Journal of Functional Programming 1 (1): 21-69, January 1991 21

A partial evaluator for the untyped
lambda-calculus

CARSTEN K. GOMARD AND NEIL D.JONES

gomard@diku.dk, neil@diku.dk
DIKU, Department of Computer Science, University of Copenhagen

Abstract

This article describes theoretical and practical aspects of an implemented self-applicable partial
evaluator for the untyped lambda-calculus with constants and a fixed point operator. To the
best of our knowledge, it is the first partial evaluator that is simultaneously higher-order, non-
trivial, and self-applicable.

Partial evaluation produces a residual program from a source program and some of its input
data. When given the remaining input data the residual program yields the same result that the
source program would when given all its input data. Our partial evaluator produces a residual
lambda-expression given a source lambda-expression and the values of some of its free
variables. By self-application, the partial evaluator can be used to compile and to generate
stand-alone compilers from a denotational or interpretive specification of a programming
language.

An essential component in our self-applicable partial evaluator is the use of explicit binding
time information. We use this to annotate the source program, marking as residual the parts for
which residual code is to be generated and marking as eliminable the parts that can be evaluated
using only the data that is known during partial evaluation. We give a simple criterion, well-
annotatedness, that can be used to check that the partial evaluator can handle the annotated
higher-order programs without committing errors.

Our partial evaluator is simple, is implemented in a side-effect free subset of Scheme, and has
been used to compile and to generate compilers and a compiler generator. In this article we
examine two machine-generated compilers and find that their structures are surprisingly
natural.

Capsule review

For many years, partial evaluation has been ever more promising as an optimization tool. Its
ability to achieve some level of automatic compilation has been known for two decades, and
its potential through self-application for obtaining compilers and compiler generators for more
than one. That potential was first realized five years ago at DIKU in Copenhagen. At that time,
only a small subset of pure, first-order, statically-scoped LISP could be handled but, by a
double self-application of the partial evaluator to its own text, a compiler generator was
obtained. Since then, research has focused on developing the capabilities of partial evaluators,
including allowing them to handle function-valued arguments. This article is the first to
describe a self-applicable partial evaluator for the untyped lambda-calculus, the canonical
higher-order language. Traditionally, evaluation of lambda-terms is achieved by predetermined
reduction strategies; in contrast, partial evaluation of lambda-terms is achieved by program-

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

22 C. K. Gomard and N. D. Jones

dependent reduction strategies. The choice of reduction strategy is determined by a binding
time analysis. The analysis is based upon a non-standard type system, instead of (as is more
usual) upon abstract interpretation. The article demonstrates automatic compiling and the
automatic production of compilers and compiler generators, and introduces a proof of

correctness.

Contents

Preface
1 Introduction
1.1 Background
1.2 Prerequisites, overview and outline
1.3 Partial evaluation and the Futamura projections

2 Partial evaluation using a two-level lambda-calculus
2.1 An untyped lambda-calculus
2.2 Two-level syntax
2.3 Two-level semantics
2.4 As bird’s eye view of how mix works
2.5 ‘Well-annotated programs do not go wrong’
2.6 The mix equation revisited

3 Aspects of binding time analysis by type inference
3.1 BTA: type analysis of untyped programs?
3.2 Viewing binding time analysis as type inference
3.3 Finiteness of partial evaluation
3.4 Code duplication

4 Experiments with mix
4.1 A self-interpreter
4.2 An interpreter for a Tiny imperative language
4.3 An example of compiler generation
5 Perspectives and conclusions
5.1 Related work
5.2 Future work

5.3 Conclusion

Appendices
A A mix session

B T annotated
C The generated self-compiler

D The generated compiler generator

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

23
23
23
25
25

28
29
30
31
33
33
37

38
38
39
40
4]

42
42
47
49
51
51
54
56
57
60
61

62

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 23

E Tiny interpreter 64

F The generated Tiny compiler 65

Acknowledgements 66

References 66
Preface

This article develops a simple self-applicable partial evaluator for a higher-order
language, the lambda-calculus. Examples demonstrate that the partial evaluator can
be used automatically to generate a langﬁagc implementation in the form of a
compiler, given as input a language definition in the form of a denotational semantics.

Self-applicable partial evaluators for first-order languages had been around for
four years before this project was begun. The goal was to generalize the techniques
that worked well for first-order languages to include the higher-order languages with
their higher expressive power. We have succeeded in performing higher-order partial
evaluation, but the techniques used are somewhat different —and simpler! —than
those used in earlier partial evaluation projects.

To read this article, a superficial knowledge of denotational semantics, typed
programming languages and type inference systems will be beneficial.

(An extended abstract of this article has appeared in the proceedings of the IEEE
Conference on Programming Languages: Jones et al., 1990.)

1 Introduction

1.1 Background
A language’s implementation should be guided by its precise semantic definition. It
seems an impossible task to implement a realistic language correctly on the basis of
a loose idea of how it should work. Even with a precise — formal or informal —
semantic description it is neither a small nor an easy task to implement a compiler
correctly.

Therefore the mechanical derivation of a language implementation from a semantic
definition has received great attention as an area of research during the last ten years.
The goal is clear: from a language definition expressed in a not-too-cumbersome
formalism automatically to derive an efficient implementation that is faithful to the
semantic definition.

An importaht formalism for assigning meanings to programs is denotational
semantics (Stoy, 1977; Schmidt, 1986) founded by Scott and Strachey. A denotational
definition assigns to each program a lambda-expression denoting the input—output
function computed by the program. Denotational semantics was intended to be the
mathematical theory of programming languages, saying what the meaning of a
program is, but nothing about sow to compute it. How to compute it was considered
irrelevant to understanding the meaning of a program.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

24 C. K. Gomard and N. D. Jones

Since the lambda-calculus can be implemented [Lisp, Scheme, ML, Miranda, etc.
are all based on the lambda-calculus], a denotational definition of a programming
language can actually run directly on a machine. We may thus view a denotational
definition as an interpreter for the defined language, meaning that we have for free a
language implementation derived (without doing anything) from a formal language
definition. Could we ask for more? Yes, we ask for efficiency.

A denotational semantics defines the meanings of programs in a programming
language by translating them into the lambda-calculus. The lambda-expression
resulting from the translation has very large computational overhead; for efficient
implementation, it is necessary to simplify the expression before it is applied to the
program input and executed. This was the strategy used in SIS: the Semantics
Implementation System of Mosses (1979), the first in a long series of systems to derive
implementations from denotational definitions. To our knowledge none of these
systems is so powerful (or so simple) that one could consider using the system to
construct its own components. All are quite complex, with many stages of processing
and intermediate languages. In contrast, the partial evaluator presented here involves
only one language (with annotations), and all components are derived from a single
program, ‘mix’. ‘

Partial evaluation is another approach to the generation of language im-
plementations. Partial evaluation is a program transformation technique which
specializes programs with respect to given, incomplete input data. During the
seventies it was realized independently in Japan and the Soviet Union (Futamura,
1971; Turchin, 1980; Ershov, 1978) that given a self-applicable partial evaluator it
was possible to generate a compiler for a language, given as input an operational
definition in the form of an interpreter. It was not, however, until 1984 that the
first non-trivial self-application was realized on the computer (Jones et al., 1985,
1989).

The language used in that project was for first-order recursion equations. Since
then partial evaluators have been developed for various other first-order languages,
but until now no higher-order solution has been developed. Partial evaluation of
higher-order languages is clearly desirable because of their expressive power and
elegance.

When a compiler is generated by self-application of a partial evaluator, the partial
evaluator is the only program involved apart from the language definition.
Furthermore, a partial evaluator is usually a relatively small program. It is thus
much easier to prove the generated compiler correct (meaning: faithful to the input
language definition) because ‘all’ it takes is to prove the partial evaluator correct.
Once this is done (and it has been done: see Gomard, 1989, every generated compiler
will be faithful to the language definitions from which they were derived. This
completely obviates the need for the difficult intellectual work involved in proving
individual compilers correct (Goguen et al., 1977; Morris, 1973).

In this article we merge the two threads of development sketched above. We
construct a self-applicable partial evaluator for the lambda-calculus with unrestricted
use of higher-order functions and apply it to some small example denotational
definitions of programming languages. The emphasis will be on whar the partial

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 25

evaluator does, including self-application, and on how it is done, via the two-level
lambda-calculus and binding time analysis.

1.2 Prerequisites, overview and outline
The reader should be familiar with denotational semantics (e.g. Schmidt, 1986) and
should have some knowledge of partial evaluation.

After a summary of this article’s contents, the rest of section 1 is devoted to a review
and overview of the basic theory of partial evaluation and compiler generation (more
details may be found in Jones et al., 1985, 1989).

A central part of the article is section 2 where the syntax and semantics of our one-
and two-level lambda-calculi are presented. The task of partial evaluation is split into
two: first we add annotations to the one-level (normal) lambda-expression to obtain
a two-level expression, and then evaluate the annotated expression. A type system
that assures the partial evaluation against type errors is derived from the semantics
of the two-level lambda-calculus.

Section 3 demonstrates how the notion of ‘type analysis of untyped programs’
provides a convenient framework for doing binding time analysis.

Section 4 reports the results of experiments with out partial evaluator. We use an
interpreter for a small imperative language to demonstrate compiling and compiler
generation, and describe experiments with a metacircular interpreter for the lambda-
calculus itself. We investigate the structure of the target programs, the generated
compiler, and the generated compiler generator, all of which turn out to be very
natural. Finally the run times of our experimental program executions are given.

Section 5 discusses related work and natural work to follow after this. Finally we
summarize the achievements of this article.

In the appendices a Scheme session shows how the implemented partial evaluator
works. Various program texts and generated residual programs may also be found
there.

1.3 Partial evaluation and the Futamura projections
The concept of partial evaluation and the possibility of compiler generation by self-
application of a partial evaluator have been exploited in a number of papers (e.g.
Futamura, 1971; Jones et al., 1985, 1989). In the following we review the basic
definitions.

In partial evaluation we treat programs as data objects and it is therefore natural
to use a universal domain D from which we draw both programs and their data. We
identify a programming language L with it semantic (partial) function D3 D 8 D
which maps each valid L-program into its input-output function. From now on L is
the lambda-calculus and D contains the set of all Lisp S-expressions. An expression
is identified with its representation as a list, for example, (lamx (@xx)) for
Ax.x.x @ x (a notational convention known at MIT as ‘Cambridge Polish”).

We supply the input to a lambda-calculus program p through its free variables
{X,..., X, so the input to the program is thus m values, v,...v,,. We define

Lplv,...,v,]

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

26 C. K. Gomard and N. D. Jones

to be equal to &[p]p (the semantic evaluation function & will be formally defined in
section 2.1), where p =[x, v,,..., X, v,,]. Consider, for example, the following
exponentiation program with free variables n and x. (This program, called power, is
written in an informal notation; properly it should be in Cambridge Polish.)

letrecpn’'x’ =ifn =20

then1

elsex *p(n"—1) x
inpnx.

Calling the program power and letting p = [n+— 2, x+— 3], we have

L power [2, 3] = &[power]p = 9.

1.3.1 Partial evaluation

Suppose now that p is a lambda-calculus program with two free variables. Then
Lp[dl,d2] denotes the value of p with input d/ and 42 substituted for the free
variables. If only d! is available, application of the semantic function L p dI does not
make sense, as the result is likely to depend on d2. However, dI might be used to
perform some of the computations in p, yielding as result a transformed, optimized
version of p, We use the term partial evaluation for the process of doing such
computations on basis of incomplete input data. Its outcome is a program, so ‘partial
evaluation’ is really a form of program specialization (or transformation).

A residual program of an L-program p with respect to partial data d/ is a program
P, such that for all d2 the following holds (where ‘ =’ denotes equality of partial
values):

Lpldi,d2] =Lp,,d2.

A partial evaluator is a program mix that given p and the partial data dI produces the
residual program p,,. This is captured by the mix equation for all p and d1I:

Lpldl,d2] = L(L mix[p,dI]) d2.

This is just a restatement of Kleene’s S7 theorem from recursive function theory, with
m=n= 1. If p is a lambda-expression, the free variable in it bound to d! is called
static, while that bound to d2 is called dynamic. Generalization to other values of m
and n is straightforward.

Existence of mix is classically proved in a rather trivial way. For example, if p is the
power program and d/ = 2 is the value of free variable n, the classical residual
program L mix [p, 2] would be:

letrecpn’x’ =ifn"=0

then1

elsex’ *xp(n'—1) x
inp2x.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 27

For our purposes we want more efficient residual programs in which all computations
depending on dI have been done by mix. A better residual power program for
dl = 2 can be obtained by unfolding applications of the function p and doing
the computations involving n, yielding the residual program:

x*(x*1).

1.3.2 The Futamura projections
Let S and T be programming languages, perhaps (but not necessarily) different from
L. An S-interpreter int written in L is a program that fulfils

S pgmdata = Lint[pgm, data)
for all data. An S-to-T-compiler comp written in L is a program that fulfils

S pgmdata = T (L comp pgm) data

for all pgm and data.

The Futamura projections (Futamura, 1971 ; Ershov, 1978) state that given a partial
evaluator mix and an interpreter int it is possible to compile programs, and even to
generate stand-alone compilers and compiler generators, by self-applying mix. The
three Futamura projections are:

L mix [int, source] = target
L mix [mix, int] = compiler
L mix [mix, mix] = compiler generator.

Program target is a specialized version of L-program int and thus is itself an L-
program, so translation has occurred from the interpreted language to the language
in which the interpreter itself is written. That the target program is faithful to its
source is easily verified using the definitions of interpreters, compilers and the mix
equation:
output = S source input

= Lint[source, input]

= L (L mix[int, source)) input

= L target input.

Verification that program compiler correctly translates source programs into
equivalent target programs is also straightforward:

target = L mix [int, source]
= L (L mix[mix, int]) source
= L compiler source.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

28 C. K. Gomard and N. D. Jones

Finally, we can see that cogen transforms interpreters into compilers by the following:

compiler = L mix [mix, int]
= L (L mix [mix, mix]) int
= Lcogenint.

These proofs and a more detailed discussion can be found in Jones et al. (1989).

2 Partial evaluation using a two-level lambda-calculus

To do partial evaluation of a lambda-expression p it is tempting to insert the partial
input data in p, and apply one of the usual reduction strategies, modified not to
reduce when insufficient information is available. But the standard call-by-name and
call-by-value reduction strategies (as defined for example in Plotkin, 1975) do not
reduce inside the bodies of abstractions. This approach yields trivial results in
practice.

It is no solution either to reduce indiscriminately inside abstractions since this can
lead to infinite reduction if the expression contains a fixed point operator, or the Y-
combinator written as a lambda-expression. The point is that for partial evaluation
to succeed, some but not all of the redexes in the expression should be reduced. Many,
so as little work as possible will be left to be done by the residual program; but not
so many as to risk non-termination. Thus our main task is to determine which ones
to reduce to yield efficient residual programs without risking non-termination.

The classical deterministic reduction orders are uniform (meaning: independent of
the program being evaluated). This is insufficient for our purposes since the best
reduction order may be program-dependent. A solution is to use a ron-uniform
reduction strategy, one which selects redexes in a way depending on the particular
program being partially evaluated. A simple technique is to mark parts of the
program as ‘residual’, so these will not be reduced but the remaining ones will.

We therefore perform partial evaluation of lambda-expressions in two phases. In
the first phase, we determine which redexes should be reduced at compile-time and
which ones should be residual, meaning that they should be suspended until run-time.
This determination, which is done before knowing the static data, is called binding
time analysis, henceforth called BTA for short. Its importance for efficient self-
application is discussed in Bondorf et al. (1988). The result of applying the BTA to
an expression exp is an annotated expression exp®*™ in a two-level lambda-calculus.
In exp®*" the BTA has marked the parts of exp that should #not be reduced at partial
evaluation time.

In the second phase we blindly obey the annotations, reducing redexes not marked
as residual, and generating residual target code (also a lambda-expression) for the
operations marked residual. The reduction phase is performed by applying a semantic
function 4 —which is an extension of the usual evaluation function & —to the
annotated expression. maps residual operators to code pieces for execution at run-
time and non-residual operators to their ‘usual’ meanings.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 29

2.1 An untyped lambda-calculus

We develop a partial evaluator for a very simple language, the classical lambda-
calculus. Such a simple language allows a more complete description than would be
possible for a larger and more practical language, and makes it possible to carry out
proofs of correctness and optimality. The lambda-calculus forms the basis of modern
functional programming languages (e.g. Scheme, ML, Miranda, Haskell), so the
results obtained here should not be too hard to adapt to more practical frameworks.
The fact that we use an untyped language makes it easier to write interpreters (and
thus partial evaluators) and it also allows complete removal of a level of interpretation
overhead. We will return to this in section 4.1.1.

2.1.1 Syntax

A lambda-calculus program is an expression with free variables. The program takes
its input through its free variables whose values are supplied by an initial environment.
This environment is also expected to map base function names, such as cons, to the
corresponding functions (syntactically these are predefined variables). First-order
base values include natural numbers and S-expressions and are written const base-
value.

The expression abstract syntax is as follows, where @ denotes application and fix
the least fixed point operator.

exp::= var|exp @ exp|Avar.exp|if exp exp exp | fix exp | const base-value.

Since we use lambda-calculus both as a programming language and as a meta-
language, we need to distinguish notationally lambdas that appear in source
programs from lambdas that denote functions. Syntactic (source program) lambda-
expressions are printed in sans serif type: exp @ exp, Avar.exp, fixexp..., and the
meta-language is in italics: exp @ exp, hvar . exp, fix exp ... When a lambda-expression
is presegted as generated by machine, it is printed in typewriter style using
‘Cambridge Polish’ notation: (expexp), (lamvarexp) etc.

For an example, consider a program to compute the function x to the nth where
x and n are free (input) variables. (For readability we omit some of the explicit consts
and application nodes in the concrete syntax. We thus write (= n’0) instead of

(= @n" @const0).)
(fixAp. A0 Ax".if (=n'0) 1 (xX'(p@(—n"1)@x)))@n@x.

2.1.2 Semantics
We use denotational semantics (Stoy, 1977; Schmidt, 1986) to assign meanings to
programs, rather than the more traditional afn-reduction approach. There are at
least two reasons for this:

1. It allows a cleaner analysis of possible errors at partial evaluation time.
2. It is more natural (and yields much better results) for the self-application used
in compiler generation.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

30 C. K. Gomard and N. D. Jones

The Scott domain of expression values Val is the separated sum of the flat domain of
base values and the domain of function values: Val = Base + Funval.

If fis a value from Funval we take f1 Funval to be the value finjected into summand
Funval of Val. Informally: 1 Funval puts a type tag on f. If val is a value from Val,
val | Funval removes the type tag, provided val is from the Funval summand. If not,
val | Funval produces an error. (It is assumed that Val has an error element and that
applications etc. are strict in errors; details are omitted for notational simplicity.)

The valuation functions for lambda-calculus programs are the usual ones, given in
fig. 1 with the notational conventions usual in denotational semantics (1 and | bind
less strongly than application). The denotational definition of fig. 1 may be regarded
as a self-interpreter for the lambda-calculus since it is easily transformed into a
lambda-calculus program (of form fixA&....).

Semantic domains
Val = Base + Funval
Funval = Val - Val
Env = Var - Val

& : Expression — Env — Val

&lvar]p = p(var)

&[Avar.explp = Avalue . (&[exp] plvar— value]) T Funval
Elexp, @ exp,lp = (€[exp,lp | Funval) (€£]exp,]p)

BTfixexplp = fix (&]explp | Funval)

&lifexp, exp,expglp = (£lexp,lp | Base) — &lexp,lp, &lexpslp
&lconstc]p = ¢ 1 Base

Fig. 1. Lambda-calculus semantics.

The untyped lambda-calculus program to be interpreted might contain type errors
and hence the type checks such as &flexp,lp| Funval are necessary so the self-
interpreter can report ‘error’ when this happens. If the subject program is Enown to
be well-typed it is safe to omit the type tags (Milner, 1978). This is in general not the
case for an untyped language.

2.2 Two-level syntax
The two-level lambda-calculus contains two versions of each operator in the ordinary
lambda-calculus: for each of the ‘normal’ operators and base functions: A, @, ...,
cons,... there is also a residual version: A, @, ..., cons, ...in the two-level calculus.
The abstract syntax of two-level expressions is

texp::= texp @ texp|Avar.texp|if texp texptexp|fix texp | const base-value |
texp @ texp | Avar.texp | if texp texp texp | fix texp | const base-value |
var| lifttexp

Intuitively, in the two-level semantics all operators A, @, ... have the same denotations
by the semantic function Z in fig. 2 as in the one-level call-by-value semantic
function of fig. 1, while the residual operators: A, @,...are suspended yielding as

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 31

Semantic domains

2Val = Base + 2Funval+ Code

2Funval = 2Val - 2Val

Code = Expression (= the set of one-level expreséions)
2Env = Var — 2Val

T : 2Expression — 2Env — 2Val
T [var]p = p(var)

I [fix texp]p = (Avalue.(7 [texp]p[var — value])) T 2Funval

J [Aavar.texplp = fix (I [texplp | 2Funval)

T [texp, @ texp,lp = (7 [texp,lpl 2Funval) (7 [texp,]p)

T [iftexp, texp, texp,lp = (7 [texp,lp | Base) —» 7 [texp,lp, T [texp,lp
J [constc]p =c 1 Base

T llifttexplp = build-const(T [texp]p | Base) T Code

T [avar.texp]p =letnvar = newnamein build-M(nvar, 7 [texp]p[var -
_ nvar] | Code) 1 Code

T [texp, @ texp,lp = build-@ (7 [texp,lp | Code, T [texp,]p | Code) T Code
I [fix texplp = build-fix(J [texp]p | Code) T Code
T [iftexp, texp, texp,lp = build-i T [texp,lp | Code,

T [texp,]p | Code,

T [texp,lp | Code) T Code
T [constclp =build-const(c) T Code

Fig. 2. Two-level lambda-calculus semantics.

result a piece of code (a one-level expression) for execution at run-time. The lift
operator builds a residual constant expression with the same value as lift’s argument.
The lift operator is used when a residual expression has a constant value that must
be computed at partial evaluation time. We will give an example of this in section
2.5.1.

Note that we do not distinguish syntactically between ‘normal’ and residual
variables (elsewhere called dynamic and static). The reason for this is that the
universality of the value domain, which can hold both ‘normal’ values and residual
code.

2.3 Two-level semantics
The value of a two-level expression ranges over a domain 2Val:

2Val = Base+ 2Funval + Code
2Funval = 2Val — 2Val
Code = Expression

which is the normal expression value domain extended by an extra summand, the flat
domain of one-level expressions, Code. The value of a two-level expression might thus
be an (ordinary) expression. The valuation functions for two-level lambda-calculus
programs are given in fig. 2. The rules contain explicit type checks; section 2.5 will

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

32 C. K. Gomard and N. D. Jones

discuss sufficient criteria for omitting these (and so the error element as well). The J -
rules for the non-residual syntactic constructs look the same as the corresponding &-
rules but the values range over the larger domain of two-level values 2Val.

To obtain self-applicability the rules should be rewritten as a single expression in
our lambda calculus language. This is straightforward, the result being of the form
fix A 7 . 2Aexp.Ap....

The Z -rule for a residual application is

T [texp, @ texp,]p = build-@(7 [texp,[pl Code, T [texp,]p | Code) T Code.

The recursive calls 7 [texp,]p and 7 [texp,]p produce reduced operator and operand
and the function build-@ ‘glues’ them together with an application operator @ to
appear in the residual program (concretely, an expression of the form texp,-code @
texp,-code). All the build- functions are strict. (For a concrete example of machine-
generated code, the reader can consult the session in appendix A.)

The projections check that both operator and operand reduce to code pieces since
it does not make sense to glue, for example, functions together to appear in the
residual program. Finally the newly composed expression is tagged as being code.

The J -rule for variables is

T [var]p = p(var).

The environment p is expected to hold the values of all variables regardless of whether
they are predefined constants, functions, or code pieces. The environment is updated
in the usual way in the rule for non-residual A, and in the rule for A, the formal
parameter is bound to a fresh variable name (which we assume available whenever
needed):

T [A.vartexplp = letnvar = newname
" in build-Mnvar, 7 [texplplvar— nvar] | Code) T Code.

Each occurrence of var in texp will then be looked up in p, causing var to be replaced
by some var,,,. Since Avar.texp might be duplicated, and thus become the ‘father’
of many A-abstractions in the residual program, this renaming is necessary to avoid
name confusion in residual programs. The free dynamic variables must be bound to
their new names in the initial static environment p,. The generation of new variable
names relies on a side effect on a global state (a name counter). In principle this could
have been avoided by adding an extra parameter to the semantic function, but for the
sake of notational simplicity we have used a less formal solution.

Example 1
Suppose we are given the power program power with free variables n and x:

(fixAp.An".Ax".if (= n’0) const1 (+*@X) @(p@(—n"1) @x")) @n@x

with n = 2 as static variable. We annotate the irreducible parts to yield the program

ann .

power®™:

(fixAp.An".Ax".if (= n’0) const1 (*@X) @ (P@ (—n"1) @x')) @n@x

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 33

With p, = [n+— 271 Base, x—x,,1Code] we can evaluate power®™ (i.e. partially

evaluate power), yielding:

new

T [power*™]p,
= J[(fixap.Aan" . Ax".if (= n'0) const1
*@x)@(Pp@(—n"1)@x)) @n@ xlp,

= (¥ Xpew (¥ Xpew 1))

In appendix A a Scheme session shows how this residual program is generated by our
partial evaluator.

In the power example it is quite clear that with p = [n+—2, x> d2], p, =[n— 2,
X X, o), and p, = [X,.,+> d2] (omitting injections for brevity) it holds for all 42

new.

Elpowerlp = E1T [power™™]p,lp,

This is the kind of correctness property we want to hold in general. In section 2.6 we
state a general correctness theorem concerning two-level evaluation. [J

2.4 A bird’s eye view of how mix works
Mix specializes programs in two steps. If given program p and static data d1, its
actions are:

1. Binding time analysis. This annotates p, giving p*™".
2. Evaluate J [p*""]p,, where p, binds p’s free static variable to d1.

Free variables in p will only be bound to first-order values, i.e. values in the Base or
Code summands of 2Val.

2.5 ‘Well-annotated programs do not go wrong’
The semantic rules of fig. 2 check explicitly that the values of sub-expressions are in
the appropriate summands of the value domain, in the same way that a type-checking
interpreter for an untyped language would check types on the fly. Type-checking on
the fly is clearly necessary to prevent mix from committing type errors itself on a
poorly annotated program.

Doing type checks on the fly in mix is not very satisfactory for practical reasons.
Mix is supposed to be a general and automatic program generation tool, and it should
for obvious reasons be impossible for a mix generated compiler to go down with an
error message.

Note that it is in principle possible — but unacceptably inefficient in practice — to
avoid mix-time errors by annotating as residual all operators in the input program to
mix. This would place all values in the code summand so all type checks would
succeed; but the residual program would always be isomorphic to the source
program, so it would not be optimized at all.

The aim of this section is to develop a more efficient strategy, ensuring two things
prior to partial evaluation: that the partial evaluator will not fail a type check, thus
rendering the type checks superfluous; and ensuring that as many operations as
possible are performed at mix time. This section title ‘Well-annotated programs do
not go wrong’ is thus a paraphrase of Milner’s slogan (Milner, 1978).

2 FPR |

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

34 C. K. Gomard and N. D. Jones

2.5.1 Well-annotated expressions
Given a one-level expression exp, an annotated lambda-expression exp®™" is a two-
level expression obtained by replacing some occurrences of @, A,...in exp by the
corresponding marker operator: @, A,...and inserting some lift-operators. Clearly
the annotations have to be placed consistently not to produce a projection error
according to the rules in fig. 2.

A simple and traditional solution to our problem is to devise a type system. In typed
functional languages, a type inference algorithm, such as algorithm W of Milner
(1978) and Damas and Milner (1982), checks that a program is well-typed prior to
program execution. If it is, no run-time summand tags or checks are needed. Type
correctness is quite well understood and can be used to obtain a good formulation of
the problem to be solved by binding time analysis. It also turns out that we can adapt
some of the type inference ideas of Damas and Milner (1982) (and many other papers)
to obtain a nice algorithm for doing binding time analysis. The type system used here
is very simple, but it should not be too difficult to adapt the ideas to a more powerful
system including more base types, constructors, and polymorphism.

Definition 2
The abstract syntax of a two-level type ¢ is given by

type::= base|type — type| code

A type environment is a mapping from variables to types. [

Definition 3

Let 1 be a type environment mapping the free variables of a two-level expression texp
to their types. Then texp is well-annotated if T+ texp: t can be deduced from the
inference rules in fig. 3 for some type ¢. [-

Note that type unicity does not hold: ¢ is not uniquely determined by t and texp.
Given any type environment t and the expression Ax.x it holds, for example, that
T AX.x: base — base and 1+ Ax.x: (base — base) — (base — base).

Our lambda-calculus is basically untyped, but the well-annotatedness ensures that
the program parts evaluated at partial evaluation time are well-typed, thus insuring
mix against type errors. The well-annotatedness criterion is completely permissive
concerning the run-time part of a two-level expression. An extreme case: every
lambda-expression with only residual operators is well-typed — at partial evaluation
time.

Two-level expressions of type base evaluate (completely) to constants, and
expressions of type ¢, —f, evaluate to some function ‘living’ only at partial
evaluation time. The mix-value of a two-level expression texp of type code is a one-
level expression exp. For partial evaluation we are only interested in fully annotated
programs p*™ that have type code. If so, 7 [p*™]p, (if defined) will be the residual
program.

Suppose an expression of type base is evaluated at mix-time yielding value as result,
and suppose value is needed at run-time. The lift annotation is then used to indicate
that the computed value must be turned into a constant expression to appear in the

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 35

0)=T
T=x:T
Tix+— T,]texp: T,
tAax.texp: T, - T,
ttexp,: T, > T, thtexp,:T,
T—texp, @ texp,: T,
ttexp: (T, »)= (T, =~ T,)
T fixtexp: (T, = T,)
T texp,:base, tHtexp,:T, tHtexpy: T
T iftexp, texp,texp,: T

Tk constc: base

T[x > code] - texp: code
THAX.texp: code

T texp,:code, Tt texp,:code
T texp, @ texp,: code

T texp: code
1 fixtexp: code

T texp,:code, Tt texp,:code, Tl texp,:code
T iftexp, texp, texp,:code
T constc: code
THtexp: base
T lifttexp: code

Fig. 3. Type rules checking well-annotatedness.

residual program. The type inference rules accordingly state that if texp has type base
then lifttexp has type code.

Example 4
Consider the following program that computes n times x to the nth where x and n are
free (input) variables.

(fixAp. A0’ Ax".if(=n'0) n (*xX(p@(—n"1)@x)))@n@x.

If we take x to be of type code (dynamic) and n to be of type base (static), we observe
that this program cannot be well-annotated without using lift. The reason is that the
multiplication branch must have type code since the multiplication cannot be
performed at partial evaluation time, but the n branch of the conditional has type
base. This incompatibility cannot be resolved using the type deduction rules without
the rule for lift.

If, however, we ‘lift’ the n that provides the base case value, we obtain a well-
annotated program:

(fixAp. A0 AX.if (= n'0) liftn *@x'@ (P@(—n" 1)@X)) @n@x [

22

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

36 C. K. Gomard and N. D. Jones

The result on error freedom of well-typed programs can be formulated as follows.
Proof is omitted since the result is well-known.

Definition 5
Let ¢ be a two-level type and v be a two-level value. We say that ¢ suits v if and only
if one of the following holds:

1. t = base and v = ct] Base for some cz.

2. t = code and v = cd T Code for some cd.

3. (@) t=1t, > t,,v=f12Funval for some f, and
(b) Yve2Val: t, suits v implies £, suits f{v).

A type environment Tt suits an environment p if for all variables x bound by p, t(x)
suits p(x). O

Recall that the initial static environment p, maps static variables to their (first-order)
values and dynamic variables to their new name. A type environment t that suits p,
thus maps static variables to base, and dynamic variables to code. The following is a
standard result (Milner, 1978).

Proposition 6
If ttexp: ¢ and 1 suits p, then J [texp]p, does not yield a projection error. [

2.5.2 The existence of best completions
In general we want to perform as much computation as possible at partial evaluation
time. This means that as few annotations as possible should be added to make the
expression well-annotated.

Definition 7

The annotation forgetting function ¢: 2Exp — Exp, when applied to a two-level
expression texp returns an expression exp which differs from texp only in that all
annotations and lift operators are removed. [J

Definition 8
Given two-level expressions, texp and texp’, define texp = texp’ by:

1. o(texp) = @(texp”).
2. All operators marked as residual in texp are also marked as residual in
texp’. O

= defines a preorder on the set of two-level expressions. If we restrict = to the set
of two-level expressions without lift-operators, = is a partial order possessing
greatest lower bounds (written I1).

Definition 9

Given a two-level expression texp and a type environment 1, a completion of texp for
T is a two-level expression texp’ with texp = texp’ and T+ texp’: ¢ for some type .

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 37

A best completion (if it exists) is an expression texp” which is a completion of texp
fulfilling texp” = texp’ for all completions texp’ of texp. A liftless completion texp’
of texp is a completion of texp in which lift does not occur. []

As we saw in example 4 not all two-level expressions have liftless completions. If
a two-level expression has liftless completions, it has a unique best liftless completion.

Theorem 10

Given a two-level expression texp and a type environment T mapping the free
variables of texp to either base or code. Assume texp has at least one liftless
completion. Then it also has a best liftless completion.

Proof
Found in Gomard (1989). 0O

There does not in general exist a unique best completion of two-level expressions.
Suppose n has type base and that we want a completion of (Ax.x) @ n of type code.
There are two candidates: lift ((Ax.x) @n) and (Ax.x) @ liftn which, though
different, yield equal amounts of static computation. In Gomard (1989) there is a
discussion of the general existence of best completions.

2.6 The mix equation revisited
With m = n = 1 the mix equation is

Lpldi,d2] = L(L mix|[p,dlI])d2.
In terms of & and J the equation is

ElLplp = LT [P"™1p.1Pas

where p®™ is a completion of p, p =[x, 1> dl, x,+—d2], p, =[x, dl, X, x,.,.]),
and p, = [X,ew—d2].
We now state the general correctness theorem for two-level evaluation of untyped
lambda-expressions.

Theorem 11 (Main correctness theorem)
Suppose we are given:

1. A two-level expression texp with free static variables x, ...x,, and free dynamic
variables X,,.; ... Xy i

2. Environments p, p,€ Env and p, € 2Env such that for ie0...m: p(x,) = p,(x,) and
foriem+1...m+4n: p(x;)) = py(p,(x) | Code).

3. ttexp: code for some t that suits p,.

If both &[7 [texplp,lp, and &lo(texp)]p are not L then

€17 Ttexplp,lp, = Elo(texp)lp

Proof
See Gomard (1989). O

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

38 C. K. Gomard and N. D. Jones

3 Aspects of binding time analysis by type inference

3.1 BTA: type analysis of untyped programs?
Given an expression exp in the untyped, one-level lambda-calculus and some
assumptions on its free variables, it is always possible to add enough annotations to
obtain a well-annotated two-level expression fexp, in the worst case by making all
operators residual and adding lift operators where needed. Operators in texp can be
forced to be residual for two somewhat different reasons:

1. The computation cannot be performed when the input data is incomplete, or
2. The non-residual part of the type system could not assign a proper type to the
sub-expression.

The first reason forces us, for example, to make the sum of a static and a dynamic
variable residual. The second reason would force Ax.x @ x to be annotated Ax.x @
x no matter what the context is, since Ax.x @ x cannot be assigned a type in our
system. Similarly any occurrence of the lambda-notation equivalent of the Y-
combinator in a subject program will be made residual, so to define mix-time
recursive functions we have to use the explicit fixed point operator.

Our favourite subject programs are denotational language definitions. In these the
‘syntactic dispatch’ and the environment lookup operations are usually ‘well-
behaved’ and do not need to be made residual. Consider for example the following
(in which we have again omitted some application operators). It is a syntactically
sugared fragment of a lambda-calculus self-interpreter (and thus also a fragment of
mix):

& = Aexp.hp. case exp of
var(id) : p(id)
app(exp;, exp,) : (& exp, p) @ (& exp, p)
abs(x, exp,): Aval. (& exp, (Aid. ifid = x then val else p(id)))

We assume that the expression exp fed to & is static. Clearly (& exp p) must have the
same type as (& exp, p) (call it #). On the other hand, the application branch of the
case expression demands (& exp p) to have the same type as (& exp, p) @ (€ exp, p),
so the same expression must have type ¢ — t. These demands are incompatible;
consequently (& exp p), the results of the case branches, and the application operator
must be retyped: annotated as residual and so of type code.

The environment p is well-behaved, since the application of p and its updating (in
the abstraction branch) are type consistent. The minimally annotated self-interpreter
thus becomes:

& = Aexp.Ap.case exp of
var(id) : p(id)
app(exp,, exp,): (&€ exp, p) @ (& exp, p)
abs(x, exp,):Aval(€ exp, (Aid. ifid = x then val else p(id))),

where exp has type base, p has type base — code, and & has type base — (base — code)
— code.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 39

But now the reader may be confused: this type seems quite different from the type
& Expression — Env - Val with Env = Var — Val seen in the denotational semantics
of the lambda-calculus of fig. 1. But there is no conflict, just a different viewpoint: the
types used here are for a different purpose than those of the semantics, namely to
identify what can be performed at partial evaluation time.

To explain the type of & in the well-annotated two-level self-interpreter, first recall
that expressions are base values. Second, Val is a sum domain, and the result of
applying & to an expression can be in any summand (or even be the error element),
depending on dynamic program input, which is unavailable .'71{/ partial evaluation
time. The result of evaluation must thus have type code.

3.2 Viewing binding time analysis as type inference
Given an expression exp, a naive exponential time algorithm could generate all well-
annotated completions and pick the best. We would like to do better than that, and
this section sketches ideas for a more efficient BTA. Detailed algorithms are given in
Gomard (1990).

Given a well-annotated expression texp, algorithm W of Damas and Milner (1982)
is able to assign types to texp and its sub-expressions. Given an expression that is not
well-annotated, the algorithm would at some stage fail to unify two type terms and
report an error. Since all such errors can in principle be fixed by annotating some
operators as residual, a good question is which operators it should change.

Algorithm W manipulates type terms that denote types of the sub-expressions of
texp. It appears possible to associate information with each type term about which
of the program’s sub-expressions must have that type. [In Wand (1986) a similar idea
is used to make type inference systems give better error messages.] When a unification
fails the relevant list of sub-expressions is returned. This points out which parts of
texp should be given type code for texp to have a chance of being well-annotated.

In our framework we have three type constructors: — , base, and code. During type
inference we will mark each such constructor with a subscript: a list of occurrences
of sub-expressions of the expression whose type is being inferred. This means that if
the constructor causes a unification to fail, then the sub-expression(s) pointed out by
the occurrence(s) should be made residual.

Example 12
Suppose texp =
ifx x Ay.y

with initial type assumption 1 = [x+> code]. The condition of any non-residual if-
expression must have type base (i.e. boolean), so x must also be a base value. The
unification of code with base fails, and accordingly the conditional must be residual,
so texp is transformed into

itx x Ay.y

and W tries to check the types of this new candidate. This time the unification of the

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

40 C. K. Gomard and N. D. Jones

types of the two branches again fails, since Ay.y has type ¢ — ¢, so accordingly Ay is
made residual. Now texp =
ifx x Ay.y

which is well-annotated. [

Example 13
In the power example the unannotated program is

(fixAap. A" A .if (=n0) const! x@X)@(p@(—N1Y@X))@n@x

with initial type assumption t = [n+ base, x+— code]. This implies expression (fix...)
has type base — code — o, where o, is a type variable. In turn it is found that p must
have type base — code — a,, n” has type base, X" has type code, and that both branches
in the conditional have type a,.

The type of the non-residual (binary) multiplication operator * is base — base.
Since x has type code the type assignment algorithm will fail. This forces * and the
corresponding applications to be residual. In turn const 1 must also be made residual
yielding the well-annotated (and best) completion:

(fixAp. An".AX.if (= n0) constl (x@Xx)@(P@(—n1)@x))@n@x O

It is possible to augment the type representations in the almost linear unification
algorithm of Huet (1976) with type origin information without significant increase in
its running time. Algorithm W scans the program once and makes one unification for
each application and each conditional. In our algorithm, each time algorithm W fails,
at least one operator will be made residual, and algorithm W will be re-applied to the
result. This does not seem prohibitively expensive, especially in light of the fact that
binding time analysis is only performed once : before the static data are available for
specialization. Gomard (1990) contains the details of the algorithm.

What this binding time analysis does is different from the lambda-calculus binding
time analyses described in Nielson and Nielson (1988b) and Schmidt (1988) in that the
base language is not required to be well-typed.

Earlier work in binding time analysis (e.g. Jones et al., 1989) has been based on
abstract interpretation, but it seems to us that the framework of type inference
provides a simple and efficient alternative. This idea of using type inference on
‘typical’ abstract interpretation tasks has also been used in recent work on strictness
analysis (Kuo and Mishra, 1989) where the result was a much more efficient but
sometimes less precise strictness analysis than that done by evaluation over a higher
order abstract strictness domain. In Wadler (1990) a type system is also used to
determine which variables are referenced exactly once; again a typical application
area where abstract interpretation has been used.

3.3 Finiteness of partial evaluation
Mix can ‘go wrong’ in other ways than by committing type errors. Reduction might
proceed infinitely if 4 reduces too often. To avoid this some redexes should be left
in the residual program, and since mix obeys the annotations blindly it is the

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 41

responsibility of the BTA to decide which. Some attention has been paid to this
problem in the literature and it is generally recognized as being difficult to ensure
termination and yet to do non-trivial computation at partial evaluation time.

A variety of BTA algorithms for first-order functional languages have been
published (e.g. Jones et al., 1989; Mogensen, 1988), but they do not ensure
termination. Jones (1988) outlines a BTA algorithm with strong termination
properties for a flow-chart language, but even though the language is simple the
algorithm is not. A further problem with the first-order languages is that it is a too
conservative restriction to demand compositionality : static parameters that become
strictly smaller in every recursive function call. To ensure safe BTA without this
restriction some abstract interpretations are needed.

The higher-order lambda-calculus on the other hand still has significant expressive
power when compositionality is imposed. Let us first note that partial evaluation of
a well-annotated expression without non-residual fix-operators is guaranteed to
terminate. Second, a non-residual fix-expression

fix Af.Ax, ... Ax, . body

defining a function f is safe if for some i, the ith argument has type base and in all
recursive calls to f, that argument is always strictly smaller than x, (according to some
well-founded ordering on the domain of possible argument values). Compositionality
of recursive function definitions is easy to check, and it is always possible to transform
a well-annotated expression not satisfying the criterion into one that does, by simply
making any offending fixed point operators residual. As long as compositional
definitions are used the criterion is strong enough to ensure termination of partial
evaluation without forcing to be residual any fix-operators that safely could have
been annotated as non-residual.

3.4 Code duplication
The following two-level expression texp is well-annotated with t = [y code]

(AX.x+X) @ (y*y)

In the proof of T - texp : code, sub-expression Ax.x + x has type code — code and (y*y)
has type code. Partial evaluation yields (we do not rename y) the residual program

(y*y) + (y*y)

which has the unfortunate feature that the computation (y+y) has been duplicated.
If (y*y) had been computationally heavier or had been contained in a recursive call,
this could have serious impacts on the efficiency of the residual program. To avoid the
code duplication a more conservative annotation of the subject program would
suffice:

(Ax.x+x) @(y*y)

This program is also well-annotated and partial evaluation yields

(Ax.x+x) @ (y*y)

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

42 C. K. Gomard and N. D. Jones

It is always possible to solve the problem by making enough operators residual but
it is clearly desirable not to do this when not strictly necessary.

In the first annotated program Ax.x+x had type code — code, and in the second
Ax.x+x had type code. To avoid code duplication we would have to restrict the
number of references to the formal parameter in functions of type code — t to at most
one. To be sure to preserve termination properties under call-by-value we would have
to insist on exactly one reference.

Quite similar problems are well known from other partial evaluators. In Sestoft
(1988) a method to detect which parts of a program should be made residual to avoid
duplication of function calls is presented. In the Similix project (Bondorf and Danvy,
1989; Bondorf, 1990) a let-expression is inserted whenever there is a risk of
duplication.

4 Experiments with mix

The partial evaluator mix that we have implemented in and for the lambda-calculus
realizes in practice the three Futamura projections mentioned in section 1.3.2. In the
present section we demonstrate this by doing compilation and compiler generation
from mix and from two different language definitions written in the lambda-calculus.
The first example, a self-interpreter for the lambda-calculus, may seem to be only of
academic interest. It serves, however, to demonstrate rigorously that mix can reduce
away all of the computational overhead traditionally associated with interpretation.
Further, it shows that mix can generate a ‘self-compiler’ and a compiler generator
with natural and understandable structure. For a second and less introspective
example, we present a denotational semantics for a small imperative language, Tiny,
and study the structure and performance of the Tiny-to-lambda-calculus compiler
generated from it by mix.

4.1 A self-interpreter
From the Futamura projections it is not at all clear how good residual programs we
can expect mix to produce, and it is not even clear how to measure the quality of
residual programs. We now examine the structure of some mix-generated programs,
and measure the actual run time on the computer of some standard examples.

To get an idea of how much speed-up we can expect partial evaluation to yield,
consider the partial evaluation of a self-interpreter with respect to a known
program p. L mix[sint,p] = r.

By the mix equation L pd = L sint|p, d] = L (L mix[sint, p])d = Lrd, so the programs
p and r should have the same meaning. But what about efficiency?

If we required r to be more efficient than p this would mean that mix was able to
optimize any program written in the lambda-calculus, needing only a self-interpreter
to help. Considering the simplicity of mix, this is asking too much. Introducing a self-
interpreter gives a roughly linear slow-down of the execution speed of p due to the
interpretation overhead. It thus seems unreasonable to expect mix in general to give
more than a linear speed-up, i.e. to remove the interpretation factor. If we can achieve
L mix [sint, p] = p, then all interpretation overhead has been removed.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 43

The self-interpreter we used for the one-level lambda-calculus was a direct
implementation of the semantic rules in fig. 1 without the injections and projections.
The main part of the annotated self-interpreter is in fig. 4; note that we use the
annotation - r instead of underlining, We have not inctuded the lengthy definition of
the initial environment holding all predefined functions.

(£ix (lam sint
(lam exp (lam env
(if (atom? exp)
(env exp)
(((lam head-of-exp (lam tail-of-exp
(it ((eq? head-of-exp) (const const))
(1ift (car tail-of-exp))
(it ((eq? head-of-exp) (const lam))
(lam-r value ((sint (take-body exp))
(lam y (if ((eq? y) (take-var exp))
value
(env ¥)))))
(it ((eq? head-of-exp) (const Q))
(0-r ((sint (car tail-of-exp)) env)
((sint (cadr tail-of-exp)) env))
(if ((eq? head-of-exp) (const if))
(if-r ((sint (car tail-of-exp)) env)
((sint (cadr tail-of-exp)) env)
((sint (caddr tail-of-exp)) env))
(it ((eq? head-of-exp) (const fix))
(fix-r ((sint (car tail-of-exp)) env))
(¢e-r (¢-r error-r exp)
(1ift (const "Wrong syntax"))))))))))
(car exp))

(edr exp)))))))

Fig. 4. Well-annotated lambda-calculus self-interpreter.

4.1.1 ‘Lmix[sint,p] = p’ is important
It turns out that our partial evaluator yields a residual program r structurally equal
to p, the only difference being the variable names. This structural equality happens
only because the self-interpreter does not use indirect representation of values. If the
interpreter had, for instance, used closures to represent functional values, then the
residual program r would have done so too, since r is derived from the interpreter in
a very straightforward way.

For a concrete example, fig. 5 contains two programs, one a hand-written
Fibonacci program, the other result of running mix to specialize the self-interpreter
with respect to the first program.

The absence of the type checks is also necessary to obtain L mix[sint, p] = p since
hardly any of the type checks would be performable at partial evaluation time. Since
mix only operates on well-annotated programs we have complete assurance against
type errors at mix time, but a type check of the residual program would be needed to
ensure absence of run-time type errors. Further, if the interpreter were required to be
strongly typed, then some indirect value representation would be needed, meaning
that mix would not be able to remove a complete layer of interpretation.

In the development phase of a self-applicable partial evaluator, the cited condition
on the result of specializing a self-interpreter often provides a natural and useful

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

44 C. K. Gomard and N. D. Jones

Program p:

(fix (lam fib (lam x
(if ((< x) (const 2))
(const 1)
((+ (£ib ((- x) (comst 1))))
(£ib ((- x) (const 2)))N)))

Program r = L mix [sint, p]:
(fix (lam value-8 (lam value-7
(if ((< value-7) (const 2))
(const 1)

((+ (value-6 ((- value-7) (const 1))))
(value-6 ((- value-7) (comst 2))))))))

Fig. 5. Fibonacci and Fibonacci.

stepping stone in the process of getting self-application to work. To see why, compare
the equations
' L mix[sint,p] = p
L mix [mix, int] = compiler

and recall that mix roughly consists of a self-interpreter augmented with semantic
rules for the residual operators. It has been the experience of several partial
evaluation projects (e.g. Jones et al., 1989) and now this project too, that once a self-
interpreter was properly handled by mix, the first successful compiler generation was
not too far away! (We assume tacitly that binding time analysis is performed.
Without it, there is a long way from the self-interpreter to mix.)

4.1.2 A self-compiler
The result of running L mix [mix, sint] is a ‘self-compiler’, a program that transforms
one lambda-expression into another semantically equivalent expression. The
generated self-compiler is structure preserving as well: the target expressions
generated by the compiler have machine-generated variable names but are otherwise
identical to the source expressions.

Fig. 6 contains the part of the generated compiler that compiles abstractions and
applications. The program is presented as generated by machine, except that the
variable names been changed into some more natural ones. The compiler has a
100 % natural’ recursive descent structure which is a little surprising considering that

(it ((eq? head-of-exp) (const lam))
((lam name
((build-lam name)
((compile (take-body exp))
(lam id (if ((eq? id) (take~var exp))
name
(env id))))))
(new-name (const nil)))
(if ((eq? head-of-exp) (const Q))
((build-app ((compile (car tail-of-exp)) env))
((compile (cadr tail-of-exp)) env))))

Fig. 6. Compilation of abstractions and applications.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 45

it is generated by self-application of a partial evaluator. The compilers generated in
Jones et al. (1989) and Gomard and Jones (1989) can also be read by humans but
their structures are not more than ‘75 % natural’.

It is interesting to compare the compiler’s clause for application with the clause in
the annotated self-interpreter. Where the interpreter has a non-residual operation so
has the compiler, and where the interpreter has a residual operator, @, the compiler
has a call to the corresponding expression building function, build-@. We now show
the compiler fragment from fig. 6 in a syntactically sugared notation, where we use
the ‘syntactic’ operators ‘@’°, ‘A’,...in the meta-language to denote construction of
those operators. Thus build-@ (€[exp,]p, €[exp,]lp) may be written Flexp,lp ‘@’
€lexp,lp.

%[Avar.explp = let nvar = newname in
‘A’ nvar . €lexplp[var nvar]

%lexp, @ exp,lp = Glexp,lp @’ €lexp,lp

4.1.3 A compiler generator
The third Futamura projection states that L mix [mix, mix] yields a compiler generator
cogen. When the compiler generator cogen is applied to an interpreter a compiler is
generated. It holds that

L cogen int = L mix [mix, int]

In section 4.1.2 we looked at the structure of a little piece of the self-compiler, so we
have an idea of what cogen does. The question is now whether it does it in a natural
way, and the answer turns out to be yes.

(if ((eq? head-of-exp) (const @))
((build-app ((cogen (car tail-of-exp)) env))
((cogen (cadr tail-of-exp)) env))
(it ((eq? head-of-exp) (comst @-r))
((build-app
((build-app (const build-app))
((cogen (car tail-of-exp)) env)))
((cogen (cadr tail-of-exp)) env))))

Fig. 7. Application treatment in the compiler generator.

Fig. 7 shows the part of the machine-generated cogen that treats application nodes
in the subject program which is typically an annotated interpreter. A non-residual
application node is treated in a very straightforward manner: an application node to
appear in the compiler is built exactly as in the self-compiler above. In the residual
case the processed branches are not glued together by an application node but by a
call to the function build-@ to appear in the compiler. With the same notational
conventions as in section 4.1.2:

%lexp, @ exp,lp = €lexp,lp ‘@’ €lexp,lp
€lexp, @ exp,lp = ‘build-@’ (¥[exp,}p, €lexp,lp)

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

46 C. K. Gomard and N. D. Jones

4.1.4 Performance

Table 1 shows the run-times of our example programs. All timings are measured in
Sun 3/50 cpu milliseconds using Chez Scheme. The run-times for mix are just for two-
level evaluation; they do not include binding time analysis. The interpretational
overhead in the self-interpreter and the mix program is rather large since all free
variables (input variable and predefined function names) are looked up in the initial
environment, which is a quite large case expression. Mix is able to remove this
interpretational overhead, so the speed-ups gained when mix and the self-interpreter
are partially evaluated are accordingly large (thus perhaps artificially so).

Table 1
Run Run-time Ratio

L sint [fib, 15} = 30400

L target 15 = 987 830} 366
L mix[sint, fib] = 1980 }

L scomp fib = target 604330

L mix [mix, sint] = 55400}

L cogen sint = scomp 1280 f 430

L mix [mix, mix] = 64 600}

L cogen mix = cogen _ 1330/ 486

Table 2 shows the sizes of our example programs. The sizes are measured as the
number of cons cells +the number of atoms in the S-expressions representing the
programs in Chez Scheme. The programs fib and rarget are virtually identical, and the
'size ratio between scomp and sint is quite small since the two programs are very
similar in structure. Some operations in sint have been replaced by the corresponding
code-generating operations. Cogen is similarly a transformed version of mix.

Table 2
Program Size Ratio

fib 101 10
target 10]
sint 2826
scomp 3375
mix 3206
cogen 3811

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 47

4.2 An interpreter for a Tiny imperative language
In this section we give an interpreter for an imperative language, Tiny, with while-
loops and assignments. We give a denotational semantics in lambda-calculus form
and discuss how annotation should be done. The syntax of Tiny-programs is

program:: = var-declaration command
var-declaration:: = variables variable*
command:: = while expression do command|
command; command |

variable: = expression

The semantic functions are given in fig. 8. The semantic functions may easily be
written in lambda-calculus form to be partially evaluated (see appendix D).

Semantic domains
Store = Location — Nat
Environment = Variable — Location

P program — Store — Store
Plvariablesv, ...,v,;cmd] 6,,,, = €lcmd](Zlv,, ..., v,] first-location- G,

D variable* — Location — Environment
Dy, ..., V,lloc = hid.id = v, = loc, D|v,, ..., v,] (next-loc loc) id
D(]loc = Ax.error,,

% : command — Environment — Store — Store

€lc,; c,lpo = €lc,lp (€lc,lpo)
€lvar: =exp] pc = o[p(var)—&exp]po]
#Iwhile expdoclpo = (fixAf. o, . &lexplpo = 0 - o, fi%{c]ps,)) o
& : expression — Environment — Store - Nat
...as usual...

Fig. 8. Tiny semantics.

The resulting lambda-calculus program, a Tiny-interpreter, has two free variables:
the initial store istore and the program to be interpreted. Suppose that a Tiny-
program is given as static data, but istore is unknown. In other words, suppose that

we have the type assumptions
T istore: code

T program: base

We will now informally discuss how to add annotations such that the interpreter
becomes well-annotated according to the rules of fig. 3. The commands and
expressions are all subparts of the static program, and so have type base. The
environment, p, can be computed completely since it does not depend on the store.
It is applied to subparts of the program (variable names) and it returns static
locations. Hence th p: base — base. Since the initial store is of type code all

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

48 C. K. Gomard and N. D. Jones

subsequent stores also have type code. When the semantic function 4 is applied to a
command of type base, an environment of type base — base and a store of type code,
the result is an updated store, also of type code.

The mix-time application of Astore....can result in duplication of store updating
code. To avoid this the Astore....has been annotated Astore...., and the
corresponding applications have accordingly been annotated as residual. BTA could
have classified Astore. ... as non-residual (thus getting type code — code) and still meet
the type checking rules, but to avoid code duplication the classification Astore. ... (of
type code) is a better choice. The type of € (as annotated for partial evaluation) is thus

T €: base — (base — base) — code

(fix (lam ¢
(lam com (lam rho (lam-r store
(if (seq? com)
(¢-r ((c (second-com com)) rho)
(@-r ((c (first-com com)) rho) store))
(it (assign? com)
(@-r (0-r (@-r update-r (rho (take-id com)))
(((e (take-exp com)) rho) store))
store)
(if (while? com)
(e-r (fix-r (lam-r £
(lam-r store
(it-r (@-r (@-r eq?-r (const-r 0))
(((e (take-cond com)) rho) store))
store
(e-r £ (0-r ((c (take-body com)) rho)
store)))) v))
store)
(e-r (@-r error "Illegal command") (lift com))))))))))

Fig. 9. The semantic function C in two-level lambda-calculus.

Fig. 9 shows the function & in its annotated lambda-calculus form. When we apply
the annotated Tiny-interpreter to the following program.

variablesresult x;

result :=1;

b =6;

while x do
result: = resultx;
X =x—1

which computes the factorial of 6, the residual program in fig. 10 is produced. We
have changed some names and omitted (const..) around the integers O and 1 for
readability. Furthermore we have postreduced a few trivial redexes. A redex
(Ax.body) @ arg is trivial if x appears at most once in body.

The store is explicitly passed around as a parameter, but since the program is single-
threaded in the store variables (Schmidt, 1985) these could all be replaced by one
global variable. Such a transformation is called globalization (Sestoft, 1989). With the
store arguments removed the residual program would almost look like (nested)
assembly code.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 49

((fix (lam fac
(lam store-1
(if ((eq? 0) ((access 1) store-1))
store-1
(fac
((lam store-3
(((update 1) ((- ((access 1) store-3)) 1)) store-3))
(((update 0)
((* ((access 0) store-1)) ((access 1) store-1)))
store-1)))))))
(((update 1) 6)
(((update 0) 1)
(const new-store))))

Fig. 10. Factorial residual program.

4.3 An example of compiler generation
When mix is applied to itself and the Tiny-interpreter, a compiler from Tiny to
lambda-calculus is generated. When we examine the structure of the generated
compiling function €, we notice a strong resemblance with that of the semantic
function %. Those operators annotated as residual in fig. 9 have been replaced by the
corresponding code-generating actions.

To emphasize the structural similarities we have changed the machine-generated
names into names close to those of 4. Fig. 12 contains the part that compiles
commands as generated by machine. Fig. 11 contains a part of the generated
compiling function €, syntactically sugared. As in section 4.1.2, we use for brevity the
syntax-font in citation marks: ‘@"’, “A’,...instead of writing build- @, build-\,... To
reduce the number of quotes we write ‘if = @ 0’ instead of quoting all constructors
in the term. A comparison of figs. 8 and 11 shows that in the generated compiler the
run-time (residual) actions of the interpreter have been replaced by code-building
operations.

%.lc,.c,lp = let nn, = new-name in
¢.lc.lp @’ (%.lc,lp* @’ nny)
€ lvar: = exp]p = let nn, = new-namein
‘update’ @’ p(van) ‘@’ (& fexplpnn,) ‘@’ nn,
% [Iwhile exp c]p = let nn, = new-name
nn, = new-name
nn, = new-namein
(‘fix’‘Nnng,. ‘N an,. if= @0 @’ (&, [explp nn,)
nn,

nny ‘@’ (€.[clp @’ nny)) @’ niny
Fig. 11. C, Syntactically sugared.

4.3.1 Performance
Table 3 shows the run-times of our example programs. In the following, fac denotes
the factorial program written in Tiny, target denotes the factorial residual program
(fig. 10), tiny denotes the Tiny-interpreter, comp denoteés the generated Tiny-compiler.
All the timings are measured in Sun 3/50 cpu milliseconds using Chez Scheme.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

50 C. K. Gomard and N. D. Jones

(tix (Qam ¢
(lam com (lam rho
((lam new-namei
((build-lam new-nameil)
(if (seq? com)
((build-app ((c (second-com com)) rho))
((build-app ((c (first-com com)) rho))
new-namel))
(it (assign? com)
((build-app
((build-app
((build-app (const update))
(rho (take-id com))))
(((e (take-ass-exp com)) rho) new-namel)))
new-namei)
(it (while? com)
((build-app (build-fix
((1am new-name2
((build-lam new-name2)
((lam new-name3
((build-lam new-name3)
(((build-it
((build-app
((build-app (const eq?))
(build-const (const 0))))
(((e (take-cond-exp com)) rho)
new-name3)))
new-name3)
({build-app new-name2)
((build-app
((c (take-while-body com)) rho))
new-name3)))))
(new-name (const nil)))))
(nev-name (const nil)))))
new-namel)
((build-app ((build-app error)
(error "Illegal command"))) com))))))
(new-name (const store)))))))

Fig. 12. The generated compiling function ¥,.

Table 3
Run Run-time Ratio
L tiny [fac,6] = 70} 70
L target 6 = 720 10
L mix [tiny, fac] = 700 } 350
L comp fac = target 20
L mix{mix, tiny] = 17 600}46-3
L cogen tiny = comp 380
L mix[mix,mix] = 64600} 486
L cogen mix = cogen 1330

Table 4 shows the sizes of our example programs. The sizes are measured as the
number of cons cells+the number of atoms in the S-expressions representing the
programs in Chez Scheme.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Fartial evaluator for the untyped lambda-calculus 51

Table 4
Program Size Ratio
Jfac 71 } 31
target 221
tiny 743} 13
comp 927
mix 3206} 15
cogen 3811

From tables 3 and 4 (and tables 1 and 2 in section 4.1.4) we see that in the case where
mix performs a compilation from Tiny to lambda-calculus the size ratio is significantly
larger and the speed-up smaller than in all other cases. In the case of self-compilation
there is a canonical target program — which our methods produce—but this is
generally not the case for other compilation tasks. When programs written in
arbitrary programming languages are translated into lambda-calculus it is not clear
(nor always true) that the target program derived from the source and an interpreter
in the straightforward way is the best. Therefore to get really good results some post-
processing, like globalization of parameters, is likely to be needed. Alternatively, the
interpreters can be written with explicit attention to the fact that they will be partially
evaluated. This, however, requires good insight into the partial evaluation algorithm.

5 Perspectives and conclusions

5.1 Related work
The present work overlaps with two areas: partial evaluation (and its recent
offspring: BTA) that has emphasized automatic program optimization and
transformation; and semantics-directed compiler generation, whose main goal has
been to take as input a denotational semantics definition of a programming language,
and to obtain automatically a compiler that efficiently implements the defined
language.

5.1.1 Partial evaluation

Early work in partial evaluation viewed partial evaluation as an optimizing phase in
a compiler (constant folding), as a device for incremental computations (Lombardi,
1967), or as a method to transform-imperative Lisp programs (Beckman et al., 1976).
The latter system was able to handle FUNARGS, but it was not self-applicable (although
the Redcompile program amounts to a hand-written version of cogen). Later work
aimed to partially evaluate higher-order and imperative Scheme programs (Schooler,
1984 ; Guzowski, 1988), but did not achieve self-application. Ershov and Itkin (1977)
have proved correctness of a partial evaluation scheme for a flow-chart language, but
the scheme did not allow transfer of static information across dynamic conditionals.
In Hansen and Traff (1989) an evaluation strategy that involves specialization of first-
order functions is proved correct.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

52 C. K. Gomard and N. D. Jones

The potential of self-application was realized independently in Japan and the
Soviet Union (Futamura, 1971; Turchin, 1980; Ershov, 1978) in the early seventies
and experiments were made without conclusive results. The first non-trivial self-
application was realized in 1984 (Jones et al., 1985, 1989) for first-order recursive
equations. Since then several other self-applicable systems have been developed
(Bondorf, 1989, for programs in the form of term-rewriting systems; Gomard and
Jones, 1989, for a simple imperative language ; Fuller and Abramsky, 1988, for Prolog;
Romanenko, 1988, for a subset of Turchin’s Refal language; Consel, 1988, and
Bondorf and Danvy, 1989, for stronger systems handling first-order Scheme
programs).

These systems are reasonably efficient for first-order languages, the generated
compilers were typically between 3 and 10 times faster than compiling by partial
evaluation of an interpreter.

Recent work by Bondorf (1990) extends that of Bondorf and Danvy (1989). The
result is a self-applicable partial evaluator for a higher-order subset of Scheme where
user-named functions are specialized with respect to higher-order values. This ability
makes Bondorf and Danvy’s system more powerful than ours, the price being that it
is far more complicated. The system begins with a BTA that uses a closure analysis
along the lines of Sestoft (1989), prior to a traditional abstract interpretation based
binding time analysis. The closure analysis yields control flow information that is
used to determine which program parts must be dynamic as a consequence of
something else being dynamic. Several other static program analyses are performed,
for example to detect and avoid code duplication. This abstract interpretation based
approach provides an alternative to the one proposed by us in section 3.2: to annotate
type terms with some program point information.

The resulting system is surely of more practical utility than ours, especially in a
Scheme context. In contrast our system uses the classical lambda-calculus, and in our
opinion illustrates a fundamental principle: that correctness of binding time
annotations is well viewed as type correctness, and that BTA can be done by type
inference. Further, we have constructed a complete correctness proof.

5.1.2 Binding time analysis

Some basic ideas saw the light of day in Jones and Muchnick (1978) but binding time
analysis was not recognized as a central concept before the explicit use of binding time
information in Jones et al. (1985) gave a breakthrough in practice. Since then binding
time analysis has become a main ingredient in all self-applicable partial evaluation
systems, and it has become a research area on its own. The reasons why binding time
analysis is essential for efficient self-application are detailed in Bondorf et al. (1988).

The Nielsons have written several interesting papers on binding time analysis of a
typed lambda-calculus (e.g. Nielson and Nielson, 1988b). They introduce a well-
formedness criterion for typed two-level lambda-expression. In their approach it is
necessary for x to be of run-time kind for Ax.body to be well-formed. This is parallel
to our demand that x must have type code. Similarly, it is necessary for x to be of
compile-time kind for Ax.body to be well-formed. Their run-time type system is not
‘flat’ as is our code, but has function types, products, etc. In their framework there

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 53

is no construct like our lift, which to us seems necessary in practice, for example to
write an interpreter suited for partial evaluation. As we saw in section 2.5.1, the
presence of lift complicates the notion of best completion and calls for more work.
In Mogensen (1989) a binding time analysis for polymorphically typed higher-
order languages is devised. In contrast with Nielson and Nielson (1988b) (and us),
Mogensen uses an abstract closure consisting of the function name and the binding
times for the free variables to describe the binding time of a function. Neither
Mogensen (1989) nor Nielson and Nielson (1988b) develop a partial evaluator.

5.1.3 Semantics-directed compiler generation

The pathbreaking work in this field was SIS: the Semantics Implementation System
of Mosses (1979). SIS implements a pure version of the untyped lambda-calculus
using the call-by-need reduction strategy. Compiling from a denotational semantics
is done by translating the definition into a lambda-expression, applying the result to
the source program, and simplifying the result by reducing wherever possible. This is
clearly a form of partial evaluation. SIS has a powerful notation for writing
definitions, but it is unfortunately extremely slow, and is prone to infinite loops when
using, for example, recursively defined environments. In our opinion this is because
the reduction strategy is ‘on-line’, and the problem could be eliminated by
annotations such as we have used. (Choosing annotations to avoid non-termination
and code duplication is admittedly a challenging problem, but we feel it is one that
should be solved before doing partial evaluation rather than during it.)

Systems based on the pure (typed) lambda-calculus include Paulson (1982), Weis
(1987) and Nielson and Nielson (1988a). The first uses partial evaluation at compile
time. It is considerably faster at compile time than SIS, but still very slow at run time.
Weis’s system (1987) is probably the fastest in this category that has been used on
large language definitions. In the Nielsons’ work so far, the greatest emphasis has been
on correctness rather than efficient running systems.

Systems by Pleban (1984) and Appel (1985) achieve greater run-time efficiency at
the expense of less pure semantic languages — one for each language definition in the
former case, and a lambda-calculus variant with special treatment of environments
and stores in the latter. Finally Wand’s methodology is very powerful (Wand 1982,
1984), but it seems to require so much cleverness from the user that it is not clear how
it may be automated.

The main strength of our system is that is simple enough to be understood and
proven correct and yet able to perform non-trivial compilation and compiler
generation. The main weakness of our system seems to be that there is still a long
way to the generation of ‘real’ compilers, e.g. generating target code nearer to
machine level, and applying the many forms of analysis and optimization seen in
hand-written compilers. We think that we have a clear understanding of basic
principles for compiler generation by partial evaluation, but to get past the toy level
some hard work remains.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

54 C. K. Gomard and N. D. Jones

5.2 Future work
5.2.1 Target code quality
All target programs generated by our system are written in the lambda-calculus and
though lambda-calculus can be implemented quite efficiently, this is a source of
inefficiency since it is far from traditional machine architectures. One possibility is to
apply relevant optimizing transformations to the lambda-calculus target programs,
such as globalization of Schmidt (1985) and Sestoft (1989), detection of tail recursion
etc., and to compile the target program into machine code.

To avoid this two-pass style the machine code can be generated during partial
evaluation as in Holst (1988). In our framework the idea is to redefine the functions
build-\, build-@, ...such that they construct a piece of machine code instead of a
lambda-expression. One might define, for example, that build-if(c,,c,,c;) =

51
jump-null? labell:
Cy
jump label2;
labell; ¢,
label2;

A problem with this approach is that it is not (immediately) possible to apply
transformations that require global analysis of the target program. An interesting
idea (Schmidt, 1988) is to examine the subject program for useful properties before
partial evaluation, and let the partial evaluation phase use these properties to
generate better code. A natural candidate for such an analysis is the detection of
single-threaded variables in a language definition. In Bondorf and Danvy (1989) a
partial evaluator that can handle the presence of global variables is described.

5.2.2 Specialization of named combinators

The fundamental concept in most partial evaluators, and one which we do not use in
any explicit way, is that of program point specialization. The idea is that if, say, a
binary function f xy = body at partial evaluation time is seen to be called with a static
first argument (say 2) and a dynamic second argument, then a function f,y =
optimized-body is added to the residual program. We call f a program point (in an
imperative language a program point is a label), and we call the pair (f, 2) a specialized
program point. A partial evaluator often uses two sets pending and out to keep track
of the specialized program points for which code must be or has been generated.

Program point specialization has some advantages over our approach: code need
only be generated once for each specialized program point and it is thus easier to
control code duplication. Some applications of partial evaluation rely heavily on
sharing specialized functions in the residual program (Consel and Danvy, 1989), but
we have seen that compilation and compiler generation can be done non-trivially
without this sharing.

A larger class of programs can be partially evaluated non-trivially (see example 14).
There are also some disadvantages: the partial evaluator becomes more complicated,

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 55

termination problems get harder, and since the two sets pending and out inevitably are
dynamic the results of self-application are not as nice as the ones we get.

Example 14
Consider Ackermann’s function

ackOn =n+1
ackmO =ack(m—1)1
ackmn =ack (m—1) (ackm(n—1))

and suppose that m is known to have the value 2. With specialization of named
functions we can get the following residual program (about twice as fast as the

original):
ack,0 =2
ack, n = (ack, (n—1)) +1
ack,0=3

ack, n = ack, (ack, (n—1)).

The introduction of specialized named functions, ack, and ack,, is crucial to the
quality of the residual program. Without program point specialization no
optimization would have occurred, since a residual fix can only define one function
at a time, and three were used above. [

5.2.3 Applications of BTA
The job of the BTA is to replace just enough of the program’s operators with their
residual counterparts so the non-residual program parts are well-typed. We now
discuss some possible applications of such a BTA algorithm that have nothing to do
with partial evaluation.

If a BTA algorithm was applied to a well-typed program with no free variables of
type code, the result would be that of ordinary monomorphic type checking, namely
a message of acceptance together with the program’s type. If the BTA accepted a
program to be (normally) executed without adding any annotations, it would mean
that all type checks during evaluation could safely be omitted. This is the motivation
for having strongly typed languages.

Untyped languages like Scheme are compiled to machine code that has type checks
at run-time, though many of the type checks could easily be seen in advance always
to succeed. For example, when an interpreter is run, it is clear that the syntactic
dispatch will never make a type error as long as the input is atomic, and the
environment lookup can also be seen to succeed. If BTA was applied to such an
interpreter, some operators would be made residual (see section 3.1). For some of
these operators type checking code should be generated, but no such code is needed
for the rest. We suspect this could yield some speed-up since Lisp and Scheme
programs often make limited use of untyped features, which are of course enough to
make a traditional type checker fail.

A BTA algorithm could also be used instead of a traditional type checker to allow
better type error messages to be given. Consider the interpreter from section 3.1,

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

56 C. K. Gomard and N. D. Jones

which would not pass a traditional type checker without annotations. We believe that
seeing the well-annotated interpreter text:

& = Aexp.Ap.case exp of
var(id) :p(id)
app(exp,, exp,) : (£ exp, p) @ (£ exp, p)
abs(x,exp,) :Aval.(£exp, (Aid.ifid = xthen val else p(id)))

together with the information that exp has type base, p has type base — code, and &
has type base — (base — code) — code, is much more useful to the user than the
traditional error message: ‘failed to unify...” followed by two type terms.

5.3 Conclusion

We have solved the open problem of developing and implementing a self-applicable
partial evaluator for a higher-order language (and so has Bondorf, 1990). As
programming language, we used an untyped lambda-calculus with a fixed point
operator and an explicit conditional. The solution turned out to be surprisingly
simple and one reason for this is that we found it unnecessary to specialize program
points to obtain non-trivial results. The main area of application of our methods is
the automatic transformation of interpretive language specifications into compilers.
From denotational definitions of small languages our partial evaluator can generator
compilers with a very natural structure — they look almost ‘hand-written’.

As in other successful partial evaluation projects we use annotations added in a
prephase to guide partial evaluation. We introduced the concept of well-
annotatedness by means of a type system to ensure that the partial evaluator does not
commit errors during partial evaluation. This approach also gives a new approach to
the problem of ensuring finiteness of partial evaluation. Ideas for a binding time
analysis have been discussed, and an implementation are described in Gomard (1990).

We tried the partial evaluator on two small language definitions and investigated
the structure of the generated compilers. The compilers, as well as the generated
compiler generator, were found to be readable — if the machine-generated names are
manually changed!

Gomard (1989) contains a detailed proof of a central theorem: the correctness of
partial evaluation. This theorem guarantees that compilers generated from a language
definition will always be faithful to the programming language semantics. It also
contains a proof that there is a unique ‘best’ way to annotate a given program
(without lifts).

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus

Appendices

A A mix session

> (define (fix f) (lambda (a) ((f (fix f)) a)))
fix

> (define L-interpreter-in-Scheme ; Scheme code implementing L
(fix (lambda (e)
(lambda (exp)
(lambda (env)
(it (atom? exp)
(env exp)
(((lambda (head-exp)
(lambda (tail-exp)
(if ((eq? head-exp) ’const)
(car tail-exp)
(if ((eq? head-exp) ’lam)
(lambda (value)
((e (take-body exp))
(lambda (y)
(it ((eq? y) (take-var exp))
value
(env ¥)))))
(it ...
L-interpreter-in-Scheme

> (define L
(lambda (pgm di d2)
((L-interpreter-in-Scheme pgm)
(lambda (id)
(it (eq? id ’x1)
d1
(it (eq? id ’x2)
d2
(initial-env id)))))))

; Scheme code implementing L.
pgm iz expected to have two free
variables, x1 and x2.

; the standard initial environment
is extended with the bindings
; [xt -> d2, x2 -> 42]

L

> (define power
(@ (¢ (fix (lam p (lam n (lam x
(it (@ (@ eq? n) (const 0))
(const 1)
(@ (0 * x)
(¢ (¢ p (@ (@ - n) (const 1))) x))IN))

; power computes x2 to the xi’st (L code)

x1) x2))
power

> (L power (const 2) (const 3))

g
> (define E ’(fix (lam E (lam exp (lam env ; core of the self-interpreter for L
(it (@ atom? exp)
(¢ env exp)

(¢ (@ (lam head-exp (lam tail-exp
(it (@ (@ eq? head-exp) (const const))
(¢ car tail-exp)
(it (@ (® eq? head-exp) (const lam))
(lam value (@ (@ E (@ take-body exp))
(lam y (if (@ (€ eq? y)
(¢ take-var exp))
value
(@ env y)))))
(it (@ (@ eq? head-exp) (const Q))
(0 (¢ (@ E (¢ car tail-exp)) env)

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

58 C. K. Gomard and N. D. Jones

(@ (@ E (@ cadr tail-exp)) env))
(if (@ (@ eq? head-exp) (const if))
(if (@ (@ E (@ car tail-exp)) env)
(@ (@ E (@ cadr tail-exp)) env)
(¢ (0 E (@ caddr tail-exp)) env))
(if (@ (@ eq? head-exp) (const fix))
(fix (@ (@ E (@ car tail-exp)) env))
(@ (@ error exp) {(const "Wrong syntax"))
MMM
(@ car exp))
(@ cdr exp))))N))
E
; x1 must be bound to a binary L-pro-
> (define self-int ‘(¢ (¢ ,E x1) ; gram, x2 to a pair (di, d2) of the
(lam id ; input to program xi
(if (@ (0@ eq? id) (const x1))
(@ car x2) .
(it (@ (@ eq? id) (const x2))
(@ cdr x2)
(@ ,i-env-txt id))))))
self-int

> (L self-int power (cons (const 2) (const 3)))

9
> (define T ’(fix (lam T (lam exp (lam env ; evaluator for 2-level L
(if (0 atom? exp)
(@ env exp)
(¢ (@ (lam head-exp (lam tail-exp
(if (@ (@ eq? head-exp) (const const))
(@ car tail-exp)
(if (@ (@ eq? head-exp) (const const-r))
(0 build-const (@ car tail-exp))
(if (@ (@ eq? head-exp) (const lam))
(lam value (@ (¢ T (@ take-body exp))
(Qam y (if (¢ (@ eq? y)
(@ take-var exp))
value
(¢ env Y)))))
(if (@ (@ eq? head-exp) (const lam-r))
(¢ (lam par
(@ (¢ build-lam par)
(¢ (@ T (@ cadr tail—exp))
(lam x
T
; mix takes two arguments x1 & x2. x1 is a
; binary L-program and x2 is the first input
; to x1. Thus x1 is T-evaluated with its first
; free variable (also named x1!) bound to input
> (define mix ‘(@ (@ ,T xi) ; x2, and its second variable (named x2) bound
(lam id ; to its own name.
(if (@ (@ eq? id) (comst x1))
x2
(it (@ (@ eq? id) (comst x2))
(const x2) ; x2 is bound to the varible
(@ ,i~env-txt id)))))) ; name x2. The residual program
mix ; thus has free variable, x2.

> (define power-ann
(¢ (@ (fix (lam p (lam n (lam x
(it (@ (@ eq? n) (const 0))
(const 1)
(¢-r (0-r *-r x)
(¢ (@ p (@ (@ - n) (const 1))) x)))))))

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus

x1) x2))
power-ann

> (L mix power—ann (const 2))
(e (¢ = x2) (0 (@ * x2) 1))
; the definition of E-anm is
> (define self-int-ann ‘(@ (@ ,E-ann x1) ; not in this session. (Essen-
(lam id ; tially a subset of T-ann.)
(it (0 (¢ eq? id) (const x1))
(e-r car-r x2)
(if (@ (@ eq? id) (const x2))
(¢-r cdr-r x2)
(@ ,i-env-ann id))))))
self-int-ann

> (define power-target (L mix sint-ann power))
power-target

> power-target
(@ (¢ (fix (lam value-001
(lam value-002
(lam value-003
(if (@ (@ eq? value-002) (const 0))
(const 1)
(@ (@ * value-003)
(@ (@ value-001
(@ (¢ - value-002) (const 1)))
value-003)))))))
(@ car x2))
(@ cdr x2))

; The residual program of the self-interpreter, power-target, has one free
; variable x2. This variable should be bound to the pair of input values
; (d1, d2) to the program power.

> (L power-target ’'dummy (cons (const 2) (comst 3)))
9
> (define T-ann ’(fix (lam mix (lam exp (lam env ; Full listing in appendix B
(if (@ atom? exp)
(@ env exp)
(@ (¢ (lam head-exp (lam tail-exp
(if (@ (@ eq? head-exp) (const const))
(@ lift (@ car tail-exp))
(if

T-ann

> (define mix-ann ‘(@ (@ ,T-ann x1)
(1am id
(it (0 (0 eq? id) (const x1))
x2
(it (@ (@ eq? id) (const x2))
(const-r x2)

(@ ,i-env-ann id))))))

mix-ann

> (define self-compiler (L mix mix-ann sint-ann))
self-compiler

; The self-compiler has one free variable, x2. The program to compile is
; bound to this variable.

> (define power-targeti (L self-compiler ’dummy power))
power-targeti

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

59

https://doi.org/10.1017/S0956796800000058

60 C. K. Gomard and N. D. Jones

> (equal? power-target power-targeti)
#t

> (define cogen (L mix mix-ann mix-ann))
cogen

> (detine self-compileri (L cogen ’dummy sint-ann))
self-compileri

> (equal? self-compiler self-compileri)
#t

>

B T annotated

(tix (lam T
(lam exp (lam env
(if (atom? exp)
(env exp)
(((lam head-exp (lam tail-exp
(it ((eq? head-exp) (const comnst))
(1ift (car tail-exp))
(if ((eq? head-exp) (const const-r))
(@-r build-const-r (lift (car tail-exp)))
(if ((eq? head-exp) (const lam))
(lam-r value ((T (take-body exp))
(lam y (if ((eq? y)
(take-var exp))
value
(env y)))))
(if ((eq? head-exp) (const lam-r))
(¢-r (lam-r par
(¢-r (@-r build-lam-r par)
((T (cadr tail-exp))
(lam x
(it ((eq? x)
(car tail-exp))
par
(env x))))))
(@-r new-name-r (const-r nil)))
(if ((eq? head-exp) (const 0))
(@-r ((T (car tail-exp)) env)
((T (cadr tail-exp)) env))
(if ((eq? head-exp) (const @-r))
(¢-r (Q-r build-app-r ((T (car tail-exp)) env))
((T (cadr tail-exp)) env))
(if ((eq? head-exp) (const if))
(if-r ((T (car tail-exp)) env)
((T (cadr tail-exp)) env)
((T (caddr tail-exp)) env))
(if ((eq? head-exp) (comst if-r))
(e-r (@-r (@-r build-if-r
((T (car tail-exp)) env))
((T (cadr tail-exp)) env))
((T (caddr tail-exp)) env))
(it ((eq? head-exp) (const fix))
(fix-r ((T (car tail-exp)) env))
(if ((eq? head-exp) (const fix-r))
(0-r build-fix-r ((T (car tail-exp)) env))
(@-r (@-r error-r exp)
(const-r "Wrong syntax"))
NI
(car exp))

(cdr exp)))))))

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 61

C The generated self-compiler

Below is a printing of the self-compiler. We have done very little editing as you can see,
the only major thing was to remove most of the endless case-analysis of predefined
functions. The compiler takes its input through the free variable x2.

(((fix (lam v-33 (lam v-34 (lam v-35
(if (atom? v-34)
(v-35 v-34)
(((lam v-36
(lam v-37
(it ((eq? v-368) (const const))
(1ift (car v-37))
(if ((eq? v-36)
(const lam))
((lam par-38
((build-lam par-38)
((v-33 (take-body v-34))
(lam v-39
(it ((eq? v-39)
(take-var v-34))
par-38
. (v-35 v-39))))))
(new-name (const nil)))
(it ((eq? v-36) (const 0))
((build-app
((v-33 (car v-37)) v-35))
((v-33 (cadr v-37)) v-35))
(it ((eq? v-38) (const if))
(((build-if
((v-33 (car v-37)) v-3B))
((v-33 (cadr v-37)) v-35))
((v-33 (caddr v-37)) v-35))
(it ((eq? v-36) (comst fix))
(build-fix
((v-33 (car v-37)) v-35))
((build-app ’
((build-app (const error)) v-34))
(const-r "Wrong syntax")))))))))
(car v-34))
(cdr v-34)))))))
x2)
(lam v-32
(if ((eq? v-32) (const assoc))
(const assoc)
(it ((eq? v-32) (const atom?))
(const atom?)
(if ((eq? v-32) (const car))
(const car)
(it ((eq? v-32) (const cdr))
(const cdr)
(it ((eq? v-32) (const cadr))
(const cadr)
(if ((eq? v-32) (const caddr))
(const caddr)
(it ((eq? v-32) (const cons))
(const cons)
(it ((eq? v-32)
(const eq?))
(const eq?)
(it ((eq? v-32)
(const build-lam))
(const build-lam)

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

62 C. K. Gomard and N. D. Jones

(it ((eq? v-32)
(const build-app))
(it

and so on ad nauseam . . . (539 lines more).

D The generated compiler generator

Below is the printing of the generated compiler generator. We have done very little
editing (as you can see), the only major thing being that we have removed most of the

endless case-analysis of predefined functions. The compiler generator takes its input
through the free variable x2.

(((fix
(lam v-165 (lam v-166 (lam v-167
(if (atom? v-166)
(v-167 v-168)
(((lam v-168
(lam v-169
(if ((eq? v-168) (const const))
(1ift (car v-169))
(it ((eq? v-168) (const const-r))
((build-app (const build-const))
(1ift (car v-169)))
(it ((eq? v-168)
(const lam))
((lam par-172
((build-lam par-172)
((v-185 (take-bady v-166))
(lam v-173 i
(it ((eq? v-173)
(take-var v-166))
par-172
(v-187 v-173))))))
(new-name (const nil)))
(if ((eq? v-168) (const lam-r))
((vuild-app
((lam par-170
((build-lam par-170)
((build-app
((build-app
(const build-lam))
par-170))
((v~165
(cadr v-169))
(lam v-171
(if ((eq? v-171)
(car v-169))
par-170
(v-167 v=171)))))))
(new-name (const nil))))
((build-app (const new-name))
(build-const nil)))
(if ((eq? v-168)
(const 0))
((build-app
((v-185 (car v-169)) v-167))
((v~-165 (cadr v-169)) v-167))
(it ((eq? v-168) (const @-r))
((build-app

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus

((build-app (const build-app))
((v-165 (car v-169)) v-167)))
((v-165 (cadr v-169)) v-167))
(if ((eq? v-168) (const if))
(((build-it ((v-165 (car v-169))
v-167))
({v-165 (cadr v-169)) v-167))
((v-165 (caddr v-169)) v-167))
(it ((eq? v-168) (constif-r))
((build-app
((build-app
((build-app
(const build—if))
((v-185 (car v-169))
v-167)))
((v-165 (cadr v-169))
v-167)))
((v-165 (caddrv-169))
v-167))
(it ((eq? v-168) (const fix))
(build-tix
((v-165 (car v-169)) v-167))
(if ((eq? v-168) (comnst fix-r))
((build-app
(const build-fix))
((v-165 (car v-169)) v-167))
((build-app
((build-app (const error))
v-166))
(const-r "Wrong syntax”)))))))))))))
(car v-168))
(cdr v-166)))))))
x2)
(lam v-164
(it ((eq? v-164) (const assoc))
(const assoc)
(if ((eq? v-164) (const atom?))
(const atom?)
(if ((eq? v-164) (const car))
(const car) .
(if ((eq? v-164) (const cdr))
(const cdr)
(if ((eq? v-164) (const cadr))
(const cadr)
(if ((eq? v-164) (const caddr))
(const caddr)
(it ...

and so on ad nauseam . . . (538 lines more).

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

63

https://doi.org/10.1017/S0956796800000058

64 C. K. Gomard and N. D. Jones

E Tiny interpreter

Below is the listing of the annutatated Tiny interpreter that we have used to compile and
generate compilers.

(lam program
((lam e ((lam d ((lam ¢
((lam var-decl
((lam statement-part
((lam var-env
(e-r ((c statement-part) var-—env)
(const-r new-store)))
((d (cdr var-decl)) (comst 0))))
(take-statement—part program)))
(take-var-decl program)))

(fix (lam ¢ (lam com (lam var-env (lam-r store
(if (seq? com)
(e-r ((c (second-com com)) var-env)
(e-r ((c (first-com com)) var-env) store))
(if (assign? com)
(¢-r (¢-r (@-r update-r
(var-env (take-id com)))
(((e (take-ass-exp com)) var-env) store))
store)
(it (while? com)
(e-r (fix-r (lam-r £
(lam-r store
(ift~-r (0-r (@-r eq?-r
(const-r 0))
(((e (take-cond-exp

com))
var-env)
store))
store
(e-r ¢t (e-r
((c

(take-while~body com))
var-env)
store)))))) store)
(@-r (¢-T error "Illegal command") com)))))))))))

(fix (lam d (lam var-list (lam location
(if (null? var-list)
(lam x (const no-location))
(lam y
(if ((eq? y) (car var-list))
location
(((a (cdr var-list)) (1+ location)) ¥))))))))))

(fix (lam e (lam exp (lam var-env (lam store
(if (number? exp)
exp
(if (is-var? exp)
. (@-r (0-r (const-r access) (var-env exp)) store)
(e-r (0-r ((lam id (if ((eq? id) (const *))
*-r
(it ((eq? id) (const -))
--r
error-r)))
(op-name exp))
(((e (argl exp)) var-env) store))
(((e (arg2 exp)) var-env) store)))))))))))

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus

F The generated tiny compiler
Below is a listing of the generated Tiny-to-lambda-calculus compiler.

(lam v-62
((lam v-68
((lam v-74
((lam v-81
((1am v-82
((lam v-83
((1am v-84
(((v-81
v-83)
v-84)
(build-const
(const
new-store))))
((v-74
(cdr v-82))

(const 0))))
(take-statement-part v-62)))
(take-var-decl v-62)))

(fix (lam v-756 (lam v-76 (lam v-77 (lam v-78
(if (seq? v-76)
(((v-75 (second-com v-76)) v-7T7)
(((v-756 (first-com v-76)) v-77) v-78))
(if (assign? v-76)
((build-app
((build-app
((build-app (conmst update))
(v-77 (take-id v-76))))
(((v-68 (take-ass-exp v-768)) v-77)
v-78)))
v-78)
(if (while? v-76)
((build-app (build-fix
((lam par-79
((build-lam par-79)
((lam par-80
((build-lam par-80)
(((build-if
((build-app
((build-app (const eq?))
(build-const (const 0))))
(((v-68 (take-cond-exp v-76))
v=-77)
par-80)))
par-80)
((build-app par-79)
(((v-75 (take-while-body v-76))
v-77)
par-80)))))
(new-name (const nil)))))
(nev-name (const nil)))))
v-78)
((build-app
((build-app error)
(error "Illegal command"))) v-76)))))))))))

(fix (lam v-69 (lam v-70 (lam v-71
(if (null? v-70)
(lam v-73 (const no-location))
(lam v-72

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

FPR 1

65

https://doi.org/10.1017/S0956796800000058

66 C. K. Gomard and N. D. Jones

(if ((eq? v-72) (car v-70))
v-71
(((v-69 (cdr v-70))
(1+ v-71))
v=72))))0))))

(fix (lam v-63 (lam v-64 (lam v-65 (lam v-66
(if (number? v-64)
(lift v-64)
(if (is-var? v-64)
((build-app
((build-app (const access))
(lift (v-65 v-64))))
v-66)
((build-app
((build-app
((lam v-67
(if ((eq? v-67) (const *))
(const mult)
(if ((eq? v-87) (comst -))
(const minus)
(const error))))
(op-name v-64)))
(((v-63 (argi v-64)) v-65) v-66)))
(((v-63 (arg2 v-64)) v-65) v-66)))))))))))

Acknowledgements

The goal of partially evaluating lambda-expressions has been in the minds of the
programming language theory group at DIKU since the first successes with first-
order languages in 1984. Recent insights grew from numerous discussions in this
group, including in particular Anders Bondorf, Olivier Danvy and Torben Mogensen,
as well as Carsten Kehler Holst, Thomas Jensen and Peter Sestoft. We also thank the
guests and other acquaintances of the group that have stimulated the work by
showing their interest (John Hughes, John Launchbury, Carolyn Talcott, Phil Wadler
and many others).
Miranda is a trademark of Research Software Ltd.

References

Appel, A. 1985. Semantics-directed code generation. In /2th ACM Symposium on Principle of
Programming Languages, pp. 315-24.

Beckman, L. et al. 1976. A partial evaluator, and its use as a programming tool. Artificial
Intelligence 7 (4): 319-57.

Bondorf, A. 1989. A self-applicable partial evaluator for term rewriting systems. In J. Diaz and
F. Orejas (editors), TAPSOFT °90. Proc. Int. Conf. Theory and Practice of Software
Development, Barcelona, Spain, March 1989. Lecture Notes in Computer Science, 352,
pp. 81-95. Springer-Verlag.

Bondorf, A. 1990. Automatic autoprojection of higher order recursive equations. In N. Jones
(editor), ESOP 90, Third European Symposium on Programming, Copenhagen, Denmark.
Lecture Notes in Computer Science, 432. Springer-Verlag.

Bondorf, A. and Danvy, O. 1989. Automatic autoprojection for recursive equations with
global variables and abstract data types, 1989. (Submitted for publication).

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 67

Bondorf, A., Jones, N. D., Mogensen, T. and Sestoft, P. 1988. Binding Time Analysis and the
Taming of Self-Application. Draft, 18 pages, DIKU, University of Copenhagen, Denmark
(August).

Consel, C. 1988. New insights into partial evaluation : the Schism Experiment. In H. Gonzinger
(editor), ESOP 88, 2nd European Symposium on Programming, Nancy, France, March 1988.
Lecture Notes in Computer Science, 300, pp. 236-46. Springer-Verlag.

Consel, C. and Danvy, O. 1989. Partial evaluation of pattern matching in strings, Information
Processing Letters 30 (2): 79-86.

Damas, L. and Milner, R. 1982. Principal type-schemes for functional programs. In 9th ACM
Symposium on Principles of Programming Languages, pp. 207-12.

Ershov, A.P. 1978 On the essence of compilation. In E.J. Neuhold (editor) Formal
Description of Programming Concepts, pp. 391-420. North-Holland.

Ershov, A.P. and Itkin, V. E. (1977). Correctness of mixed computation in Algol-like
programs. In J. Gruska (editor), Mathematical Foundations of Computer Science, Tatranskd
Lomnica, Czechoslovakia. Lecture Notes in Computer Science, 53, pp. 59-77. Springer-
Verlag.

Fuller, D. A. and Abramsky, S. 1988. Mixed computation of Prolog programs. New Generation
Computing 6 (2, 3): 119-41.

Futurama, Y. 1971. Partial evaluation of computation process—an approach to a
compiler-compiler. Systems, Computers, Controls 2 (5): 45-50.

Goguen, G., Thatcher, J. W., Wagner, E. G. and Wright, J. B. 1977. Initial algebra semantics
and continuous algebras, Journal of the ACM 24: 68-95.

Gomard, C. K.-1989. Higher Order Partial Evaluation — HOPE for the Lambda Calculus,
Master’s thesis, DIKU, University of Copenhagen, Denmark (September).

Gomard, C. K. and Jones, N. D. 1989. Compiler generation by partial evaluation: a case study.
In H. Gallaire (editor), Information Processing 89. IFIP.

Gomard, C. K. 1990. Partial Type Inference for Untyped Functional Programs. In 1990 ACM
Conference on Lisp and Functional Programming, pp. 282-287.

Guzowski, M. A. 1988. Towards Developing a Reflexive Partial Evaluator for an Interesting
Subset of LISP, Master’s thesis, Department of Computer Engineering and Science, Case
Western Reserve University, Cleveland, Ohio (January).

Hansen, T. A. and Triff, J. L. 1989. Memorization and its use in lazy and incremental program
generation, Master’s thesis, DIKU, University of Copenhagen.

Holst, N. C. K. 1988. Language triplets; the AMIX approach. In D. Bjerner, A. P. Ershov
and N. D. Jones (editors), Partial Evaluation and Mixed Computation, pp. 167-85, North-
Holland.

Huet, G. 1976. Resolution dequations dans les langages dordre 1, 2, ..., ®. PhD thesis, Univ.
de Paris VII.

Jones, N. D. 1988. Automatic program specialization: a re-examination from basic principles.
In D. Bjerner, A.P.Ershov and N.D. Jones (editors), Partial Evaluation and Mixed
Computation, pp. 225-82, North-Holland.

Jones, Neil D. and Muchnick, Steven S. 1978. TEMPO: A Unified Treatment of Binding Time
and Parameter Passing Concepts in Programming Languages. Lecture Notes in Computer
Science 66. Springer-Verlag.

Jones, N. D., Sestoft, P. and Sendergaard, H. 1985. An experiment in partial evaluation: the
generation of a compiler generator. In J.-P. Jouannaud (editor), Rewriting Techniques and
Applications, Dijon, France. Lecture Notes in Computer Science, 202, pp. 124-40. Springer-
Verlag.

Jones, N. D., Sestoft, P. and Sendergaard, H. 1989. Mix: a self-applicable partial evaluator for
experiments in compiler generation. Lisp and Symbolic Computation 2 (1): 9-50.

Jones, N. D., Gomard, C. K., Bondorf, A,, Danvy, O. and Mogensen, T. 1990. A self-
applicable partial evaluator for the lambda calculus. In IEEE Computer Society 1990
International Conference on Computer Languages (March).

3-2

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

68 C. K. Gomard and N. D. Jones

Kuo, T.-M. and Mishra, P. 1989. Strictness analysis: a new perspective based on type inference.
In Functional Programming Languages and Computer Architecture, London, September 89.
ACM Press and Addison-Wesley.

Lombardi, L. A. 1967. Incremental computation. In F. L. Alt and M. Rubinoff (editors),
Advances in Computers 8, pp. 247-333. Academic Press.

Milner, R. 1978. A theory of type polymorphism in programming, Journal of Computer and
System Sciences 17 (3): 348-75.

Mogensen, T. 1988. Partially static structures in a self-applicable partial evaluator. In
D. Bjorner, A.P. Ershov and N. D. Jones (editors), Partial Evaluation and Mixed Com-
putation, pp. 325-47, North-Holland.

Mogensen, T. 1989. Binding time analysis for polymorphically typed higher order languages.
In J. Diaz and F. Orejas (editors), TAPSOFT ’89. Proc. Int. Conf. Theory and Practice of
Software Development, Barcelona, Spain, March 1989, Lecture Notes in Computer Science 352,
pp. 298-312. Springer-Verlag.

Morris, F. L. 1973. Advice on structuring compilers and proving them correct. In Ist ACM
Symposium on Principles of Programming Languages, pp. 144-52.

Mosses, P. 1979. SIS — Semantics Implementation System, Reference Manual and User Guide,
DAIMI Report MD-30, DAIMI, University of Arhus, Denmark.

Nielson, F. and Nielson, H. R. 1988a. The TM L-Approach to Compiler—Compilers, Technical
Report 1988—47, Department of Computer Science, Technical University of Denmark.
Nielson, H. R. and Nielson, F. 1988b. Automatic binding time analysis for a typed A-calculus.
In 15th ACM Symposium on Principles of Programming Languages, pp. 98-106.

Paulson, L. 1982. A semantics-directed compiler generator. In 9th ACM Symposium on
Principles of Programming Languages, pp. 224-33.

Pleban, U. 1984. Compiler prototyping using formal semantics, SIGPLAN Notices 19 (6):
94-105.

Plotkin, G. 1975. Call-by-name, call-by-value and the lambda calculus, Theoretical Computer
Science 1, 125-59.

Romanenko, S. A. 1988. A compiler generator produced by a self-applicable specializer can
have a surprisingly natural and understandable structure. In D. Bjorner, A. P. Ershov and
N. D. Jones (editors) Partial Evaluation and Mixed Computation, pp. 445-63. North-Holland
Schmidt, D. A. 1985. Detecting global variables in denotational specifications, ACM
Transactions on Programming Languages and Systems 7 (2): 229-310.

Schmidt, D. A. 1986. Denotational Semantics. Allyn and Bacon.

Schmidt, D. A. 1988. Static properties of partial evaluation. In D. Bjerner, A. P. Ershov and
N. D. Jones (editors), Partial Evaluation and Mixed Computation, pp. 465-83. North-Holland.
Schooler, R. 1984. Partial Evaluation as a Means of Language Extensibility, Master’s thesis, 84
pages, MIT/LCS/TR-324, Laboratory for Computer Science, MIT, Cambridge, Mas-
sachusetts (August).

Sestoft, P. 1988. Automatic call unfolding in a partial evaluator. In D. Bjorner, A. P. Ershov
and N. D. Jones (editors), Partial Evaluation and Mixed Computation, pp. 485-506. North-
Holland.

Sestoft, P. 1989. Replacing function parameters by global variables. In Functional Programming
Languages and Computer Architecture, London, September 89. ACM Press and Addison-
Wesley.

Stoy, J. 1977. Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. MIT Press.

Turchin, V. F. 1980. The use of metasystem transition in theorem proving and program
optimization. In J. De Bakker and J. van Leeuven (editors), Automata, Languages and
Programming. Seventh ICALP, Noordwijkerhout, The Netherlands. Lecture Notes in Computer
Science 85, pp. 645-57. Springer-Verlag.

Wadler, P. 1990. Linear types can change the world! ISIP TC Working Conference on
Programming Concepts and Methods, Sea of Galilee, Israel, April 1990.

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

Partial evaluator for the untyped lambda-calculus 69

Wand, M. 1982. Semantics-directed machine architecture. In 9th ACM Symposium on
Principles of Programming Languages, pp. 234-41.

Wand, M. 1984. A semantic prototyping system. In SIGPLAN 84 Symposium on Compiler
Construction, pp. 213-21.

Wand, M. 1986. Finding the source of type errors. In 13th ACM Symposium on Principles of
Programming Languages, pp. 38-43.

Weis, P. 1987. Le Systeme SAM : Metacompilation trés efficace a 'aide d operateur sémantiques,
PhD thesis, I"Université Paris VII (in French).

https://doi.org/10.1017/50956796800000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000058

