final two equalities. Additionally, in Oc we have
that ∇αwk = ∇αu+Rk thanks to (5.5). Hence, we find using (5.6) and (G) that

lim sup
k→∞

∫
Ω\O

f(x,∇αwk) dx

= lim sup
k→∞

∫
Ω\O

f(x,∇αu+Rk) dx � ‖M |∇αu| + a‖L1(Ω\O). (5.8)

Finally, using Lebesgue’s dominated convergence theorem and (5.6) we derive

lim
k→∞

∫
Ωc

f(x,∇αwk) dx = lim
k→∞

∫
Ωc

f(x,∇αu+Rk) dx =
∫

Ωc

f(x,∇αu) dx. (5.9)

Summing (5.7), (5.8) and (5.9) together, we obtain

lim inf
k→∞

∫
Rn

f(x,∇αwk) dx

�
∫

O

fqc(x,∇αu) dx+
∫

Ωc

f(x,∇αu) dx+ ‖M |∇αu| + a‖L1(Ω\O),

which yields the result if we let O ↑ Ω and extract a diagonal sequence. �

Remark 5.1. (a) Because of the coercivity condition of f , the functional F rel
α is

in particular weak* lower semicontinuous on BV α
g (Ω; Rm). Interestingly, this fact

does not immediately follow from the lower semicontinuity result in Theorem 4.1,
since the strong recession function of 1Ωf

qc + 1Ωcf need not exist. An application
of the direct method as in Corollary 4.2 provides the existence of minimizers of
F rel

α .
(b) A simple argument using the theory of Young measures shows that the

functional

Fα(u) =
∫

Rn

f(x,∇αu) dx+
∫

Ω

f∞
(
x,

dDα
s u

d|Dα
s u|
)

d|Dα
s u| for u ∈ BV α

g (Ω; Rm),

is the area-strictly continuous extension of Fα to BV α
g (Ω; Rm). This immediately

implies that this functional is also the relaxation of Fα if f(x, ·) is quasiconvex for
a.e. x ∈ Ω, given the lower semicontinuity result from Theorem 4.1 and the density
with respect to area-strict convergence.

(c) The requirement (1.7) on fqc is needed for the application of the Jensen’s
inequalities in the lower bound and allows the relaxation result to be phrased for
general Carathéodory integrands. However, one can dispose of this assumption if
we assume a continuity condition similarly as in [7, Theorem 1.7], that is,

|f(x,A) − f(y,A)| � ω(|x− y|)(1 + |A|) for all x, y ∈ Ω and A ∈ R
m×n,

where ω : [0, ∞) → [0, ∞) is a continuous and increasing function with ω(0) = 0.
Indeed, one can utilize (G) and (C) as in [40, Theorem 7.6] to deduce that fqc

inherits the same continuity condition (up to a different modulus of continuity),
after which (1.7) readily follows.
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