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ON A PROBLEM OF FAVARD

CONCERNING ALGEBRAIC INTEGERS

C. W. LLOYD-SMITH

Let a be an algebraic integer of degree n > 1 with conjugates

a = a7, a.,,..,a . Let D(a) denote the diameter of {a7J ,a }
X £y Yt X Yl

and diam (a) = max I a.-a. |. In 1929 Favard showed that

diam (a) ̂  /3/2 and that, when n = 2 or 3, the minimal values

of diam (a) are less than 2. The author shows that diam (a) > —

and D(a) > /3. He also finds all algebraic integers a with

diam (a) ̂  2 when n K 5. Similar results are found for D(a)

and, in particular, D(a) > 2 when n = 5.

1. Introduction

Let a be an algebraic integer of degree n ̂  2 with conjugates

denoted by a = o.ja,,...,a. The diameter of a is defined by

diam (a) = max |a.-a.| ,

the maximum distance between any two of its conjugates. Favard [/], [2],
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[3] showed that

(1.1) diam (a) > / | .

On the other hand, there are infinitely many n for which there are

algebraic integers a of degree n such that

(1.2) diam (a) < 2.

This is clear because (1.2) is satisfied if a is a root of unity.

However it is not known whether there are algebraic integers a

satisfying (1.2) for every n ̂  2. Note that the Euler (((-function does not

take every positive integer value n.

In this paper we show that (1.1) can be improved to give

(1.3) diam (a) > | .

In this paper, algebraic integers a,a' of degree n are said to be

equivalent if the sets of differences {a.-a.} ,{a.'.-a'.} coincide. If a
1- 3 I* 3

and a' are equivalent, it is clear that some conjugate of a' is of the

form ± a + k where k is a rational integer. It is fairly easy to see

that for each n there are only finitely many inequivalent a with

diam (a) not exceeding some prescribed bound. In this paper we also list

all inequivalent a with diam (a) ̂  2 and degree n ̂  5.

Favard [Z] noted that if a is totally real, then diam (a) > 2 and,

indeed, Robinson [6] proved that in this case, diam (a) > /S and even

diam (a) > 3 if n > 3. This result also follows from work of the author

[5] on algebraic integers in ^-fields.

Favard [2] found that the minimal values of diam (a) when n = 2 or

3 are less than 2. In [3], he observed that for those n, the smallest

value of diam (a) corresponds to an a which generates a field whose

discriminant is of least absolute value for that degree.

The author [5] stated incorrectly that Favard found all inequivalent a
with diam (a) < 2 when n = 2 or 3. However, this readily follows from
the work of Favard [2].
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The author [5] found all inequivalent a such that diam (a) < 2

when n = 4 or 5. The arguments are very complicated and yielded a total

of 104,472 polynomials which had to be tested on the Cyber 173 computer

at the University of Adelaide. In this paper we present a simpler

technique, which serves to handle all the above cases uniformly, and yields

all inequivalent o with diam (a) < 2. The results are shown in Table 1.

We also define the circumdiameter of a to be the diameter of the

smallest circle enclosing all the conjugates of a, including a itself.

It is denoted by D(a). The circle just alluded to will be called the

circumcirele of {a1ja.)...Ja } and its centre is the circumcentre of

{a,,a,,...,a }. Favard [3] found all inequivalent a of degrees 2 and

3 satisfying D(a) < 2. The author [5] extended this work to degrees 4

and 5. The results are shown in Table 2. It turns out that all

algebraic integers of degree 5 have circumdiameter greater than 2.

The diameter and circumdiameter of a are connected by the following

inequality of Jung [7], p. 17,

(1.4) diam (a) < D(a) < — diam (a) .
/3

In general, neither inequality in (1.4) can be improved. To see

this, it suffices to take a = i and a = 3/2 in turn.

The main result of this paper is the following

THEOREM. Let a be an algebraic integer of degree n > 2 with

diameter d and oircxmdiameter D. Then we have:

1. D > /3 with equality if and only if a is equivalent to a •primitive

cube root of unity.

2. If a + ... + a = 0 (mod n) then D > 2. Moreover, D = 2 if and

only if a is equivalent to a primitive m root of unity with m

not square free.

The foregoing Theorem yields the following

COROLLARY. In the notation of the Theorem we have

1. d> - . 2. If a1 + ... + an = 0 (mod n), then d> &
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2. The proofs

Proof of the Theorem. Let fix) = 3p + OLJX1' + ., . + a nx + an-1 n

be the minimal polynomial of a. Then

(2.1)
n

3=1

and, by replacing a with an equivalent algebraic integer if necessary,

we lose no generality in supposing that 0 < a? < In/2]. As usual, [x]

denotes the greatest integer not exceeding x. Let $ be the circumcentre

of {<x^,o.-,...,a}. Then we have for j = 1>2,. . . ,n,

(2.2) \S.ad\"<^-.

By symmetry (5 is necessarily real.

By the arithmetic-geometric mean inequality we have

(2.3) V I \2 -> n I \2/n I \2/n •> iI |a.| > n |a-| = [ct | ? 1.
3=1 ° 3=1 ° n

with equality if and only if |a7| = |a,| = ... = |a | = 1. From (2.1),

(2.2) and (2.3) we get

(2.4)

n

3=1
n

\2 >

/ *'

1

H 3=1

3 2 - l e |

i
4

,2 O2
20a,

Hence D ~^ J3 as asserted.
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Moreover, D = 3 only if |o7| = |o.| = — = \a | = 1 and

| By

7

|B| = | . By (2.2), (2.3) and (2.4), D2 = 3 implies that

13-ot | =^- for j = 1, 2, ..., n .

Since the circles |s—31 = -~- and \z\ = 1 intersect in only two

points, a is of degree at most 2. Since the conjugates of a all lie

on the unit circle, it is readily seen that a must be a primitive cube

or sixth root of unity. This proves the first part of the Theorem.

For the proof of the second part of the Theorem, we lose no

generality in assuming that a, = 0. From (2.2) and (2.3) we get

(2.5)

Hence D > 2. From (2.2), (2.3), (2.4) and (2.5) it follows that D = 2

if and only if all the conjugates of a lie on the unit circle. A result

of Kronecker [4] implies that a must be a root of unity.

Let m be the integer such that a is a primitive m root of

unity. It is well known that a has trace equal to \i(m). As usual,

\i(m) denotes the Mobius function. Thus a~ = -\i(m). From the definition

of the MObius function, it follows that m is not squarefree since

a? = 0. This completes the proof of the Theorem.

Proof of the Corollary. From (1.4) and the first part of the Theorem,

it follows that d > -| and if D > /J then d > j . If D = /I then ct

is necessarily equivalent to a primitive cube root of unity. So d = /J

in this case. Hence we always have d > -% .

For the proof of the second part of the Corollary, we lose no

generality in assuming that a~ = 0. If D > 2, the result is immediate.

If D = 2, then a is a root of unity by the second part of the Theorem.

If a is a primitive m root of unity (m ~? 3), it is readily shown

that
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diam(a) =

2 sin - [m/2] if 2 \ m

2 sin^-[m/4] if 2\m , 4 j m

4 i f 4\m .

Since a has zero trace, we know that a cannot be a primitive cube

or sixth root of unity. Applying the above formulae then shows that

d > v3. Thus the Corollary is completely proved.

3. Determination of inequivalent a with diam (a) < 2.

We retain all the notations of the previous section. In particular,

we lose no generality in supposing that 0 < a~ ̂  [n/21.

In this section we derive some useful bounds on the coefficients of

fix) in terms of d = diam (a).

By the arithmetic-geometric mean inequality, we have

(3.1)
n

|a.|
n

Let 6 be the circumcentre of {a,,a.,..,,ci } as before.

By (1.4) we have

(3.2)

d2 > D
2

> — t 18-a I
n 3=1 °

1 n 2

•

So

d2 > 3 (\a \2/n - \ ln/212).
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If we assume that d < 2 then it follows that \a \ = 1 for n = 2 or

3 and \a \ = 1 or 2 for n = 4 or 5.

Denote by S the power sums

c v m
Sm = i a7

m = 0,1,2,...,

and note that each 5 is a rational integer. Newton's formulae yield

5 + a-S , + ... + a ,S, + ma = 0 for 2 < m < n.m 1 m-1 m-1 1 m

Without loss of generality, we may suppose that |a| = max |a

Then

n n
\na + a. | = | \ Co-a .) \ < \ la-a-l

0=1 d 0=1 °

(n-l)d .

n\a\ < \na+a \ + \-a \ < (n-l)d + [n/2] .

Set I>n(d) =- (d(n-l) + [n/2]). From (2.3) we see that

Hence

n

3=1

Set K (d) = ^ - + -[n/2]2. Then, evidently,
n on

(3.3)

\k-2|
0=1 I

3=1

K (d) L (d)
n n

k~2

Then Newton's formulae imply that a-, belongs to an interval of
2\Sk\

 k

length k centred at - -r Ca-S. .+...+ a, ^ S-) for given values
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of a j , , . . , a , - and hence of S~,...,S,_-. I t i s sufficient to test

polynomials whose coefficients satisfy the conditions just imposed.

4. Numerical results

In order to determine all inequivalent a satisfying diam (a) K 2

for given degree n, it is sufficient to test those polynomials which

satisfy the bounds implied by (3.3) when d = 2. Also, it is easy to see

that there exists 6 > 0 such that diam (a) ̂ 2 + 6 implies

diam (a) ̂  2. Moreover we can choose e so that the set of test

polynomials for d ̂  2 + e is no larger than the set of test polynomials

for d < 2. For small values of n, it is feasible to perform these

calculations with the aid of a computer. We exclude all reducible

polynomials which turn up in the computations. We shall deal with the

cases n = 2, 3, 4, 5 in turn.

(i) n = 2. This case is trivial since a- = 0 or 1 and |a«| = 1.

Also, it is easily seen that if d > 2 then d > /S.

(ii) n = 3. Here we can take e, = 0.1 and hence K (d) < 4.75

and so |sj < 4 by (3.3). Since 0 ^ = 0 or 1 and \a3\ = 1,

it is enough to test at most 1*2x5*2 = 20 polynomials.

We find that we can take 6 < 0.085... . Note that if a. is a
u

zero of the polynomial x -x-1, then diam (a) = 2.0650... .

(iii) n = 4. Here we can take e. = 0.02 and hence K.(d) < 6.45

and L (d) < 2.015. Hence |Sg| < 6 and |S3| < 12 by (3.3).

Thus ao and a_ lie in intervals of lengths 6 and 8

respectively. Since 0 < a^ < 2 and \a \ = 1 or 2, it is enough

to test at most lx.3x7*9x-4 = 756 polynomials. We find that we can

take &4 = 0.02.

(iv) n = 5. Here we can take eg = 0.003 and hence Kg(d) < 7.487

and L5(d) < 2.003. Thus |Sg| < 7, \S3\ < 14 and \S4\ < 29.

Hence a~t a, and a. lie in intervals of lengths 7, -y and -*g-
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respectively. Since 0 < a? < 2 and [a | = 1 or 2, it is enough

to test at most 1x3x8x10x15x4 = 14400 polynomials. We find that we

can take 6C = 0.003.o

These computations were carried out on the Cyber 72 computer at the

Australian Bureau of Statistics. The zeros of the polynomials selected

by the algorithm described above were found using standard numerical

procedures (Jenkins-Traub method).

We observe that the eleven inequivalent algebraic integers with

diam (a) < 2 are totally imaginary when n = 2 or 4 and have only one

real conjugate when n = 3 or 5. Also that a which yields the least

value of diam (a) for given degree n also generates a field whose

discriminant is the least possible in absolute value for that degree when

n = 2, 3 or 4 but not when n = 5.

INEQUIVALENT

Degree

2

3

4

5

TABLE 1

ALGEBRAIC INTEGERS WITH

Polynomial

X +X+1

x2+l

x3+x2-l

x3+x2+l

x +2x +2x +x+l

X +X +X +X+1

4
x -x+1

x4-x2+l

x4+l

xS+2x4+x3-x2-x+l

x5+x
4-l

DIAM (a) < 2.003

Diameter

1.73205...

2

1.79423...

1.87418...

1.89882...

1.90211...

1.99391...

2

2

1.99179...

1.99785...
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By (1.4) all inequivalent a with D(a) < 2 lie among the a with

diam (a) < 2. By using the numerical values of the conjugates of a, we

can calculate D(a). The procedure is necessarily ad hoc, since it

depends on the distribution of the conjugates in the complex plane. The

details are given in Favard [3] for n = 2 and 3 and in the author's

thesis for n = 4 and 5. Moreover, it is easy to see that there exists

Y > 0 such that D(ct) < 2+Y implies D(a) < 2 for algebraic integers

of degree n. We find that we can take y~ = 0.06, y. = 0.02 and

Yc = 0.003.

TABLE 2

INEQUIVALENT ALGEBRAIC INTEGERS WITH D(a) < 2.003

Degree

2

3

4

Polynomials

X +X+1

x2+l

x3+x2-l

x4+2x3+2x2+x+l

4 3 2
X +X +X +X+1

x4-x2+l

x4+l

Circumdiameter

1.73205...

2

1.97221...

1.89882...

2

2

2
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