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SINGULAR INTEGRALS SUPPORTED BY
SUBVARIETIES FOR VECTOR-VALUED FUNCTIONS

HONGHAI LIU

Abstract. In this paper, we show that singular integrals supported by

subvarieties are bounded on Lp(Rn; X) for 1 < p <∞ and some UMD space X.

In the terminology from operator space theory, we prove that singular integrals

supported by subvarieties are completely Lp-bounded.

§1. Introduction

Let X be a Banach space, Γ : Rk→ Rn be a C∞ mapping. Let K be a

Calderón–Zygmund kernel in Rk, that is, K is homogeneous of degree −k,

smooth away from the origin, and∫
Sk−1

K(t) dσ(t) = 0.

To Γ we associate vector-valued singular integrals TΓ defined for f ∈
S (Rn; X) as follows:

TΓf(x) = p.v.

∫
Rk
f(x− Γ(t))K(t) dt.

In addition to the classical case n= k and Γ(t) = (t1, t2, . . . , tn), much

effort has been devoted to the question of whether the mapping properties

of singular integral operators could be extended to the Lebesgue–Bôhner

spaces Lp(Rn; X) (1< p <∞) of vector-valued functions. In [1], Benedek

et al. proved that the boundedness on Lp0(Rn; X) for one 1< p0 <∞ of a

singular integral operator, together with Hörmander’s condition, implies

its boundedness on Lp(Rn; X) for all 1< p <∞. But, it is significantly

difficult to get the Lp0(Rn; X)-boundedness except in the case X = Lp0(Ω)

for some measure space Ω. In this direction, Burkholder [4] showed that if

the underlying Banach space X satisfies the so-called UMD-property, that is,
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102 H. LIU

X is an UMD space, then the Hilbert transform is bounded on Lp(R; X) for

any 1< p <∞. Moreover, the UMD-property was shown by Bourgain [3] to

be necessary for the boundedness of the Hilbert transform. The analogue

statement also holds for Riesz transforms, which can be found in [12]. It

is well known that Riesz transforms are prototypes of singular integral

operators and Fourier multipliers, their boundedness motivates McConnell’s

[9] and Zimmermann’s [19] results on vector-valued Marcinkiewicz–Mihlin

multipliers, and motivates Hytönen and Weis’s [6] results on vector-valued

singular convolution integrals.

On the other hand, TΓ is well understood when X = R. TΓ belongs to the

class of singular Radon transforms which is connected with the ∂-Neumann

problem for pseudo-convex domains [10] and the boundary behavior of

Poisson integral on symmetric spaces [16]. An exposition of the background

and related references are to be found in [14]. In particular, Stein [17] proved

TΓ is also bounded on Lp(Rn), where Γ(t) = (P1(t), P2(t), . . . , Pn(t)) with

Pj being polynomials in t ∈ Rk.
The purpose of my project is to extend the singular integrals theory to

a more general setting. More precisely, I am interested in the boundedness

of TΓ on Lebesgue–Bôhner spaces Lp(Rn; X) for some UMD spaces X and

smooth surfaces Γ. In fact, I was motivated by the work of Rubio de Francia

et al. [12]; they obtained the boundedness of the Hilbert transform along

well-curved curve on Lp(Rn; lq) for 1< p, q <∞. So, I start my project by

studying the higher- dimensional version and proved the following result:

Theorem A. (See [7]) Let P(t) = (P1(t), P2(t), . . . , Pn(t)) with Pj being

polynomials in t ∈ Rk. TP is bounded on Lp(Rn; lq), 1< p, q <∞; the bounds

for the operator do not depend on the coefficients of the polynomial P, but

only on the total degree of P.

Note that lq is a prototype of UMD spaces. Then, I continued the project

and considered the boundedness of the Hilbert transform along homoge-

neous curves and convex curves on Lp(Rn; X) for some UMD spaces X;

see [8]. Naturally, it is an interesting problem to extend Theorem A to some

more general UMD spaces. Therefore, I study the boundedness of singular

integrals TP on Lp(Rn; X) for 1< p <∞ and some UMD spaces X in this

paper.

To present our main result, we need to give some notations. The first

definition was introduced by Burkholder [4].
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Definition 1.1. A Banach space X is an UMD space if for some

(equivalently, all) p ∈ (1,∞) there is a positive constant C such that∥∥∥∥∥
N∑
k=1

εkdk

∥∥∥∥∥
Lp(µ,X)

6 C

∥∥∥∥∥
N∑
k=1

dk

∥∥∥∥∥
Lp(µ,X)

,

whenever (dk)
N
k=1 ∈ Lp(µ,X)N is a martingale difference sequence and

(εk)
N
k=1 ∈ {−1, 1}N .

The second notation is due to Berkson and Gillespie [2].

Definition 1.2. The class I consists of those UMD spaces X which are

isomorphic to a closed subspace of a complex interpolation space [H,Y]θ,

0< θ < 1, between a Hilbert space H and another UMD space Y.

Remark 1.3.

(1) I contains almost all standard examples of UMD spaces. In 1986, Rubio

de Francia [13] proved that for any UMD lattice X of functions on

a σ-finite measure space there exists θ ∈ (0, 1), Hilbert space H and

another UMD lattice Y such that X = [H,Y]θ. So, every UMD lattice

belongs to I. But I also contains the Schatten–von Neumann ideals

C p = [C 2, C q]θ, 1/p= (1− θ)/2 + θ/q. C p, p 6= 2, do not have local

unconditional structure, then, they are not Banach lattices.

(2) In [13], Rubio de Francia posed an open problem, “Is every B ∈
UMD intermediate between a ‘worse’ B0 and a Hilbert space?”. Its

significance is results in UMD spaces can be proved by interpolating

with the estimates available in arbitrary UMD spaces and the stronger

ones that one can get in a Hilbert space. Thus it is interesting to know

if I actually contains all UMD spaces.

The main result of this paper is the following theorem:

Theorem 1.4. Let X ∈ I, P(t) = (P1(t), P2(t), . . . , Pn(t)) with Pj being

polynomials in t ∈ Rk. Then for 1< p <∞ there exists a constant Cp > 0

such that

‖TPf‖Lp(Rn;X) 6 Cp‖f‖Lp(Rn;X).

The constant Cp may depend on X, k, n and the total degree of P, but it is

independent of the coefficients of P.
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Remark 1.5. Obviously, Theorem 1.4 is an extension of Stein’s result

[17] and Theorem A; the extension is not trivial. In fact, in [17] and [7], it

is significant to get the Lp boundedness for the analytic family of operators

Tz, where Re(z) is negative. The boundedness on L2 obtained with the help

of the Fourier transform and Plancherel theorem, together with Hörmander

condition implies the boundedness on Lp for all 1< p <∞. For general

Banach-valued functions, we cannot use Fourier transform and Plancherel

theorem to get the boundedness on L2(Rn; X) as a priori estimate. It

turned out to be a significantly more difficult task to get the boundedness

without a priori estimate even for the single p. So, we have to appeal to

new techniques.

The paper is organized as follows. In Section 2, by using method of

descent for vector-valued functions, we imply Theorem 1.4 under the

assumption that singular integrals associated to monomials are bounded

on Lp(Rn; X). Finally, in Section 3, we show the boundedness of singular

integrals associated to monomials on Lp(Rn; X).

§2. Proof of Theorem 1.4

Let P(t) = (P1(t), P2(t), . . . , Pn(t)), d denotes the maximum degree of

the polynomials Pj(t). We consider the collection of all monomials tα with

1 6 |α|6 d, let N denote the number of these monomials. We work in RN ,

whose coordinates are labeled by the multi-indices α with 1 6 |α|6 d, that

is, RN = {(xα)16|α|6d}. Let p be a polynomial map from Rk to RN , precisely,

p(t) = (tα)16|α|6d. For f ∈S (RN ; X), we define singular integrals by

Tpf(x) = p.v.

∫
Rk
f((xα − tα)16|α|6d)K(t) dt.

Clearly, it can be looked as a model case of TP . To prove Theorem 1.4, we

accept the following inequality for a moment,

(2.1) ‖Tpf‖Lp(RN ;X) 6 Cp‖f‖Lp(RN ;X),

which will be proved in the next section.

We also need the method of descent for vector-valued functions that

allows us to pass from results about operators in one RN to corresponding

operators on another Rn. The following lemma is a vector-valued version

of Ricci and Stein’s “method of transference” (see [11, Proposition 5.1] and

[18, p. 483]); it can be proved in a similar way.
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Let T be given by convolution with a distribution dµ, Tf = f ∗ dµ, where

f is an appropriate vector-valued function on RN . We fix a linear mapping

L from RN to Rn; the operator TL is defined by

TLf(x) =

∫
RN

f(x− L(z)) dµ(z),

where f is an appropriate vector-valued function on Rn. In fact, TL is a

convolution operator on Rn with the dµL, where dµL is defined by∫
Rn
f(x) dµL(x) =

∫
RN

f(Lz) dµ(z).

Lemma 2.1. Suppose L : RN → Rn is a fixed linear mapping as above.

Then the norm of the operator TL acting on Lp(Rn; X) does not exceed the

norm of T acting on Lp(RN ; X) for 1< p <∞.

To prove Theorem 1.4, we define a distribution dµ on RN by∫
RN

f(x) dµ(x) = p.v.

∫
Rk
f(p(t))K(t) dt.

Then, Tpf = f ∗ dµ. We set

Pj(t) =
∑

16|α|6d

ajαt
α.

Using the coefficients ajα, we define a linear mapping L : RN → Rn, where

the coordinates of L(x) are given by

L(x)j =
∑
α

ajαxα

with x= (xα) ∈ RN . dµL is given by∫
Rn
f(x) dµL(x) = p.v.

∫
Rk
f(L(p(t)))K(t) dt= p.v.

∫
Rk
f(P(t))K(t) dt.

By Lemma 2.1, we have

‖TP‖Lp(Rn;X)→Lp(Rn;X) 6 ‖Tp‖Lp(RN ;X)→Lp(RN ;X).

Finally, the boundedness of Tp on Lp(RN ; X) implies our main result.
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§3. Proof of (2.1)

First, we define a one-parameter family of dilations relevant p, which is

given by

x 7→ δ ◦ x= (δ|α|xα)16|α|6d

for x ∈ RN . We also define related norm

ρ(x) = [|xα1 |2a1 + |xα2 |2a2 + · · ·+ |xαN |2aN ]
1

2|α1|···|αN | ,

where ai =
∏
j 6=i |αj |, the quasi-distance is ρ(x, y) = ρ(x− y). It is trivial

that ρ(δ ◦ x) = δρ(x), we also have the following properties:

Lemma 3.1. If ρ(x) > 1, then ρ(x) 6 |x|; If ρ(x) 6 1, then |x|6 ρ(x).

For z ∈ C, we define an analytic family of operators T zp by

T̂ zp f(ξ) =mz(ξ)f̂(ξ),

where mz are given by

mz(ξ) = {ρ(ξ)}zp.v.
∫
Rk
e−2πiξ·p(t)|t|zK(t) dt.

Obviously, T 0
p is the original operator Tp.

3.1 The boundedness of T zp on L2
(
RN ; H

)
In this subsection, we prove that

‖T zp f‖L2(Rn;H) 6 C(z)‖f‖L2(Rn;H),

where Re(z)< 1
d and C(z) grows at most polynomially in (1 + |Im(z)|).

Clearly, the boundedness of T zp on L2
(
RN ; H

)
is equivalent to the uniform

boundedness of mz(ξ). Thus, we just need to show that

(3.1) |mz(ξ)|6 C(z).

Suppose that ψ ∈ C∞0 (Rk) is radial, vanishes near the origin and satisfies∑
j∈Z

ψ(2jt) = 1, t ∈ Rk\{0}.

For j ∈ Z, we also define mz
j by

mz
j (ξ) = {ρ(ξ)}z

∫
Rk
e−2πiξ·p(t)|t|zK(t)ψ(2jt) dt.
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Then we have equations

mz(ξ) =
∑
j∈Z

mz
j (ξ) =

∑
j∈Z

mz
0(2−j ◦ ξ).

With above preparation, we begin the proof of (3.1).

Proof. For fixed ξ with ρ(ξ) 6 1, we have

|mz
0(ξ)| = {ρ(ξ)}Re(z)

∣∣∣∣∫
Rk
e−2πip(t)·ξ|t|zK(t)ψ(t) dt

∣∣∣∣
= {ρ(ξ)}Re(z)

∣∣∣∣∫
Rk

[e−2πip(t)·ξ − 1]|t|zK(t)ψ(t) dt

∣∣∣∣
6 C(z)|ξ|6 C(z)ρ(ξ).

Note that p(t) is of finite type at each point, and is indeed of type at most

d. For ρ(ξ)> 1, by [18, Theorem 2 of Chapter 8] and Lemma 3.1, we have

|mz
0(ξ)| = {ρ(ξ)}Re(z)

∣∣∣∣∫
Rk
e−2πip(t)·ξ|t|zK(t)ψ(t) dt

∣∣∣∣
6 C(z){ρ(ξ)}Re(z)|ξ|−1/d 6 C(z)ρ(ξ)Re(z)−1/d.

Finally, we use above two estimates and the fact Re(z)< 1
d , then

|mz(ξ)|=

∣∣∣∣∣∣
∑
j∈Z

mz
0(2−j ◦ ξ)

∣∣∣∣∣∣ 6
∑

ρ(2−j◦ξ)61

|mz
0(2−j ◦ ξ)|

+
∑

ρ(2−j◦ξ)>1

|mz
0(2−j ◦ ξ)|

6 C(z)ρ(ξ)
∑

ρ(ξ)62j

2−j + C(z){ρ(ξ)}Re(z)−1/d

×
∑

ρ(ξ)>2j

2−j[Re(z)−1/d]

6 C(z).

3.2 The boundedness of T zp on Lp(Rn; Y)

The next goal is to prove that

(3.2) ‖T zp f‖Lp(RN ;Y) 6 C(z)‖f‖Lp(RN ;Y), 1< p <∞,−β < Re(z)< 0,
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where β is some positive constant and C(z) grows at most polynomially in

(1 + |Im(z)|).
In [18, p. 514], the L2 boundedness of analytic singular integrals, together

with Hörmander condition, implies the boundedness on Lp for all p ∈ (1,∞).

This argument is also true for a general situation of vector-valued functions.

In Hilbert space, the L2 boundedness is obtained for free with the help of

the Fourier transform and Plancherel’s theorem. However, for general UMD

space Y, Plancherel’s theorem does not hold anymore; it is a difficult task

to get the boundedness of analytic singular integrals on L2(RN ; Y), even

for any single p0. The following theorem gives the conditions on the singular

kernel to yield a singular integral operator bounded on Lp(RN ; Y), which

is a partial generalization of [5, Corollary 4.2] and can be prove in a similar

way.

Theorem 3.2. Let Y be an UMD space, and K ∈S ′(RN ). The

anisotropic dilations are given by δλx= (λb1x1, λ
b2x2, . . . , λ

bNxN ) with

bi > 0, the respected norm function is denoted by ρ(x). Suppose K has the

homogeneity property λbK(δλx) = K(x) with b=
∑
bi, K also satisfies the

following conditions

|K̂(ξ)|6A0,

and

(3.3)∫
ρ(x)>C0ρ(y)

(K(x− y)−K(x)) logN (e+ ρ(x)) dx6A1 logN (2 + ρ(y))

for some C0 > 6. Then f ∈S (RN ; Y) 7→K ∗ f extends to a bounded linear

operator

f ∈ Lp(RN ; Y) 7→K ∗ f ∈ Lp(RN ; Y)

with norm at most C(A0 +A1), where C is a geometric constant.

We now use Theorem 3.2 to prove (3.2). We set ∆ =
∑

16|α|6d |α|. For

−∆< Re(z)< 0, hz(x) and Kz(x) are given by

ĥz(ξ) = {ρ(ξ)}z and K̂z(ξ) =mz(ξ),

respectively. Obviously,

Kz(x) = p.v.

∫
Rk
hz(x− p(t))|t|zK(t) dt.

For f ∈S (RN ; Y), we see that

T zp f(x) =Kz ∗ f(x).
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It suffices to verify Kz satisfying conditions in Theorem 3.2. So, we need

the following lemma which can be found in [14, p. 1272].

Lemma 3.3. Let hz and Kz be given as above. Then hz(x) is a locally

integrable function, C∞ away from the origin satisfying

hz(λ ◦ x) = λ−∆−zhz(x), λ > 0, x 6= 0.

Moreover, each derivative of hz(x) is bounded by a polynomial in |z|, if

ρ(x) = 1. In particular, Kz has the homogeneity property λ∆Kz(λ ◦ x) =

Kz(x).

According to the Fourier estimate in Section 3.1, we obtain that

|K̂z(ξ)|= |mz(ξ)|6 C(z) when Re(z)<
1

d
.

To verify Kz satisfying (3.3), we may assume that ρ(y) = 1 and just need

to prove that

(3.4)

∫
ρ(x)>C0

|Kz(x− y)−Kz(x)| logN (e+ ρ(x)) dx6 C(z).

In fact, we set λ= ρ(y) and y′ = y/λ. Obviously, ρ(y′) = 1. By a linear

transformation x= λ ◦ x′, notice the homogeneity of Kz, we have∫
ρ(x)>C0ρ(y)

|Kz(x− y)−Kz(x)| logN (e+ ρ(x)) dx

=

∫
ρ(x′)>C0

|Kz(x
′ − y′)−Kz(x

′)| logN (e+ λρ(x′)) dx′.

If λ= ρ(y) > 6, it is trivial that

log(e+ λρ(x′)) 6 log(e+ λ) + log(e+ ρ(x′)) 6 log(e+ λ) log(e+ ρ(x′)),

where we use the fact C0 > 6. By (3.4), we obtain∫
ρ(x)>C0ρ(y)

|Kz(x− y)−Kz(x)| logN (e+ ρ(x)) dx

6
∫
ρ(x′)>C0

|Kz(x
′ − y′)−Kz(x

′)| logN (e+ ρ(x′)) dx′ logN (e+ ρ(y))

6 C(z) logN (e+ ρ(y)).
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When λ= ρ(y)< 6, using (3.4), we have∫
ρ(x)>C0ρ(y)

|Kz(x− y)−Kz(x)| logN (e+ ρ(x)) dx

6 2n
∫
ρ(x′)>C0

|Kz(x
′ − y′)−Kz(x

′)| logN (e+ ρ(x′)) dx′

6 C(z) 6 C(z) logN (e+ ρ(y)).

To prove (3.4), we define K1
z and K2

z by

K1
z (x) =

∫
|t|61

hz(x− p(t))|t|zK(t) dt and K2
z (x) =Kz(x)−K1

z (x),

respectively. We split the integral as∫
ρ(x)>C0

|Kz(x− y)−Kz(x)| logN (e+ ρ(x)) dx

6
∫
ρ(x)>C0

|K1
z (x)| logN (e+ ρ(x)) dx

+

∫
ρ(x)>C0

|K1
z (x− y)| logN (e+ ρ(x)) dx

+

∫
ρ(x)>C0

|K2
z (x− y)−K2

z (x)| logN (e+ ρ(x)) dx.

To estimate first two summands, we need a estimate related to hz, which

can be found in [14, p. 1273]. The homogeneity of hz and the smoothness

of hz away from 0 imply that

(3.5) |hz(x− y)− hz(x)|6 C(z)
|y|

{ρ(x)}∆+Re(z)+µ

for some µ > 0, provided |y|/|x| is sufficiently small.

We set β = min{µ, 1}. For the first integral, by using Fubini theorem and

(3.5), we have∫
ρ(x)>C0

|K1
z (x)| logN (e+ ρ(x)) dx

6
∫
ρ(x)>C0

∫
|t|61
|hz(x− p(t))− hz(x)||t|Re(z)−k dt logN (e+ ρ(x)) dx

6
∫
|t|61
|t|Re(z)−k

∫
ρ(x)>C0

|hz(x− p(t))− hz(x)| logN (e+ ρ(x)) dx dt
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6
∫
|t|61
|t|Re(z)−k|p(t)|

∫
ρ(x)>C0

ρ(x)−[∆+Re(z)+µ] logN (e+ ρ(x)) dx dt

6
∫
|t|61
|t|Re(z)−k|p(t)|

∫
SN−1

∫ ∞
C0

r−[1+Re(z)+µ] logN (e+ r) dr dω dt

6 C(z),

where we use the fact that −β < Re(z)< 0 and coordinatize RN by r and

ω with r = ρ(x) and ω = 1
r ◦ x.

The norm function ρ(x) has the property of ρ(x+ y) 6 c(ρ(x) + ρ(y)) for

some c > 0 (see [14, Propositions 1–9]). Specially, we set C0 > max{6, 3c}.
Note that ρ(x− y) > 1

cρ(x)− ρ(y) > C0
c − 1 > 2 and ρ(x) 6 c[ρ(x− y) +

ρ(y)] 6 cρ(x− y) + c. Using a linear transformation, the second summand

can be treated as the first one, then∫
ρ(x)>C0

|K1
z (x− y)| logN (e+ ρ(x)) dx

6
∫
ρ(x)>2

|K1
z (x)| logN (e+ c+ cρ(x)) dx

6 C(z).

Finally, using Fubini theorem, we have∫
ρ(x)>C0

|K2
z (x− y)−K2

z (x)| logN (e+ ρ(x)) dx

6
∫
|t|>1

∫
ρ(x)>C0

|hz(x− y − p(t))− hz(x− p(t))|

× logN (e+ ρ(x)) dx|t|Re(z)−k dt.

We divide the inner integral above according to the distance between x and

p(t). Note that ρ(y) = 1, if |y|/|x− p(t)| is sufficient small, that is |x− p(t)|
is away from the origin, we can get that ρ(x− p(t)) > C1 for an appropriate

constant C1. In this case, by (3.5) and a linear transformation, we obtain

the following estimate∫
|t|>1

∫
ρ(x)>C0

ρ(x−p(t))>C1

|hz(x− y − p(t))− hz(x− p(t))|

× logN (e+ ρ(x)) dx|t|Re(z)−k dt
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6 C(z)

∫
|t|>1

∫
ρ(x)>C0

ρ(x−p(t))>C1

|y|
{ρ(x− p(t))}∆+µ+Re(z)

× logN (e+ ρ(x)) dx|t|Re(z)−k dt

6 C(z)

∫
|t|>1

∫
ρ(x)>C1

1

{ρ(x)}∆+µ+Re(z)

× logN (e+ cρ(x) + ct) dx|t|Re(z)−k dt

6 C(z)

∫
|t|>1

∫
ρ(x)>C1

1

{ρ(x)}∆+µ+Re(z)

× {logN (e+ ρ(x)) + logN (e+ t)} dx|t|Re(z)−k dt

6 C(z),

where we have used the fact that for fixed |t|> 1, ρ(x) 6 c[ρ(x− p(t)) +

ρ(p(t))] = c[ρ(x− p(t)) + t].

It is trivial that ρ
(
x+ y + p(t)

)
6 c2[ρ(x) + ρ(y) + ρ(p(t))] = c2[1 +

ρ(x) + t]. Then, the remainder can be controlled by∫
|t|>1

∫
ρ(x)>C0

ρ(x−p(t))6C1

[|hz(x− y − p(t))|+ |hz(x− p(t))|]

× logN (e+ ρ(x)) dx|t|Re(z)−k dt

6
∫
|t|>1

∫
ρ(x)>C0

ρ(x−p(t))6C1

|hz(x− y − p(t))| logN (e+ ρ(x)) dx|t|Re(z)−k dt

+

∫
|t|>1

∫
ρ(x)>C0

ρ(x−p(t))6C1

|hz(x− p(t))| logN (e+ ρ(x)) dx|t|Re(z)−k dt

6 C

∫
|t|>1

∫
ρ(x)6c(C1+1)

|hz(x)| dx|t|Re(z)−k logN (e+ t) dt

6 C(z),

where we have used the fact that hz is locally integrable.

3.3 Analytic interpolation

To complete the proof of (2.1), we use a vector-valued extension of Stein

interpolation theorem [15].

Note that X = [H,Y]θ for some Hilbert space H, UMD space Y and

θ ∈ (0, 1). For fixed H and Y, there exists a constant C(z) growing at most
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polynomially in (1 + |Im(z)|) such that

(3.6) ‖T zp f‖L2(RN ;H) 6 C(z)‖f‖L2(RN ;H) when Re(z)<
1

d
,

and

(3.7)

‖T zp f‖Lq(RN ;Y) 6 C(z)‖f‖Lq(RN ;Y) when − β < Re(z)< 0, 1< q <∞.

Obviously, (3.7) also holds in particular with Y = H.

For 1< p <∞, we chose θ1 ∈ (0, 1), 0< σ0 <
1
d , −β < σ1 < 0 and q1 ∈

(1,∞) such that

σ0(1− θ1) + σ1θ1 =: σ2 > 0,
1

p
=

1− θ1

2
+
θ1

q1
.

Interpolating between (3.6) and (3.7) with Y replaced by H, we have

(3.8) ‖T zp f‖Lp(RN ;H) 6 C(z)‖f‖Lp(RN ;H) when Re(z) = σ2 > 0.

For fixed θ, we choose −β < σ3 < 0 such that 0 = (1− θ)σ2 + θσ3. In the

same way, interpolating between (3.8) and (3.7) with q = p, we obtain

‖Tpf‖Lp(RN ;X) = ‖T 0
p f‖Lp(RN ;X) 6 C‖f‖Lp(RN ;X).

This completes the proof of (2.1).
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