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Automorphisms of the semigroup

of all onto mappings of a set

Suchat Chantip and G.R. Wood

The semigroup of ai 1 onto mappings of a set to itself and the

semigroup of all one-to-one mappings of a set to itself are shown

to have the property that every automorphism is inner.

1 . Introduction

Let X be a non-empty set. Let G denote the group of permutations

of X and E, M , and F the semigroups of onto mappings, one-to-one

mappings and all mappings from X to itself respectively. Throughout, the

operation on G, E, M , and F will be mapping composition. Finally, let

R denote the semigroup of all binary relations on X , the composition

operation given by

f ° g = Ux, y) € X x x : (x, z) € f and (z, y) € g for some a € X)

for elements / and g in R .

An automorphism <|> of a group or semigroup (S) of mappings or

relations is said to be inner if there exists a permutation h of X such

that

(•) f<f) = h'^pi for every / in S .

(Functions juxtaposed imply composition.)

It is well known that for finite sets other than those with six

elements (\X| # 6 ) , G has the property that every automorphism is

inner. Schreier and Ulam in 1937 [3] extended this to infinite sets, while

Schreier [2] showed that every automorphism of F is inner for any set
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X . More recently Magi I I proved that every automorphism of R is inner
[?]• The purpose of this note is to show that the semigroups E and M
( \x\ * 6) also have this property.

The core of the proofs for G, F , and R is the following: an
automorphism <£ is shown to preserve a subset of the group or semigroup,
allowing a natural definition of a permutation h of X with the property
(*). In the case of G the set is the conjugacy class of a transposition,
for F i t is the unique minimal ideal of constant functions, while for R
i t is the set of constant relations with domain X . Here our technique is
different. We observe that <j> has the form (*) on G and show that the
form extends to E (M) using the composition properties of transpositions
and arbitrary onto (one-to-one) mappings.

The following notions will be useful. If a € X is the only element
in X carried to af by / € F we say / is one-to-one at a . That

i s , (af)f~ = ia) . Let M~ denote the set of a l l such points for the

mapping f . If af = S consists of more than one point we call S a
condensation set of / and a a condensation point ot f .

2. Automorphisms

We proceed to the proof of the main theorem.

THEOREM 1. Every automorphism $ of E is inner, for \x\ t 6 .

Proof, if X is f ini te , E = G , so the result follows from well
known group theory. For infinite X the proof is in five steps.

1. There exists a permutation h of X such that f<i> = h~fh for
every f in G .

Since G<$> = 6 , <J> restricted to G is an automorphism of G . The
result of Schreier and Warn [3] guarantees the existence of a permutation

h of X such that f<j> = h~Xfh for every f in G .

The next result shows that condensation sets are preserved.

2. 5 is a condensation set for f in E if and only if Sh is a
condensation set for f$ .

Take ah and bh in Sh . Now / = (a, b)f , where (a, b) in G
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is the transposition reversing elements a and b in S . Hence

/* = [(a, b)f)* = (a, &)•(/•) = (ah,

using

(a, 2>)<f> = ^ ( a , 2>)& = (ah, bh) .

Thus ah(f<j>) = bh(f§) , so f$ i s constant on S7i .

A resul t true for <j> i s true also for <(> , so i f /<j> i s constant

on Sh , (ffy)^1 = / i s constant on (Sfc)fc"1 = 5 .

3. For all a in M „ , f in E , ah(f$) = afh .

We show this for those / in E which are one-to-one at three or

more points. Maps which are one-to-one at two points or one point can be

expressed as a composition of two such maps and the result will follow.

Suppose a and b are in M~ and a ? b . Now

/ = (a, b)f(af, bf) ,

so

/«(. = (ah, bh)Mafh, bfh) .

Suppose ah(f§) - x t afh or bfh . Then

bh(ft) = bh(ah, bh)f<Hafh, bfh)

= x ,

also.

Since a + b , ah t bh so /<)> is not one-to-one at ah ,

contradicting step two. So ah(f^) = afh or bfh . Applying the same

argument to a and a in X where a + a t b gives ah(f<t>) = afh .

Suppose now that / is one-to-one at only a and b in X . Take a

condensation set S of / and suppose Sf = z . Define / and /„ in

E as follows,

xf if x € 5 u {a, b} ,

xg if x € X\S u {a, b}) ,

where g is a one-to-one correspondence between x\S u {a, b}) and
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X\{af, bf, z] . The former set is of the same cardinality as the latter

since / is onto. Let x/U = yf when x = yf. .

Then f± and f2 are in E , f f2 = / and both f± and f2 are

one-to-one at three points or more. Consequently

ta(/<f>) = bfh .

A similar construction shows that if / is one-to-one at only one point,

the result holds.

4. If f in E has precisely one condensation set S then

We have only to show that the single condensation point of /(j> is

Sfh . From step three it follows that /(j> affords a one-to-one and onto

correspondence between (X\S)h and (X\Sf)h . But since /$ is onto,

Sh(f$) = X\(X\Sf)h

= X\(X\Sfh)

= Sfh .

5. For every f in E , f$ = h~fh.

We must show that if a € S , a condensation set of f , then

ah(f$) - afh . We do this by writing f as a composition of a map f. in

E with single condensation set S and a map / ? in E which is one-to-

one at af. . Specifically, let

I af if x € 5 ,

xk if x € X\S ,

where k is a one-to-one correspondence from / \5 onto A\(af} . Let

xf2
 = yf w h e n x = yf-\ • N o t e t h a t f\ a n d ^2 a r e i n E ' ^3/2 = f '

and that /„ is one-to-one at af . As before

completing the proof.

https://doi.org/10.1017/S0004972700025302 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025302


The semigroup of onto mappings 403

With only small modifications of steps one and two we have the next

theorem.

THEOREM 2. Every automorphism ̂  of M is inner, for \x\ + 6 .

3. Automorphism groups

Let Ap be the automorphism group of the semigroup (or group) S .

We have the following relationship between A~ and G .

THEOREM 3. For S = R, F, E, M or G ,

except for S = G (= E = M) when \x\ = 2 or 6 .

Proof. The map G * Ac (for S any of R, F, E, M , or G ) which

takes /i in G to the automorphism which carries f In S to h~ fh ,

is always a homomorphism. It is one-to-one precisely when gf = fg for

all / in S implies g in G is the identity mapping on X . This is

so in all cases except for S = G and \x\ £ 2 . When |̂ | = 2 ,

A~ $£ G . The homomorphism is onto precisely when every automorphism of S

is inner. This is so in all cases except for S = G and \x\ = 6 , and in

this case A~ ̂  G . To complete the proof we may check that when

\x\ = 1 , A^, Ar , and G are the trivial group.
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