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Abstract

For any Liouville number α, all of the following are transcendental numbers: eα, loge α, sinα, cosα, tanα,
sinhα, coshα, tanhα, arcsinα and the inverse functions evaluated at α of the listed trigonometric and
hyperbolic functions, noting that wherever multiple values are involved, every such value is transcendental.
This remains true if ‘Liouville number’ is replaced by ‘U-number’, where U is one of Mahler’s classes of
transcendental numbers.
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1. Introduction

In 1844, Joseph Liouville proved the existence of transcendental numbers [1, 2]. He
introduced the set L of real numbers, now known as Liouville numbers, and showed
that they are all transcendental.

DEFINITION 1.1. A real number ξ is called a Liouville number if for every positive
integer n, there exists a pair of integers (p, q) with q > 1, such that

0 <
∣∣∣∣∣ξ −

p
q

∣∣∣∣∣ <
1
qn .

Alan Baker in his classic work [2] on transcendental number theory said: ‘A
classification of the set of all transcendental numbers into three disjoint aggregates,
termed S-, T-, and U-numbers was introduced by Mahler [8] in 1932, and it has proved
to be of considerable value in the general development of the subject’.

In this paper, we demonstrate just how powerful and useful Mahler’s classification
of transcendental numbers is.
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The following beautiful theorem, which is a corollary of the Lindemann–Weierstrass
theorem, appears as Theorem 9.11 in Ivan Niven’s book [12]. We prove the analogous
result with ‘algebraic number’ replaced by ‘Liouville number’.

THEOREM 1.2. The following numbers are transcendental:

(i) eα, sinα, cosα, tanα, sinhα, coshα, tanhα;
(ii) loge α, arcsinα and, in general, the inverse functions of all those listed in part (i),

for any nonzero algebraic number α; wherever multiple values are involved, every such
value is transcendental.

It is not widely known that eα and loge α are transcendental numbers when α is a
Liouville number, though the exp case is stated explicitly in [6, page 98] and the log
case, as pointed out to the second author by Michel Waldschmidt, is implicit in [3,
Section 3.5]. The proof in our paper for exp is different from that in [6].

However, the results for the trigonometric and hyperbolic functions do not appear
in print. The proofs of all these results for Liouville numbers, and indeed a wider class
of numbers, depend on properties of the Mahler classes of transcendental numbers.
REMARK 1.3. One might think that the results for trigonometric and hyperbolic
functions might follow trivially from the result for exp since, for example, cosh(x) =
1
2 (exp(x) + exp(−x)). However, the sum of two transcendental numbers is not neces-
sarily transcendental. Indeed, in 1962, Erdős [5] proved that every real number is a
sum of two Liouville numbers and it is proved in [4] that there are 2c subsets W of the
Liouville numbers such that every real number is the sum of two numbers in W.

2. Mahler classes

We follow the presentation in [3, Section 3]. While the definitions and results
therein are stated and proved for real numbers, mutatis mutandis, they carry over to the
case of complex numbers. Mahler’s classification partitions the set C of all complex
numbers into four sets (the fourth set in fact turns out to be the set of all algebraic
numbers), characterised by the rate with which a nonzero polynomial with integer
coefficients approaches zero when evaluated at a particular number.

Given a polynomial P(X) ∈ C[X], recall that the height of P, denoted by H(P), is
the maximum of the absolute values of the coefficients of P. Given a complex number
ξ, a positive integer n and a real number H ≥ 1, we define the quantity

wn(ξ, H) = min{|P(ξ)| : P(X) ∈ Z[X], H(P) ≤ H, deg(P) ≤ n, P(ξ) � 0}.
Furthermore, we set

wn(ξ) = lim sup
H→∞

− log wn(ξ, H)
log H

and

w(ξ) = lim sup
n→∞

wn(ξ)
n

.
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With this notation in mind, Mahler partitions the complex numbers into four sets.

DEFINITION 2.1. Let ξ be a complex number. The number ξ is:

• an A-number if w(ξ) = 0;
• an S-number if 0 < w(ξ) < ∞;
• a T-number if w(ξ) = ∞ and wn(ξ) < ∞ for any n ≥ 1;
• a U-number if w(ξ) = ∞ and wn(ξ) = ∞ for all n ≥ n0, for some positive integer n0.

REMARK 2.2. Note that the A-numbers are the algebraic numbers.

The following theorem of Mahler records a fundamental property of the Mahler
classes.

THEOREM 2.3 (see [3, Theorem 3.2]). If ξ, η ∈ C are algebraically dependent, then
they belong to the same Mahler class.

The following theorem of Mahler is key to our main result.

THEOREM 2.4 ([8, 9]; see also [3, Section 3.5]). If a is an algebraic number with
a � 0, then exp(a) ∈ S and if a � 0, 1, then log(a) ∈ S ∪ T.

THEOREM 2.5 [10]. The number π ∈ S ∪ T.

REMARK 2.6. Note that the Liouville numbers are U-numbers. Furthermore, if ξ is a
Liouville number, then iξ is a U-number by Theorem 2.3.

3. The main theorem

THEOREM 3.1. For any U-number α, in particular for α any Liouville number, all
of the following are transcendental numbers: eα, loge α, sinα, cosα, tanα, sinhα,
coshα, tanhα and the inverse functions evaluated at α of the listed trigonometric and
hyperbolic functions, noting that wherever multiple values are involved, every such
value is transcendental.

PROOF. For ease of notation, we adopt the conventional notation that log denotes
loge. We shall demonstrate the result for eα, sinα, tanα, sinhα and their inverses.
The corresponding proofs for the remaining functions in each family are analogous.

Henceforth, let α be a U-number.
(1) expα. Suppose that μ = eα is an algebraic number. Then, log μ = α ∈ S ∪ T by

Theorem 2.4. This is a contradiction since α ∈ U. So eα is a transcendental number.
(2) logα. Suppose μ is one of the values of logα and is an algebraic number. Then

eμ = α ∈ S by Theorem 2.4. This is a contradiction since α ∈ U. So all values of logα
are transcendental.

(3) sinα. Suppose μ = sinα is an algebraic number. Then by Remark 2.6 and
Theorem 2.4, iα ∈ U. By item (1) proved above, t = eiα is transcendental. Further,
2i sinα = eiα − e−iα = t − 1/t = 2iμ = β, where, by our supposition, β is an algebraic
number. Now t − 1/t = β implies that t = 1

2 ( β ±
√

4 − β2). Since β is an algebraic
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number, the right-hand side of the preceding equation is also an algebraic number, and
this is a contradiction since t is a transcendental number. So sinα is transcendental.

(4) arcsinα. Suppose first that one of the values of arcsinα = μ is 0. Then α = kπ,
for some k ∈ Z. If k = 0, then α = 0 which contradicts the fact that α ∈ U. If α = kπ,
k � 0, then kπ ∈ S ∪ T by Theorem 2.5, which contradicts the fact that α ∈ U.

Next suppose that one of the values of arcsinα = μ is an algebraic number.
Recall that arcsinα = −i log(iα +

√
1 − α2). Now, iμ = log(iα +

√
1 − α2) implies eiμ =√

1 − α2 + iα. By Theorem 2.4, eiμ ∈ S. However, X = α and Y =
√

1 − α2 + iα satisfy
the equation P(X, Y) = Y4 + 4Y2X2 − 2Y2 + 1 = 0 and hence X and Y are algebraically
dependent. So by Theorem 2.3, X and Y are in the same Mahler class. As we are given
X ∈ U, this implies eiμ = Y ∈ U which is a contradiction as we saw that eiμ ∈ S. Thus,
all values of arcsinα are transcendental.

(5) tanα. Suppose that μ = tanα is algebraic. Then this implies that iμ =
(t − 1/t)/(t + 1/t) is algebraic, where t = eiα, which is transcendental by Theorem
2.4. The former equation implies that t3 + t + iβt − iβ = 0, where β = 1/μ. In the
interest of brevity, we omit exhibiting the general solution for t, but we note that the
polynomial has algebraic coefficients, and hence, each solution t is also algebraic,
which is a contradiction.

(6) arctanα. Put μ = arctanα, so 2iμ = log((i − α)/(i + α)). As in item (4), μ � 0.
Suppose μ is an algebraic number. Then e2iμ ∈ S by Theorem 2.4. Now X = α and
Y = (i−α)/(i+α) satisfy the equation P(X, Y) = X2Y2 + 2X2Y +X2 − Y2 + 2Y − 1 = 0,
and hence are algebraically dependent. Theorem 2.3 then implies that (i−α)/(i+α) ∈U,
which is a contradiction. So every value of arctanα is transcendental.

(7) sinhα. Recall that sinhα = 1
2 (eα − e−α). By item (1), t = eα is transcendental.

Suppose t − 1/t = 2μ is an algebraic number. This implies that t = μ ±
√

1 − μ2 is also
algebraic, which is a contradiction. So sinhα is transcendental.

(8) arcsinhα. We proceed as in item (4). Suppose μ = arcsinhα = log(α +
√
α2 + 1)

is algebraic. By Theorem 2.4, eμ ∈ S. However, X = α and Y = α +
√

1 + α2

satisfy the equation P(X, Y) = Y2 − 2XY − 1 = 0. Hence, X and Y are algebraically
dependent and therefore α +

√
1 + α2 ∈ U, which is a contradiction. So arcsinhα is

transcendental. �

REMARK 3.2. In fact, the above argument shows that if α is in the Mahler class T,
then logα is a transcendental number. Additionally, the theorem remains true for the
composition of a trigonometric or hyperbolic function with the inverses of the other
functions in the corresponding family. For instance, if α is a Liouville number, then
sinh(arccoshα) is transcendental.

REMARK 3.3. Noting Theorem 2.4, we see that in contrast with Theorem 3.1 and
Remark 3.2, it is not true that log s is a transcendental number for all members s of the
Mahler set S. However, it is of course true for all but a countably infinite number of
s ∈ S, as the set of algebraic numbers is countably infinite.
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REMARK 3.4. We conclude by recording that Corollary 6 of [7] implies that expα is a
Liouville number for an uncountable number of Liouville numbers α. Recall Maillet’s
result, [11, Ch. 3], which says that if t is a Liouville number and R(x) is a rational
function with rational coefficients, then R(t) is a Liouville number. In our case, we
use R(t) = 1

2 (t + 1/t). It follows from this and [7] that there exists an uncountable set
of Liouville numbers α such that sinhα is a Liouville number and there exists an
uncountable set of Liouville numbers α such that coshα is a Liouville number.

OPEN QUESTION 3.5. If α is a Liouville number, is expα necessarily a Liouville
number or a member of the Mahler set U?
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