
STONE LATTICES. IL STRUCTURE THEOREMS 

C. C. CHEN AND G. GRÀTZER 

1. Introduction, Using the triple associated with a Stone algebra L, as 
introduced in the first part of this paper (1), we will investigate certain 
problems concerning the structure of a Stone lattice. 

The following topics will be discussed: prime ideals, topological representa
tion, completeness, relative Stone lattices, and the reduced triple. 

I t is assumed that the reader is familiar with §§ 2-4 of (1). For the sake of 
convenience, we will write L = (C, D, 4>) to indicate that (C, D, <f>) is the 
triple associated with L, and whenever convenient we will write the elements 
of L as ordered pairs (x, a) , as it is given in (1, § 4, the Construction Theorem). 

2. Prime ideals. The first result on Stone lattices was a characterization of 
Stone lattices as a pseudo-complemented distributive lattice L in which 
P V Q = L for any two distinct minimal prime ideals P and Q\ see (2). A 
simple proof of this is given in (5), while in (3) it is proved that if L is not 
assumed to be pseudo-complemented, then the conclusion is false. 

For X Ç L, let (X] denote the ideal generated by X, that is a G (X] if and 
only if a ^ V(^ | % G Xi), for some finite X\ C X. P(L) denotes the set of all 
prime ideals of the lattice L. 

THEOREM 1. Let L = (C, D, <t>). 

(i) The correspondence 

(2.1) P - > ( n P£P(D), 

is a one-to-one mapping from P{D) onto the set of all prime ideals of L not 
disjoint from D. 

(ii) The correspondence 

(2.2) P->{Pl P£P(C), 

is a one-to-one mapping from P{C) onto the set of all prime ideals of L disjoint 
from D; the latter set is the same as the set of all minimal prime ideals of D. 

Proof, (i) For P G P(D), (P] is obviously an ideal of L not disjoint from D. 
Since (P] is disjoint from the dual ideal D — P , by Stone's theorem (see, 
e.g., 2) there exists a prime ideal Q of L containing (P] and disjoint from D — P . 
Thus, Q C\D = (P]. If x G G, then for any p G P we obtain x V p G D\ 
hence, x V p G P and x G (P]. Thus, Q = (P], proving that (P] is prime and 
the map in (i) is one-to-one. (It is easily seen that a slightly longer proof can be 
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given that does not use Stone's theorem.) If Q is any prime ideal of L with 
Q H D 9* 0, then, as above, Q = (Q H D] and Q C\ D G P(£>), completing 
the proof of (i). 

(ii) L e t P G P(C). The (P] is an ideal of L. Let x Aye (P] ; thenx Ay èp 
for some p G P . Thus, (x A y)** ^ £** = p, that is, x** A 3>** G P . This 
implies that x** or 3/** G P , and therefore x or 3; G (P]. Therefore, (P] is a 
prime ideal, and (P] C\ D = 0. Now, if <2 is a nY prime ideal of L with 
Q n £> = 0, then for any a G Q, a* ^ 0, a A a* G <2, hence a* g 0. Thus 
a** Ç Q, which proves that Q = ((? H C]. 

Let Q be a minimal prime ideal of L. Then Ç H C is a prime ideal in C, hence 
(Q r\ C] is a prime ideal of L, contained in Q. Hence, Q — ( Q H C J ; thus, Q is 
disjoint to D. Now let (2 be a non-minimal prime ideal of L ; let P C G, where P 
is also a prime ideal. Take x G (? — P . Then 0 = x A x* Ç P , hence x* G P . 
Thus, x V x* G Q, proving that D P\ <2 ̂  0, since x V x* G -D always holds. 
This completes the proof of Theorem 1. 

As an immediate corollary we obtain the result of (2) mentioned at the 
beginning of § 2. 

COROLLARY. Let L be a pseudo-complemented, distributive lattice. Then L is a 
Stone lattice if and only if P V Q = L for any two distinct, minimal prime 
ideals P and Q. 

Proof. Let L be a Stone lattice, P and Q distinct minimal prime ideals, that is 
(by Theorem 1) prime ideals disjoint to D. Then by Theorem 1 (ii) ,PC\C and 
Q P\ C are distinct prime ideals (i.e., maximal ideals) of the Boolean algebra C. 
Therefore, x G P r\ C, y G Q C\ C exist with x V y = 1 in C, hence in L, 
proving that P V Q = L. 

Conversely, if L is not Stone, then a* V a** < 1, for some a G L. Let P be a 
prime ideal containing a* V a**. I t is easily seen that a*, a** Q (L — P) V D. 
(Indeed, if for instance a* G (L — P) V -D, then a* = x A d, for some 
xeL-P,d£D. Then a* = a*** = (x A d)** = x** A d** = x** A 0* = x**, 
and hence x G P , a contradiction.) Thus, there exist prime ideals Q, R of L 
containing a* and a**, respectively, and disjoint to (L — P) V D. Since Q 9^ R 
and Q V R Cl P ?± L, we have completed the proof. 

Theorem 1 enables us to characterize the partially ordered set P(L) of all 
prime ideals of a Stone lattice L modulo the characterization problem of P(D), 
where D is a distributive lattice with 1. The latter problem is a special case of 
the former one. 

Let us call a partially ordered set Q representable if there exists a distributive 
lattice K with 1, such that Q = P(K) (as partially ordered sets). 

A partially ordered set Q is in standard form if the following conditions are 
satisfied: 

(1) <2= U ( Q « | t € I) W I ; 
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(2) the Qi are pairwise disjoint, and all the Qt are disjoint to 7; 
(3) i < x for x 6 Qt and i $ x for x 6 Qy, i ^ 7. 

I t follows from (3) that 
(4) x $ y for any x 6 (?*, y G (?,, * ^ j . 

The following diagram illustrates Q: 

THEOREM 2. Le£ Lbe a Stone lattice. ThenP(L) can be written in standard form 
( l ) - (3) above such that 

(*) all Qi are representable. 
Conversely, if Q is a partially ordered set in the standard form ( l ) - (3) , and (*) is 
satisfied, then there exists a Stone lattice L such that Q and P(L) are isomorphic. 

Proof. Let L be a Stone lattice, C = C(L), D = D(L), and 

/ = I ( P ] | P 6 P ( O i . 
Set 

(2.3) PZQi, iliÇP,P r\D ^ 0 , P 6 P ( L ) . 

Then P(L) = U(Qi| i G / ) U 7 by Theorem 1, and (2) is obvious. By the 
Corollary to Theorem 1, a prime ideal contains exactly one minimal prime 
ideal, verifying (3). 

To prove (*) we have to construct a distributive lattice Lt with Qt = P(Lt). 
For any ideal 7 of L there exists a smallest congruence relation 9 such that 

x = 3>(9) for all x, y 6 7; the notation L/I stands for L / 9 . The following 
lemma can be easily verified. 

LEMMA 1. Let P be a prime ideal of a distributive lattice L. Then there is an 
order isomorphism between the prime ideals of L containing P and the prime 
ideals of L/P. 

This implies that in L/i, the prime ideals not {0} form a partially ordered set 
isomorphic with Qt. However, the 0 of L/i is meet irreducible (since {0} is 
prime), hence Lt = (L/i) — {0} will satisfy P(L/) ~ Qt. This completes the 
proof of the first part of Theorem 2. 

Now, let us assume that Q is in a standard form ( l ) - (3) , and (*) holds. 
Since the Qi are representable, there exist distributive lattices Dt with 1 such 
thatP(7>ï) = QzforalH £ 7. Let E be the (complete) direct product of the D u 

and 
D = { / | / €£ , | {« | / (« ) 5*1}| < Ko}. 

Then D is a distributive lattice with 1 ; we can identify a G D% with the function 
/defined by/(f) = a,f(j) = 1 for j ^ i. Thus, Dt becomes a sublattice of D. 
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A prime ideal of Dt generates in D an ideal, and it is a prime ideal of D. These 
and only these are the prime ideals of D, hence with a slight change of notation 
we can write P(D) = U((?i| i G I). 

There exists a Boolean algebra C with |P(C)| = | / | , thus we can assume that 
P(C) = I. We define a map 0 of C into 2l(p) as follows: let a G C, set 

(2.4) a<t> = {f\f G D and / ( i ) = 1 for a G i}. 

Then 00 = {1} and 10 = D are obvious. Furthermore, 

(a A 6)0 = {/|/(0 = 1 for a A & G *} 

= {/|/(i) = l for a G i} H {f\f(i) = 1 for 6 G i} = a0 A 60. 

This also implies that {a V 6)0 2 Q>4> V 60. Now let / € (a V 6)0, that is 
/(f) = 1 if a V 6 G i. Define g,h £ Dby g(i) = / ( i ) for a G i, g(i) = 1, other
wise; h(i) = f(i) for 6 G i, g(ï) = 1, otherwise. Then g G 60,/z G «0, and 
g A h = f, t h u s / G #0 V 60, completing the proof of (a V 6)0 = a0 V 60. 

Thus, we have proved that (C, D, 0 ) is a triple. By the Construction 
Theorem there exists a Stone lattice L such that (C, D, 0) is the associated 
triple. We claim that P(L) ^ Ç. 

We have already noted that P{D) = U(Qt\i G I) and P(C) = / .Thus , it is 
enough to prove that ii] C (P] for P G Qj if and only if i = j (compare this 
with Theorem 1). Let a G i. T h e n / G #0 implies tha t / ( i ) = 1, t h u s / G P for 
any P G Q*. Therefore, a0 is disjoint from P , hence a' G (P], and therefore 
a G (P], proving that (i] C (P] for P G Ci- Since L is a Stone lattice, (P] 
contains exactly one minimal prime ideal, thus (J] C (P] implies that i = j . 
This completes the proof of Theorem 2. 

Theorem 2 describes the structure of P(JL) using conditions ( l ) - (4) and (*) 
which, it is hoped, make it easy to visualize P(L). A briefer version of ( l ) - (4) 
and (*) is given in the following corollary. 

COROLLARY. Let Q be a partially ordered set. There exists a Stone lattice L such 
that Q ~ P{L) if and only if every element of Q contains exactly one minimal 
element and for every minimal element m, the partially ordered set 

{x\ x > m, x G Q\ 
is representable. 

Note that {x\ x > m, x G Q} could be replaced by {x\ x è m, x G Q}-

3. Topological representation. In (4), Stone gave a topological representa
tion theorem for arbitrary distributive lattices. Let L be a distributive lattice, 
P(L) the set of all prime ideals of L. For x f l w e set 

RL{x) = {P\P G P(L),x (Z P}. 

The Stone space S(L) of L is P(L) with [RL(x)\ x G L} as a base for open sets. 
S(L) determines L; in fact, L is isomorphic to the lattice of all compact open 
sets of S(L). 
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A characterization of S(L) is given in (4). This immediately yields a charac
terization of S(L), where L is a Stone lattice. To the conditions in (4) we have 
to add that: (i) S(L) is compact (since 1 G L) ; (ii) if X is compact open, then 
the interior of S(L) — X is closed (or, equivalently, the closure of any compact 
open set is open). 

In this section we will be concerned with the relationship between S(C), 
S(D), and S(L), as it was set up in Theorem 1. By Theorem 1, the map 
0: P —» (P] is one-to-one and onto between S(C) U S(D) and S(L). Thus, 
| 5 ( 0 | + \S(D)\ = \S(L)\. 

THEOREM 3. S(C) is homeomorphic to 5(C)<£, as a subspace of S(L); in fact, 
<j> is a homeomorphism. S(C)<j> is everywhere dense in S(L). In particular, 
S(C)4> = S(L) if and only if C = L. 5(C)</> is open in S(L) if and only if D has 
a smallest element. 

Proof. The homeomorphism follows from the following formula, which is 
immediate from Theorem 1: 

RL(x)nS(C)4> = Pc(x**)</>. 
To prove that S{C)<j> is everywhere dense in S(L), take a P G S(L) and 

RL(x) containing P ; we have to show that RL(x) Pi 5(C)0 ^ 0. Indeed, since 
x £ P, we obtain x G Q, where Q is the minimal prime ideal contained in P, and 

<2epL(x)ns(C)0. 
If D has a least element, say d, then S(C)<j) = RL{d), thus S(C)<j> is open. 
Now, assume that S{C)<j> is open. Then we can form / = {x\ x ^ d for every 

d G D}. Obviously, / is an ideal of L. If / and D have an element, say d, in 
common, then D = [d) as claimed. The assumption that I and D are dis
joint leads to a contradiction. Indeed, then there exists a prime ideal P , with 
P^I,PC\D = 0. Then P G 5(C)*. Since S(C)0 is open, there exists an 
x G 1/ with P G Pz,0*0 £ S(C)4>. This implies that x g P , hence x g 7, and 
therefore x ^ d for some d ^ D. Thus, there exist a prime ideal Q with 
* & Q,d G Q. We then have Q G P^(x), Q G 5(C)0, a contradiction. This 
completes the proof of Theorem 3. 

To investigate S(D)<f), we need a notation. Let x ^ D mean that x ^ d for 
all d Ç D; x $ Z> is the negation of x g D. 

THEOREM 4. 77ie ma£ <f> is a homeomorphism of S(D) with the subspace S(D)<j> 
of S(L) if and only if for x ^ D, the set {d\ x g d, d G P} &as a k ^ element dx. 

Proof. Let us assume that 0 is a homeomorphism, and let x G £ such that 
x d£ D and {<Z| x ^ J, d G Z?} has no smallest element. Then for all d G D with 
x ^ d there exists a dx G Z> with x ^ di < d, and therefore there exists a 
prime ideal P of L with d g P and dx G P . Hence P Pi D G Pz>(0, but 
P r\D £ \QnD\Q G £*(*)}. Thus, j M d ) g {(?P£>| Ç G P^(x)} for all 
d £ D, and therefore the latter is not open in S(D)<j>; hence, <f> is not a 
homeomorphism. 
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Conversely, if the condition holds, then the formula 

(3.1) {P r\ D\ P £ RL(x)} =RD(dx), 

shows that <t> is a homeomorphism. To establish (3.1), note that the left side is 
always contained in the right side. Now let P Ç RD(dx). Note that x g (P], 
since x G (P] implies that x S P for some p £ P, and thus dx ^ p, contradicting 
dx G P. Therefore, x G (P]; that is, (P] G RL(%), and hence by Theorem 1, 
(P] r\ D = P , proving the reverse inclusion in (3.1). This concludes the proof 
of Theorem 4. 

COROLLARY. / / the conditions of Theorem 4 are satisfied, then (and only then) 
<f> is a homeomorphism of S(C) U S(D) and S(L), where S(C) U S(D) is the 
disjoint union of S(C) and S(D) with sets of the form {Rc(a) U RD(dx)) with 
a G C, x G Fa as a base for the topology. (We set dx = 1 for x ^ D.) 

Proof. Using the formula 

(3.2) dx A dy = dxAy, 

it is easy to check that (Rc(a) ^ RD(dx))<t> = RL(%)> proving the Corollary. 
The proof of (3.2) is straightforward, and will be left to the reader. 

4. Completeness. Suppose that the Stone lattice L is given by the triple 
(C, D, <j>) (we assume that the elements of L are of the form (x, a), x G a4>, as 
in the Construction Theorem). How can we tell whether L is complete? 

THEOREM 5. The Stone lattice L is complete if and only if the following conditions 
are satisfied: 

(1) C is complete; 
(2) D is conditionally complete; 
(3) for each £ Ç D , the set CE = {a\ a G C and A (dpa\ d G E) exists} has a 

greatest element in C. 

Proof. Let L be complete. (1) easily follows from x S x**, since this means 
that any lower bound of some H Ç C can be majorized by an element of C; thus 
C is a complete sublattice of L. (2) is trivial. To verify (3), let E Cl D, and 

A « d f l > | d € E ) = (e,a). 

We claim that a is the largest element of CE> We obtain a G CE easily, since 
dpa = d V a' ^ e V a' = e (recall that e G a<t> = {x\ x G D, x ^ af\) ; hence, 
Epa is bounded from below by ey and thus /\Epa exists. Now assume that 
/ = /\Eph exists. Since xph ^ b' for all x G D, we have / G &<£, and hence/p& = / . 
We claim that (f, &) is a lower bound for E; indeed, Eph = {x V è'| x G £ } , 
hence/ ^ x V & ' for all x £ E, and therefore/ A & ^ (x V &') A & = x A 6 ^ x, 
proving (/, 6 ) = / A b ^ (x, 1 ), for all x £ E. Since A ^ = (e, a ), we conclude 
that (f,b) ^ (e, a) , in particular, b S a, which was to be proved. 
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To prove the converse, let ( l ) - (3) hold. As a first step we verify the following 
formula: 

(4.1) (A (*| x 6 Dx))pa = A (*P«| x e £>i) for flÇC,DiÇB, 

provided D\ is bounded from below. 
Indeed, for d G Di, /\D± ^ d, hence (/\Di)pa ^ dpa, and therefore 

(/\Di)pa S A (dpa\ d G Di), proving that the left side is contained in the right 
side in (4.1). 

On the other hand, for d G D\, d\ = A (dpa\ d G D\) S dpaj hence 

d\ A dpa> ^ dpa A dpa> = dpaya> = d 
and thus 

di A A ( 4 ' M 6 A) ^ ADi. 
This implies that 

(di A ( A P i W ) P a ^ (using ^ in (4.1) for a') [̂ i A (A(dpa>\d G A)]p« 

^ (APi)Pa; 
thus, 

^ 1 ^ ^ i P a = ^ I P a A ( A ^ l ) P a ' A a ^ ( A ^ l ) P a , 

proving the reverse inclusion in (4.1). Thus, (4.1) is true. 
Now let M C L, G = {x| (d, x) G M for some d G £>}, a = A<G and let ô 

be the greatest element of G-, where E = {d| (d, x) G ikf, for some x £ C}. 
Finally, put d = /\ (ypb\ y G E). We claim that A M exists and equals (d,a A b ). 
Let g G G, and h £ E. Then g ^ a A b, hpaAb = hpapb ^ d, hence 

<d,a A b) S (g, h), 

and therefore (d, a A b) is a, lower bound for M. Suppose that (g, c) is a lower 
bound for M. Then c ^ & for b G G, and e ^ dpc. But then e ^ dpc ^ dpapf, 
and thus /\{{dpa)pc\ d G E) exists, which implies, by the definition of b, that 
c ^ b. Now, we have a A b = ( A G ) A b ^ c, and 

dpc = (A(dPap,\ d G E))Pc = (by (4.1))A(dpaPbPc\ d G E) 

= A (<WC| de E) ^e, 

establishing (e, c) S (df a A b). Thus, (d, a A b) = AM. Therefore, arbitrary 
meets exist in L, that is, L is complete. 

Remark. I t is easily seen that if Theorem 5 (2) holds, then the set CE defined 
in Theorem 5 (3) is always an ideal. Hence, Theorem 5 (3) requires that CE be 
principal. 

A similar proof yields the analogue of Theorem 5 for m-complete lattices. 

COROLLARY 1. Let L be given by the triple (C, D, <f>). If C and D are complete, 
then so is L. 

In this case, CE — G which has 1 as a greatest element. 
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COROLLARY 2. Let L be given by (C, D, <j>). If C is finite and D is conditionally 
complete, then L is complete. 

In this case, CE 
is an ideal of a finite Boolean algebra, hence CE is principal. 

For complete Stone lattices, C and D are not independent. The following 
result describes those Boolean algebras C for which C and D are always 
independent. 

THEOREM 6. Let C be a complete Boolean algebra. For any conditionally 
complete distributive lattice D with 1 there exists a complete Stone lattice with 
C = C(L), D = D(L), if and only if C has an atom. 

Proof. Suppose that C has an atom, p, and D is a conditionally complete 
distributive lattice with 1. Define <t>\ C —> 0(D) by 

(A for a $ p\ 

Then Theorem 5 (3) is obvious for (C, D, <j>) since the largest element of CE 

will always be p' (if E is not bounded from below) or 1. 
Conversely, suppose that for any conditionally complete distributive 

lattice D with 1 there exists a <j>: C —> 3ï(D) satisfying Theorem 5 (3). Choose 
a D such that D is not complete and the centre of 2iï{D) contains two elements 
only (e.g., let £& be the chain of negative integers). Choose a 4>\ C —> St(JX) 
satisfying Theorem 5 (3). Then CD has a greatest element, say a. I t is easy to 
see that a' must be an atom, since the kernel of the homomorphism <j> is a prime 
ideal P of C, and P = (a). This completes the proof of Theorem 6. 

5. Closing remarks. A lattice L is called a relative Stone lattice if every 
closed interval of L is a Stone lattice; see (2). 

THEOREM 7. L = (C, D, </>) is a relative Stone lattice if and only if D is a 
relative Stone lattice. 

Proof. Since D is a convex sublattice of L, "only if" is obvious. Now assume 
that D is a relative Stone lattice. For every x ^ L , [0, x] is always a Stone 
lattice; hence, to show that L is relatively Stone, it suffices to prove that [y, 1] 
is Stone for all y Ç L. Put y = (d, b ), let (x, a) £ [ (d, b ), (1, 1 )]. Let x0 be the 
pseudo-complement of xpb in [d, 1] (Ç D, hence Stone). A routine computation 
shows that the pseudo-complement of {x, a) in [(d, 6), (1, 1)] is (x0, a' V b). 
Thus, if xi is the pseudo-complement of XQ in [d, 1], then (xi, a ) is the pseudo-
complement of (xo, o! V b) in [(d, 6), (1, 1)]. Compute: 

(x0, a' V 6> V (xi, a ) = <(x0pa' A Xi) V (xipaA6' A x0), 1) 

= ((XoP&Pa' A Xi) V (Xip ap6 'p6 A X0) , 1 ) = (Xo V Xi, 1 ) = ( 1 , 1 ) , 

completing the proof. 
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Let L = (C, D, </>). Let 9 be the congruence relation of C induced by <f>, that 
is, x = y{B) if and only if x<f> = y<j>. Set G = C/Q. We call (G, D, </>i) the 
reduced triple associated with L, where <j>\ is defined by ([x]0)$i = x<t>. 

Note that every reduced triple is a triple, hence it defines a Stone lattice Li, 
which is a homomorphic image of L by the homomorphism (x, 1 ), where x is 
the natural homomorphism of C onto C/9; for the notation see (1, § 5). 
Furthermore, G is isomorphic to a subalgebra of the centre of £ï{Di). 

There are several unsolved problems in connection with the triple approach 
to Stone lattices and the results given in (1) and in this paper. We list a few of 
these problems. 

Problem 1. Determine the triple (C{n), D{n), <t>{n) ) associated with the free 
Stone lattice FSL(w) on n generators. (C(n) is easily seen to be the free Boolean 
algebra on n generators.) 

Problem 2. Determine the reduced triple associated with FSL(w). 

Problem 3. Determine the injective and projective Stone lattices. 

Problem 4. Characterize the partially ordered set P{D) of prime ideals of a 
distributive lattice D. 

Problem 5. Characterize P(D) if D is assumed to have 1. Is the only difference 
between the conditions of Problems 4 and 5 that in the latter every element of 
P(D) is contained in a maximal one? 

Problem 6. Solve the "fill in" problems for complete Stone lattices. 

Note added in proof. FSL(^) has been determined by R. Balbes and A. Horn 
{Stone lattices, Duke Math. J., to appear). Injective Stone lattices and finite 
projective Stone lattices have been described by R. Balbes and G. Gràtzer 
{Injective and projective Stone algebras, Notices Amer. Math. Soc. 16 (1969), 
407). 
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