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Abstract

‘We consider the uniqueness of an entire function and a linear differential polynomial generated by it. One
of our results improves a result of Li and Yang [‘Value sharing of an entire function and its derivatives’,
J. Math. Soc. Japan 51(4) (1999), 781-799].

2010 Mathematics subject classification: primary 30D35.

Keywords and phrases: entire function, linear differential polynomial, uniqueness.

1. Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions in the open complex plane C.
For a € CU {co}, we say that f and g share the value a CM (counting multiplicities)
or IM (ignoring multiplicities) if f —a and g — a have the same set of zeros counting
multiplicities or ignoring multiplicities, respectively.

In 1976, Rubel and Yang [10] first considered the problem of uniqueness of an
entire function f when it shares two values CM with its derivative f” and proved the
following theorem.

TueoreM A [10]. Let f be a nonconstant entire function. If f and f’ share two values
aand b CM, then f = f’.

Considering f(z) = ¢ foz e~ (1 — e')dr [12, page 386], one can easily verify that
sharing of two values is essential.

In 1979, Mues and Steinmetz [9] improved Theorem A replacing CM shared values
by IM shared values. In 1990, Yang [13] extended Theorem A to any kth-order
derivative f® of the entire function f. In 2000, Li and Yang [8] improved the result of
Yang [13] and settled a conjecture of Frank [2] (see also [12, page 394]) affirmatively.
Their result can be stated as follows.

Tueorem B [8]. Let f be a nonconstant entire function, k a positive integer and a and
b two distinct finite values. If f and f® share a and b IM, then f = f®.
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The natural extension of a derivative of an entire function f is a linear differential
polynomial generated by f. In 1994, Gu [3] extended Theorem A to a linear differential
polynomial. In order to state the result, we recall the definition of a small function: a
meromorphic function a = a(z) is called a small function of a meromorphic function f
if T(r,a) = S(r, f), where S (r, f) stands for any quantity satisfying S (r, f) = o(T'(r, f))
as r — oo possibly outside a set of finite linear measure.

Tueorem C [3]. Let f be a nonconstant entire function, a and b be distinct finite
complex numbers and L(f) = f™ + a; fV + -+ + a, f, where aj(j=1,2,...,n)are
small entire functions of f. If f and L(f) share a and b CM and a + b # 0 or a,, £ —1,
then f = L(f).

The following theorem of Bernstein ef al. [1] is an improvement of Theorem C.

Tueorem D [1]. Let f be a nonconstant entire function, a and b be distinct finite
complex numbers and L(f) = by f"™ + by_1 f"D + -+ + by fO + by f, where the b;
(j=0,1,2,...,n) are small meromorphic functions of f. If f and L(f) share a and
b CM, then f = L(f).

In contrast to the derivative of an entire function, we see in the following examples
that it is not possible in the case of a linear differential polynomial to replace any CM
shared value by an IM shared value.

Exampie 1.1. Let f =1+ (¢° — 1)* and L(f) = %f(z) — f. Then f and L(f) share 1
IM and 2 CM but f # L(f).

Exampie 1.2 [7]. Let f = 1e° + $e™@ and L(f) = f@ + f1. Then f and L(f) share 1
and —1 IM but f # L(f).

Although one IM shared value and one CM shared value cannot ensure the equality
of an entire function with a linear differential polynomial generated by it, Li and Yang
[7] exhibited two possibilities in the following theorem.

Tueorem E [7]. Let f be a nonconstant entire function and
L) =boy+ ) bif?, (1.1)
j=0

where b (j =—1,0,1,...,n) are small meromorphic functions of f. Let a and b be two
distinct finite values. If f and L(f) share a CM and b IM, then either f = L(f) or f and
L(f) have the following forms: f = b + (a — b)(e® — 1)?> and L(f) = b + (a — b)(e® — 1),
where « is an entire function.

For two meromorphic functions f and g, let us denote by NE(r, a; f,g) the
reduced counting function of those common a-points of f and g that have the same
multiplicities. We put 7(a) = liminf,_,. Ng(r, a; f,g)/N(r, a; f) if N(r,a; f) # 0 and
7(a) = 1 if N(r, a; f) =0. Wang [11] improved Theorem E in the following manner.
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Tueorem F [11]. Let f be a nonconstant entire function and L(f) be defined by (1.1).
If f and L(f) share two distinct finite values a and b IM and t(a) > (n + 2)/(n + 3) for
one of the shared values, say a, then the conclusion of Theorem E holds.

Since t(a) > 1 — 1/(n + 3), we may suspect that f and L(f) enjoy the advantage of
sharing the value a CM in some sense, at least for large values of n.

If we look again at Theorem E, then we see that in the case of nonequality of f
and L(f), almost all the b-points of f and L(f) are double and simple, respectively,
whereas the a-points of f and L(f) are almost all simple. In fact, we shall show that
the simple a-points and b-points of f play a decisive role to ascertain the equality of
f and L(f). Also, we shall see that the simple a-points of f still play a crucial role
even if the other value b is shared IM. To this end, we need the following idea of value
sharing.

DerinitioN 1.3. Let f and g be meromorphic functions and a € C U {oco}. We denote by
E(a; f) the set of all distinct a-points of f.

Let A c C and k be a nonnegative integer or infinity. We denote by Ej(a; f, A)
the collection of those a-points of f that belong to A, where an a-point of f with
multiplicity p is counted p times if p <k and k + 1 times if p > k+ 1.

Also by N4(r, a; f) we denote the reduced counting function of those a-points of
f that lie in A. We now put A = E(a; f) N E(a; g) and B = E(a; f)AE(a; g), where A
denotes the symmetric difference of sets.

We shall say that f and g share the value a with weight & in the weak sense, written
gmbolically f, g share (a, k), if Ex(a; f,A) = Ex(a; g,A) and NB(r,a;f) =S(r, f) and
Np(r,a;8) = S (1, 8).

It is clear that if f, g share (a, k)*, then f, g share (a, p)* for every integer p with
0 < p < k. Further, f, g share (a,0)* if and only if f, g share the value a IM* and f, g
share the value a CM* if f, g share (a, c)*. For the definitions of IM* and CM*, we
refer to [7]. We further note that the notion of weighted sharing in the weak sense
coincides with that of weighted sharing (see [5, 6] for the definition) if B = 0.

If a = a(z) is a small function of f and g, then we shall say that f, g share (a, k)* if
f —aand g — a share (0, k)*.

We now state the results of the paper.

THeOorREM 1.4. Let f be a nonconstant entire function and L(f) be defined by (1.1).

Suppose that a and b are two distinct finite complex numbers. If f and L(f) share
(a, )" and (b, 1)*, then f = L(f).

By virtue of Examples 1.1 and 1.2, we see that the weight of the sharing of none of
a and b can be reduced to zero. However, in such a case we can prove the following
result, which improves Theorem E.

THeEOREM 1.5. Let f be a nonconstant entire function and L(f) be defined by (1.1).
Suppose that a and b are two distinct finite complex numbers. If f and L(f) share
(a, )" and (b,0)*, then the conclusion of Theorem E holds.
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As consequences of Theorems 1.4 and 1.5, respectively, we obtain the following
corollaries.

CoroLLARY 1.6. Let f be a nonconstant entire function and L(f) be defined by (1.1).
Suppose that a and b are two distinct finite complex numbers. If f and L(f) share a, b
IM and f and L(f) have the same set of simple a-points and b-points, then f = L(f).

CoroLLARY 1.7. Let f be a nonconstant entire function and L(f) be defined by (1.1).
Suppose that a and b are two distinct finite complex numbers. If f and L(f) share
a, b IM and f and L(f) have the same set of simple a-points, then the conclusion of
Theorem E holds.

Li and Yang [7] exhibited by an example that Theorem E is not valid for
meromorphic functions. However, they proved the following extension of Theorem E.

TueorEM G [7]. Let f be a nonconstant meromorphic function with N(r, f) = S(r, f)
and L(f) be defined by (1.1). Let a (¥ o) and b (# ) be two distinct small functions
of f. If f and L(f) share a CM* and b IM", then either f = L(f) or f and L(f) have
the following forms: f = b + (a — b)(e® — 1)> and L(f) = b + (a — b)(e® — 1), where «
is an entire function.

It is possible to improve Theorems 1.4 and 1.5 along the lines of Theorem G.

For a meromorphic function f and a € CU {0}, we denote by Nk)(r, a; f)
(respectively Ny (r, a; f)) the reduced counting function of a-points of f with
multiplicities at most (at least) k. For standard definitions and notations of value
distribution theory, we refer to [4] and [12].

2. Lemmas

In this section we present necessary lemmas. The first is a consequence of the
second fundamental theorem.

Lemma 2.1. Let f and g be two meromorphic functions sharing (a,0)*, (b,0)* and
(00,0)*, where a and b are two distinct finite complex numbers. Then

T(r,)<3T(r,e)+S(r,f) and T(r,g) <3T(r, f)+S(r,g).

Note. Lemma 2.1 implies that S (r, f) = S (7, g).
The following lemma can be proved in a similar manner to [7, Lemma 5].

Lemma 2.2. Let f be a nonconstant entire function and L(f) be defined by (1.1). Let a
and b be two distinct finite complex numbers. If f and L(f) share (a,0)* and (b, 0)",
then

T(r, f) = N(r,a; f) + N(r,b; f) + S (1, f),
provided f # L(f).
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3. Proofs of the theorems
Proor oF THeorEM 1.4. Let g = L(f) and
oo SU-0
(f—a)(f-Db)

Since f and g share (a, 1)*, (b, 1)* and (o0, 0)*, by Lemma 2.1, S(r,g) = S(r, f). We
suppose that f # g. Then, by the hypothesis, N(r, ¢) = S(r, f). Since

B 1-by( af bf’ b_i f f jf(j)
¢_a—b(f—a_f—b)_a—b(f—a_f ) Z

from the lemma of the logarithmic derivative we see that m(r, ¢) = S(r, f) and so
T(r,¢) =S f).

Let zp be a zero of f — a with multiplicity p (> 2) and a zero of g —a with
multiplicity g (> 2). Then zg is a zero of ¢ with multiplicity at least min{p,q} — 1 > 1.
Hence,

No(r,a; f1g=a,22) <N(r,0;¢) = S, f),

where N(z(r, a; f | g = a,> 2) denotes the reduced counting function of those multiple
a-points of f which are also multiple a-points of g. Since f and g share (a, 1)*,

No(r,a; f)=No(r,a; flg=a,>2)+ No(r,a, flg=a,=1) =S, f),

where N(g(r,a; f1g=a,=1) denotes the reduced counting function of multiple a-
points of f which are also simple a-points of g. Similarly, N(z(r, b; f)=S 1.
In view of Lemma 2.2, we consider the following cases.

Case I. N(r,a;f) #S(r, f). We put

p=-*%
=

S
~
I
S

Since f and g share (b, 1)*,

N(r,B) = N(r,8) < No(r,b; f) + S (r, ) = S (1, f).

Since m(r, 8) = S (r, f), we obtain T'(r,8) = S(r, f).
Now, from the definition of ¢,

foa_,_8-b
1) I 1 % (3.1)
Differentiating (3.1) and using (3.1) again,
f f’
0. 3.2
(p+B)—— = f +¢' —¢B= (3.2)

Since N(r, a; f)#S(r, f)and N(z(r, a; f)=S(r, f), it follows from (3.2) that ¢ + 5= 0

and so ., , , ,
VA | f

¢ g-b f-D
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Integration gives ¢(f — b) = cf’(g — b), where ¢ is a nonzero constant. Now, using the

definition of ¢,
f—g=c(f—a)g-D). (3.3)
From (3.3),
-b -1
ST
and

3.5
= (3.5)

Since f and g share (a, 1)* and (b, 1)*, it follows from (3.4) and (3.5) that

c

N(r, ac — l;f)zﬁ(r,();f;:

Jsﬁdnhﬂ+5@ﬂ=5@ﬂ

and

—obetl | — —ay — _
N(r, et g) - N(r, 0:8 “) <No(ra:g) +S(rg) = No(r.a, f) + S(r.g) = S(r,g)
C

f—a
and, by the second fundamental theorem,
T(r,f) = N(r,a; f) + S(r, f) (3.6)
and
T(r,g)=N(r,b;g)+ S(r,g) = N(r,b; )+ S(r, 9). 3.7
From (3.6) and (3.7) and Lemma 2.2, we find that T(r, g) = S(r, g), which is a
contradiction.

Case II. N(r,b; f) # S(r, f). We put

Since f and g share (a, 1)*,

N(r,y) = N(r,y) < No(r,a; f) + S(r, ) = S (1, f).

Also, m(r,y) = S(r, f) and so T(r,y) = S(r, f).
From the definition of ¢,

f-b g—a
=1- 3.8
' T (3.8)
Differentiating (3.8) and using (3.8) again,
f LAY _
(¢+7)f—b_¢7+¢ -v¢$=0. (3.9)
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Since N(r, b; f) # S(r, f) and No(r, b; f) = S(r, f), from (3.9) we get ¢ +y = 0. So,
fN ¢/ + gl f/

¢ g-a f-a

Proceeding as in Case I,

=0.

be -1

N(ng; g)=S(r, g and N(r, : f)=S(r, .

By the second fundamental theorem, we have T'(r, f) = N(r, b; f)+S(r f) and
T(r,g) = N(r,a; g) + S(r,g). Since N(r,a;g) = N(r,a; f) + S(r, g), it follows from
Lemma 2.2 that T(r,g) = S(r,g), which is a contradiction. This proves the
theorem. |

Proor oF THEOREM 1.5. Let g = L(f) and define ¢ as in the proof of Theorem 1.4.
Since f and g share (a, 1)*, (b,0)" and (oo, 0)*, by Lemma 2.1, S(r, f) = S(r, g).
Suppose that f # g. By the hypothesis, T(r, ¢) = S(r, f). Since f and g share (a, 1)*,
as in the proof of Theorem 1.4, N(z(r,a;f) =S, f).

We first suppose that N(r, b; f)=S(r, f). Then, by Lemma 2.2, N(r, a; )+ S f).
Proceeding as the proof of Case I of Theorem 1.4,

T(r,g) = N(r,b;8) + S(r,8) = N(r,b; f) + S (r,8) = S (, 8),

which is a contradiction. Therefore, N(r, b; f) # S (r, f). Now, proceeding as the proof
of Case II of Theorem 1.4, we obtain (3.9).
Suppose that ¢ + v = 0. Then, from (3.9),

f/l ¢/ g/ f/
— -t —=—-——=0
"¢ g-a f-a
Integrating (3.10) and using the definition of ¢,
al(f-g=g-a(f-Db), (3.11)

where ¢; is a nonzero constant. Let z; be a b-point of f with multiplicity p and a
b-point of g with multiplicity g. From (3.11), it follows that p < g. By the Taylor
expansion in some neighbourhood of z;, we get f(2) —b = a,(z — 21)" + O(z — )Pt
and g(z) — b =B,z — 21)7 + O(z — z1)7*!, where @3, # 0.

We suppose that p < g. Then, in some neighbourhood of z;,

f(2)—gx)  ap+0(—-2z1)

f@Q-b  a,+0G@-z)
Therefore, putting z = z; in (3.11), we get ¢; = b — a and so again from (3.11) we
obtain (f — a)(g — b) = 0, which is a contradiction. Therefore, p = g and so f and g

share (b, 00)*. Then, by Theorem 1.4, f = g, which is a contradiction.
Hence, ¢ + v £ 0. So, from (3.9),

Ny(r,b; f) S N0 +7) + S(r, ) = S(r, /).

(3.10)
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Let 7z be a b-point of f with multiplicity greater than or equal to n + 2. If
7 is a b-point of g, then, from (1.1) and the hypothesis, b = b_1(z;) + bby(zp). If
b # b_1(z) + bby(z), then

Ns2(r,b; f) < N(r,b; by + bbg) + S(r, f) = S(r, f).

If b = b_1(2) + bbo(2), then, from (1.1), g = f = (bo = )(f = b) + X/, b;f. Hence,
if 7o is not a pole of any one of b; (j = 0,1,2,...,n), then z, is a multiple zero of g — f
and so is a zero of ¢. Therefore, N(,Hz(r, b; f) < N(1,0;¢) + Z?:o N(r,00;b;) = S(r, f).
Hence, in any case, N(,Hg(r, b; =S [).

Next let z3 be a b-point of f with multiplicity p (2 < p <n + 1). If z3 is not a pole
of ¢’ — ¢y, then we see from (3.9) that ¢(z3) + py(z3) = 0.

We suppose that ¢(z) + py(z) # 0 for any p € {2,3,...,n+ 1}. Then, from above,

n+1

Ny, b £) = Niy(r b £) < )" NG, 056+ py) + N(r, 003 ¢ = ¢y) = S (1, f)
p=2

and so N,..1)(r, b; f) = S(r, f). Therefore,

N(1,b; ) = Nty (1, b5 ) + Nasa(r, b3 f) = S (1, f),

which is a contradiction. Therefore, there exists a p € {2,3,...,n + 1} such that
#(z) + py(2) = 0. Then, from (3.9),
1 ’ 4 7 ’ ,
(1 ) oo e I o

-+

— 4
f=b f ¢ g-a f-a
Integrating and using the definition of ¢,

(f =8 =cf - b)g—a), (3.12)

where ¢; is a nonzero constant. Suppose that N(r, a; f) = S (r, f). Since f and g share
(a,1)*, we have N(r, a;g)=S(r, f)=S(rg). So, f and g share the value a CM*. Then,
by Theorem G, there exists an entire function « such that f = b + (a — b)(e” — 1)%.
Hence, f —a = (a — b)e”(e” — 2) and so

N(r,a; f) = N(r,2;€") + S (r,€") = T(r,e") + S (r, ") = 1T (r, f) + S (1, f),

which is a contradiction. Therefore, N(r, a, )8, ).

Let z4 be an a-point of f and g with respective multiplicities g and s. From (3.12),
we see that s < g. We suppose that s < g. From (3.12), ¢, = (—=1)?/(a — b). So, again
from (3.12),

f=b+(=DPa-b)(h-1) (3.13)
and Dh 1
L a=b)-1

7 [(=1)P(h =1~ + 1],

g=>
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where i = (f —a)/(g — a). Since f is entire, from (3.13), we see that £ is also entire.
Also, (3.13) implies that
pT(r,h)=T(r, f)+ S f).

Further, we see that N(r,0; h) < No(r,a; f) + S(r, f) = S(r, f) = S (r, h). Therefore,
by the second fundamental theorem, N(r, d; h) # S(r, f) for a complex number d
(# 0, 00) with (=1)”(d — 1)P~! +1 = 0. Since f and g share (b, 0)*, we must have p = 2.
Hence, f —a = (a—b)h(h—2)and g —a = (a — b)(h — 2). Since z4 is a common zero of
f —aand g — a, we have s = ¢, which is a contradiction to the supposition. Therefore,
f and g share (a, c0)*. Now we achieve the result by Theorem G. This proves the
theorem. o
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