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Abstract. We consider one-parameter families of torus diffeomorphisms that bifurcate
from global hyperbolic maps (Anosov) to DA maps (derived from Anosov). For an
open set of these families, we show that the Hausdorff dimension and limit capacity
of the nonwandering set are not continuous across the bifurcation. We also study
the behaviour of equilibrium measures near the bifurcation.

0. Introduction
In [10] Smale showed that global hyperbolic (Anosov) diffeomorphisms on the
torus can be modified to get Axiom A diffeomorphisms whose nonwandering set
consists of a fixed source and a one-dimensional attractor (DA maps). It is a natural
question to ask if the dimension of the nonwandering set varies continuously during
the process of construction of these DA diffeomorphisms. In [4] McCluskey and
Manning gave an affirmative answer to this question; however their proof is incorrect
as pointed out by Manning in [6]. In fact we show here that the result itself is false:
in general just the opposite is true. We prove for an open family of arcs of C2

diffeomorphisms from Anosov to DA with a nondegenerate saddle-node bifurcation,
that the Hausdorff dimension and limit capacity are discontinuous, since at the
bifurcation value they are strictly smaller than 2. On the other hand, we can also
show that these dimensions may have continuous variations across a degenerate
bifurcation from Anosov to DA maps. Another interesting question ([2, Chapter
6]) is to describe the behaviour of equilibrium states of DA maps near the bifurcation.
We prove that for arcs with generic saddle-node bifurcations as above the equilibrium
states of log |£>/,|^| (where E\ denotes the stable bundle of/,) converge to the Dirac
measure supported at the saddle-node.
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1. Basic definitions and statement of results
Let M be a compact surface. We recall some results on Hausdorff dimension and
limit capacity of basic sets of diffeomorphisms on M. For Hausdorff dimension
these results are mostly due to McCluskey and Manning [4]. Elementary proofs
and further informations were provided in [8]. See Takens [11] for the relation
between Hausdorff dimension and limit capacity.

For X a metric space and a > 0 we define the a-measure of X by

ma(X) = sup inf {ma{

where
ma(<U)= I (diam (U))a

and the infimum is taken over all countable covers of X by sets with diameter less
than e. It is not hard to see that there is a unique number, the Hausdorff dimension
of X, denoted by HD(X), such that, for a<HD(X), ma(X) = °o, and, for
a>HD(X), ma(X) = 0.

The limit capacity of X is defined by

d(X) = lim sup log n(X, e)/log e~\

where n(X,e) is the minimum number of e-balls that cover X.
It is easy to see that both Hausdorff dimension and limit capacity are invariant

by Lipschitz homeomorphisms and that d(X)>HD(X) for all X.
Recall that a compact A <= M is a basic set for a diffeomorphism / of M if it is

invariant, hyperbolic, transitive, has a dense subset of periodic orbits and it is the
maximal invariant set for/ in a neighbourhood U of A ([3]). For a basic set A the
values of HD{An Ws{x,f)) and d(An Ws(x,f)) are independent of xeA and
called stable Hausdorff dimension (HDS(A)) and stable limit capacity (d*(A)) of
A, respectively. Dually we define HDU(A) and du(A). In this case

HDi(A) = d'{A), i = s,u,
and

HD(A) = HDS(A) + HD"(A) = d°(A) + d"(A) = d(A).

Moreover these invariants depend continuously on the diffeormorphism in the sense
that HD'(Ag) and d'(Ag), i = s, u, are continuous functions of g (in the C1 topology)
where Ag = Ong"(U) is the analytical continuation of A for g close t o /

We now sketch the construction of DA arcs (see Williams [13] for details). Let
GeGl(Z,2) have eigenvalues A and A"1,0< A < 1< A"1, and g be the Anosov
diffeomorphism on T2 = R2/Z2 induced by G. Denote by 0 the fixed point of g.

We deform g by isotopy to construct an arc (/,), of C2 diffeomorphisms such
that (see figure 1):
(1) /_, = g and / is Anosov for / <0 (we denote A, = T2)
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( = 0 r>0

FIGURE 1

(2) /o has a fixed quadratic saddle-node point p0, near 0, and T2 = int (W(p0)) u Ao

with Ao compact, invariant and transitive
(3) for t> 0 the saddle-node splits into two fixed points, a source q, and a saddle

p,; / , is Axiom A, T2= W(q,)uA, and fl(/,) = ,, where A, is a one-
dimensional hyperbolic attractor, locally homeomorphic to the product of a
Cantor set and an interval.

For Theorem A we need some technical hypothesis whose statement is postponed
to § 2. We point out that these hypotheses are satisfied by an open set of arcs of
diffeomorphisms.

THEOREM A. Let (/,), be an arc of C2-diffeomorphisms as above, satisfying conditions
(C1)-(C5) o/§2. Then:
(a) §<HD(A0)<2,
(b) linwo+ HD(A.) = HD(Ao),
(c) HD(A0) = d(A0).

Since HD(A,) = 2 for / < 0 the upper bound in (a) implies that HD(A,) is not
continuous at t = 0, although by (b), it is continuous on the right. As d(A,) = HD(A,)
for all t T* 0 (see above) (c) implies analogous facts for the limit capacity.

We now consider a different construction of DA maps. Let g be deformed by
isotopy through an arc of C2-diffeomorphisms (/,), such that:
(1) /_, = g and / , is Anosov for t <0.
(2) For/o there is a nonhyperbolic fixed saddle point 60 near 0, with eigenvalue 1,

andn( / 0 )=T 2 .
(3) For t > 0, 0O splits into three fixed points: a source 6, and two saddles p, and

q,;f, is Axiom A, T2 = A, u W(d,) and fl(f,) = A, u {0,}, A, being a hyperbolic
attractor.

In this case we state:
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THEOREM B. Let {/,), be an arc of C2-diffeomorphisms as above satisfying conditions
(C1)-(C5) of §2. Then:

lim HD(A,)= Mm d(A,) = 2.
r-»O+ /-«O+

Since HD(At) = d(A,) = 2 for t <0, it follows immediately from Theorem B that
the Hausdorff dimension and the limit capacity of the non-wandering set are
continuous along the arc.

Let A be a compact metric space and / : A-» A an expansive map. The pressure
of a continuous real function <p : A -» R is defined by

1
P(<p)=limsup-logsup £ exp

n

/n-l \

l I <*>(/'(*),
\ 0 /

where the supremum is taken over («, 5)-separated sets E and S is an expansive
constant for/|A. By the variational principle (Walters [12])

where the supremum is taken over /-invariant Borel probability measures. An
equilibrium state for <p is an /-invariant measure fi such that P(<p) = hfi(f)+l tpd^.
If A is a basic set of an Axiom A diffeomorphism f then equilibrium states exist
and are unique for all Holder continuous functions (Bowen [1]).

Let <f>s, = log \D'f,\, where Dsf denotes the derivative of/, in the stable direction.
Theorem A allows us to give a description of the behaviour of the equilibrium states
of </>*, near the bifurcation.

THEOREM C. Let (/,), be as in Theorem A and /i, be the equilibrium state for <f>s,.
Then /A, -* S as t-* 0+, where 8 is the Dirac measure supported at the saddle-node.
Moreover S is the unique equilibrium state for t)>s

0.

These results are proved in the sections below. In order to simplify the notations
we will in what follows omit the subscript t = Q (and so write / for f0, p for p0,
A for Ao, etc), except where dependence on t is directly involved.

2. The unstable foliation
If fl is a basic set of a C2 diffeomorphism on a surface then (Hirsch and Pugh [3])
the unstable foliation &» of ft, defined by 9?u

x= W(x) for xeft, is differentiable
in the sense that its holonomy projections can be extended to C1 mappings. This
is still true for the non-hyperbolic attractor A = Ao. In fact we prove somewhat more:

PROPOSITION 2.1. Under conditions (C1)-(C5) below, there is an f-invariant C1

foliation &>u of T2 whose leaves are uniformly expanded by f and such that A is
^"-invariant (i.e. it is a union of 3>u-leaves).

Proof. The proposition follows from essentially the same argument as the hyperbolic
case, so we only sketch here the main ideas. Consider (local) coordinates (£ 17) on
T2 such that

https://doi.org/10.1017/S014338570000506X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000506X


Discontinuity of Hausdorff dimension 407

= DTT{X)-V" and — U(x) = DTT(X) • vs for all x e R2,
n(x) dV

where v" (resp. vs) is some expanding (resp. contracting) eigenvector of G. Take
the Riemann metric on the torus for which {d/d£|z, d/dr)\z} is an orthonormal basis
of T2(T

2) for all zeT2 (for our purposes it does not matter which Riemann metric
we use since they are all Lipschitz equivalent). Let / ( £ TJ) = (<f>($, rj), i/>(£ 77)) be
the local representation of/ We assume that
(Cl) |^j ' |<A + e,
(C2) \<f>n\<e,

(C3) |<fc|<e,
(C4) | ^ | < ( l + e),
(C5) \i//ri\<X + e outside a small neighbourhood Q of the non-hyperbolic fixed

point p (resp. d0 in Theorem B),
where e > 0 is such that (l + e)-(A + e ) < l . Then (minor additional restrictions on
the value of e > 0 may still be needed), the methods of [3] can be used to construct
a 1-dimensional, C1 vector bundle on T2, £",suchthat Df\E« is uniformly expanding.
Let &" be the integral foliation of E". Since int (W"(p)) is ^"-invariant (f1 is
contracting on the leaves of ^", and moreover 3'u{p)= W"(p)), the same holds
for A = (int (W"{p)))c. This ends the proof of the proposition. •

Remark 2.2. In particular, projections along the leaves of 3>^ = &" are Lipschitz
continuous. Now, conditions (C1)-(C5) persist for small perturbations o f /= / 0 , so
the arguments above also yield the unstable foliation 2F" of A,, for all small values
of /. Moreover, by the uniformity of the construction we get that Lipschitz constants
for the holonomy maps of &" may be taken independent of t (small). We will use
this fact in § 6 and § 7.

From the proposition (and the remark) it follows that A, is locally Lipschitz
homeomorphic to &"(x) x (£x n A,), where £x is any (small) section transversal to
&? at xeA,. Then

and (Marstrand [7])

On the other hand, again by Proposition 2.1 (see [8] for example), </(£* (~) A,) and
HD(£X P | A,) are independent of Y.x and x€ A,. We denote their values by ds(A,)
and HDS(A,) respectively. Since HD(A,)<d(A,) for all t this reduces the proof
of Theorems A and B to proving, respectively,

THEOREM A'. Under the hypothesis of Theorem A
(a) !<//D*(A0)<l,
(b) HDS(A,)->HDS(AO) as t^0+,
(c)
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THEOREM B'. Under the hypothesis of Theorem B

A,)^1 ast-*0+.

We end this section by showing that/is uniformly contractive on Ws(p), outside
some small neighbourhood Q of p (recall (C5)). Note first that, if e > 0 is small,
then TzW

s(p) must be almost vertical (relative to coordinates (£17)) at all point
ze Ws(p). In fact, suppose that for some ze Ws(p), the angle between TzW*(p)
and the ^-direction were not small. Then, by conditions (C1)-(C5), it would be
increased by Df" and we would get TpW\p) = limn Tr(z)W

s(p) nearly horizontal.
This is absurd because Df expands in the ^-direction. So that angle must be
(uniformly) small. Now, conditions (C1)-(C5) (specially (C5)), imply that \Dsf(z)\ <
Ao, for all z € Ws(p) - Q, where A < Ao < 1 and Dsf(z) = Df\ Tlw\P)- This is what we
wanted to prove.

3. HDS{AO)<\
First we introduce some notations. In what follows < is the natural ordering in
W = Ws(p) - {p} such that f(x) < x for all xeW. Denote the length of a connected
subset I of W(p) by 1(1). Define a u-rectangle to be an open set 5 contained in
W"(p), whose closure is an imbedded rectangle bounded by W"(60), W""(p) and
two segments of W'(p). The union of the segments of W(0O) and Wuu(p) bounding
5, is denoted by d"S.

To prove that HDS(A) < 1 it is sufficient to find /3 e (0,1) and a sequence (<%„)„
of coverings of A n Wfoc (p) such that diam °Un -> 0 and (m0(

aUn))n is bounded. Let
Aobeaw-rectanglewith{0o,.p}c:d1'Aoandxe Wn W(0o),ye Wn Wm(p) be the
two smallest (for the < ordering) elements of Wnd"A0. Let GJ = (fJ(x),f{y)),
j > 0, and Cj = [f(y),f'1(x)],j > 1, and take (A;)yaOto be a sequence of w-rectangles

FIGURE 2
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such that
(PI) Ajn[p,y] = Gj,
(P2) f(Aj) => AJ+1 for all j > 0 and
(P3) there is fcsl such that for every connected component C of W-({J^ Aj)

either dC<= (a^^ud" /* , ) , j > 2 , or 3Cc(a"i40uaMj) for some j , l<j<fc
(see figure 2).

Replacing / by fk we can, and do, assume k = 1.
Let <£ be the family of connected components of W —(Uo'-A/) and, for y > l ,

«, = {Ce«:aCcd"AjuduA,_,}. We define

[/>,x]:C €<<?}, n>0.

Note that <%„ is not really a covering of An [p, x] since it fails to cover some of
the points in Wu(p)n[p, x] (more precisely: every point in W"(p)n[p, x] is
eventually not covered by °Un). However this is unessential because Wu(p) n [p, x]
is countable and Hausdorff dimensions of spaces differing by a countable set of
points are equal.

Since diam <&„ -> 0 it is now enough to find /J € (0,1) such that m^ (%0) < °° and
(m/3(

(%n))n is non-increasing. Let U =/"""'(C)€<%„_,, C e i . If Ce%,j>2, then
%_,. If Ce "g, then/~'(C) can be written

where the G) are connected components of WnAj and the Cje <£,. Note that /
cannot be arbitrarily large because Kf~\C)) is uniformly bounded above and the
distance in W between connected components of W n Ao is uniformly bounded
below. It follows that U =f(f~lC), either is also an element of °Un, or can be written

U = (U\uV\v -)u(V§u[/?u V?u- • • )u • • -u(V'ou U[u V[u • • •),
with Vj=/"(GJ), l/j=/"(Cj)€%n and / uniformly bounded. To get
«„(<&,,) asm,, (%,,_,) we should show that 2 U (/(t/j)f s (/(£/))* for all (7 e <«„_,
(and some suitable )3e(0,1) independent of £/ and n). This is done by taking
x'j = /(t/j)//( £/), yj = /(V'j)/l( U) and z; = l([f{x),f-l(x)]) in the following lemma.

LEMMA 3.1. Given / s i , a > 0, 6 > 0, a e (0,1) and (z,)jai a sequence in [0,1]
Xr z° <oo, f/iere w /3 = /3(/, a, />, a, (Zj)j) e (a, 1) SMC/I r/iaf /or a// sequences {x
and (y'j)jzl, 1 < i< /, I/I [0,1] satisfying

MlyiXj + yj)*!
(2) xj < aj'j for allj s 1 and 1 < i < /
(3) (xj + yj)<fcz,/ora//./>l and l < i < /

We leave the proof of this result to the end of this section and proceed now to
find a e (0,1), a>0 and b>0 such that the sequences (z,),, (xj); and (yj)y above
satisfy the conditions in Lemma 3.1.

LEMMA 3.2. Y.T / ( [ / ( x ) , / " ' W F converges, for all a>\.
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Proof. Let cp:[0, +00)-» Ws{p) be the parametrization of Ws(p) by arc-length
and /=<p"1°(/|^(p,)°(p:[0,+oo)^[0,+oo) and denote Xj, = <p~\f(x)).
Since p is a quadratic saddle-node for / there are to>O and a^O such that
f - 2 a , f 2 < / ( 0 s f - a , r 2 for all 0 < t < r o . Take m>\ such that xm<f0 and
ma^o—1 and let a2 = max{wj • xm, a]"1}. By induction we have XjSa2/j for all
j2:m:

Xj s a2/y < a2/m =s to=>xj+1 =/(x,) ^f(a2/j) < a2/j - a, a ! / /

It follows that, for j > m,

and this clearly implies the lemma. •
Observe that

so Lemma 3.2 already implies that mp(%) <oo for all /3 e (1/2,1).
The next result is the main step in the proof of Theorem A. We postpone its proof

to §4.

LEMMA 3.3. (Distortion Lemma). There is c>0 such that ^ / ( / ( C u G ) ) < c / o r
all connected component C of W — ({J1?Aj) and all connected components G of
Wn(\Jo Aj) with

The sequences (xj = l( t/j)//( U))j and (y) = l( Vj)//( [/)),- that we are considering,
clearly, satisfy condition (1) in Lemma 3.1, so we are left to find a>0 and b>0
as in (2) and (3). This is done in the following corollaries of the Distortion Lemma.

COROLLARY 3.4. There is a>0 such that for all C and G as in Lemma 3.3 we have
a"1 < /(/"(C))//(/"(G)) ^afor all n >0.

Proof. Every C e <t? can be written as C =f(C0) for some/>0 and Co€ <<?,, so we
can assume from the beginning that C e •<?, andf G is a connected component of
WnA0 or WnAt. We note that the set of values of (l(C)/l(G)) for such C and
G is bounded away from 0 and +00. Now, for « > 0,

for some £ e C, 77 e G. This can be written

[/(/"(C))//(/"(G))] = [/(C)//(G)] exp ( f (log IZJ'/K/f) -log

s [/(C)//(G)] exp ( u p (log |DS/|) • l ' l(f(Cu G))

< [/(C)//(G)] exp (c Lip

for some universal a > 0. The other inequality is obtained in the same way and this
completes the proof of the corollary. •
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COROLLARY 3.5. There is b > 0 such that for C e i ,

/or a// Q G "£, and G, a connected component ofWnAj, with (C, u Gj) ^f~l{C), and
all n > 0.

Proo/ As in the proof of Corollary 3.4 we get

< [/(C, u G. exp ^Lip (log |DS/|) V / ( r ' ( C ) ) V

Note that /(C,uG,)<r- I([fJ(x), fJ~\x)]), where r>0 i s a Lipschitz constant for
the unstable holonomy projection 7r"(see § 2). Then

[l(fn(Cj u G,))//(/n- '(C))]< rfe, exp (Lip (log \D'f\) • (bx + c))

with fe!>0 such that b^1^ l{j~l(C))^bx, for all C e i , . The other inequality
follows in the same way. The proof of the corollary is complete. •

We end this section by proving Lemma 3.1.

Proof of Lemma 3.1. Since
I(xj)^(l + a-1)^I(xj + >'j)̂

and
(l + a"1)"^^(l + a"1)"1<l when/3-M,

it is sufficient to show that £ o (xj + yj)'3 is close to £,-; (xj + ̂ j)< 1, for /? close to
1. Now, for a < / 3 < l ,

Let 5>0 and take n > l such that XJ>n zj<5/2/6° and )8 close to 1 so that
(f"-f)<S/2/« for all £e[0,1]. Then

I [(xj + jj)" -(xj + ̂ j)]=s /n (5/2/«) + /ba(5/2/b") = 5.

This proves the lemma. •

4. Proo/ 0/ the distortion lemma
For the sake of clearness we divide the proof into three steps:

Step 1. Let C and G be as in the statement of the lemma. Clearly (l(f(C u G)))js0

is decreasing and l(f+1(C u G)) < A0/(/(C u G)) whenever / ( C u G)nQ = <f>.
Moreover ( / ( C u G))>s0 is a disjoint family. To prove this we only need to show
that supH(/(Cu G))sinf l v (Cu G), since f\w: W-> W is a homeomorphism with
/(x) < x for all x e W. Let G = (a, 0) and C = [/3, y] with a < 0 < y. Then:
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(Hi) / (y)<a( / (y)> a implies /~'(a)e (/?, y) and this is absurd since

r'(U^uA,)<=(u^%)).
Case a > /5 > y is analogous.

Step 2. Let Gj = (f(x),f(y)), j>0, and C, = [/(y),/-1(x)], >>1. Clearly
l(G0)+ZT l(CjU Gj) = l([p, y]). We claim that there is a, >0 such that, for all /, /
intervals in W contained in (Cku Gk) (resp. Gfc_,u Ck) for some fc>l, we have

aTViD/KJ)] s [/(/"(/))//(/"(/))] s ai[/(/)//(/)]

for all n > 0. To prove this we write:

[\DTU)\/\DT(v)\]

= [/(/)//(/)] exp ̂  I* (log iD'/K/f) -log |D

s [/(/)//(/)] • exp^Lip (log |D'/1) V

s [/(/)//(/)] • exp (Lip (log |DS/1) • /([/», y])),

where ^ e / and 77 e / The other inequality is obtained in the same way.

Step 3. Take 0 = m o s no< m, < n, < • • • < ms < n, < ms+l = 00 such that
(i) f(C u G) n Q = (j> for m, <y < nt and

(ii) / ( C u G) n Q ̂  <f> for n, <y < mI+1, 0< 1 < 5,
and write

I/(/(CuG))=i (Y/(/(CuG)) + m'l '((/(CuG))). (1)
0 i = 0 \j = m, j = nt I

Note that, by Step 1,

at least for /' > 0, and
l(r+'(CuG))<l(f(CuG))

for all 1 > 0. Therefore

and, by induction,
/(/m»'(CuG))<A|,/(CuG)

for all / s: 0. Hence

£ "l '(/(Cu G)) < £ V Ai-' • /(f(Cu G))

s nf. - 1 / oo \ 2

— Z Z ^"' '•^o~1'(CuG)<Aollj]Aj)J a2, (2)

where a2 is a uniform upper bound for l(C u G), with C and G as in the statement
of the lemma.

Now we estimate Z^n!~* Kf(CvG)). Consider first i = 0 and define for / > 0 ,

H?=/ ' (77 u ( /"o(CuG))) ,
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where IT" : Q -* \_p, y] is the projection along the leaves of &u in Q. Then, by Step
1, (#?)/=<> is disjoint, so

I ! ( / ( C u G ) ) < r I /(H?)< r • l([p, y]),

where r is a Lipschitz constant for TT" (see figure 3). Define now, for i > l , />0,

H'

—

^

:

r

—

—

\ -

-—___

J

-V;;;;. x

•

FIGURE 3

Since both (//?); and (//)), are disjoint families we must have (HQU H'O) contained
in some fundamental domain (Ck u Gk) (or Gt_, u Ck) of W. Therefore, by Step 2,

u G))][l(/"(Cu G))//(/"»(C u G))]

for all / > 0. It follows that

I /(/(CuG))<rX 1{H\)
7 = n, />0

/>0

Finally we get

The lemma now follows from (l)-(3).

(3)

•
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5. ( 0 ) ( 0 )
In order to prove that the Hausdorff dimension and the limit capacity of A n [p, x]
are equal we need to refine the analysis of § 3. Our argument uses ideas from the
proof of the corresponding result in the hyperbolic case, see Takens [11].

We begin by noting that for every C e <£, there are:
(i) intervals / / , , . . . , Hk covering f~\C), and

(ii) for each l s i < t , TT,":Hx,-*[p,x] an ^"-holonomy which is an r-Lipschitz
homeomorphism with r-Lipschitz inverse (see figure 4).

Moreover k and r may be taken independent of C e <£,.

FIGURE 4

We now construct a sequence (3V")nsi of coverings of An[p,x] . These will be
used to give estimates of HD{A n [p, x]) and d( A n [p, x]) which imply their equality.
Define

where Kj = [fi(y),fJ'1(x)]. Note that, for all j>\,

Therefore (recall §3)

rJ(Kj) = (Cl u Gl u C)au • • •) u Glo

u (C]j u G]X U C\2u • • • )"-1' ' ' ^ Gj0

u(CJ,,uGJ,1uCJ,2u---)

with CjK € (€k, G
s
jk a connected component of Wn Ak and /> 1 uniformly bounded
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above by some / 0 2 l . Let Ks
jtk=fJ(Clk)c Kj and define

3if2 = {*:;,»: ; > 1 , It > 1 and 1 < s < / ( j ) </„}.

Note that for all Ks
lk e X2 we have

ro+*)+1(KJfc)e«i.

Suppose now already constructed

x" = {KL~J.:Ji ^ 1, ...,./„> 1 and l < s < /(./ , , . . . ,;„_,)< /o""1}
with

/-y.+-+-'.>+1(x;1,...J.)€«1

for all X;,,...^ e 3T. Then

with each C;;|...JiiJii+1 € %n+1. We define 3T+ 1 as the family of

obtained in this way. Clearly it can be written as

3T+ 1 = {K'h jmjn^h a= 1 , . . . J B + 1 & 1 and 1 < *< / ( j , , . . . ,jn) s /0"}.

For the sake of notational simplicity we will, from now on, write / and | / | in
place of y , , . . . ,jn, and ./, + ••• +jn respectively. Define, for Kj e 3if",

and

where Ksj=rlJKKj)- Let, for y > 0 and n > l ,

and

S,J

where k > 1 and r > 0 are as above.

PROPOSITION 5.1.

(a) For n > l big enough, An and An are finite, continuous and strictly decreasing
functions in (i,+°o). Moreover lim^^+oo An(-y) = limr-,+oo An(y) = 0 and

(b) Let, for n > 1 tog, an, 0n e (£, +oo) be such that \n(an) = 1 = An(j8J. 77«e/i:
(i)
(ii)
(iii) ( /3n-an)n^0.
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Clearly Proposition 5.1 implies Theorem A'(c). We collect in the following lemma
the main estimates used in the proof of this proposition.

Denote by psj the accumulation point of the sequence (KJJ)J and let AJJ be the
length of the convex hull (in W) of Kjyju{pj}.

LEMMA 5.2. There are a, b, d, e>0 and 0< Ao< 1 such that
(a) a^X^
(b) Asj^b
(c) A}<A

( e ) M j M i
for all n,J = (j\,... ,jn), j and s.

Proof.
(a) Just take a>0 such that a" '< / ( /" ' (C))<a for all Ce<€1 and note that

l(K'j) = l(K'j) • |D*/"(f )| for some £e Kj.
(b) From the definitions

Aj/Ajsexp ( l ip (log |Z>'/|). £ /(/ '(*})) j <exp (Lip (log|Ds/|) • (a + c)),

where c > 0 is given by Lemma 3.3 and a > 0 is as in (a).
(c) Take A0 = sup{|£>y(£)|: £e C and Ce<£,}. Noting that for all l < i s n ,

fUi+-+J-J+l(Kj) is contained in some C^e <€x, we get

(d) We first prove the lower bound for n = 1. Let <p, f, xjt t0, a, and m be as in
Lemma 3.2. Take a3>0 such that a3<min {mxm, a^/A). Since

cti/j^Xj < to=>xJ+1 sr/(a3/j) ^ a3/j-2(aiaj/j2) s a3/0"+1)

we have x, > a3/j for all 7 > w. Then, for j > m

(xJ._1-x,)>aI(x,_1)2sa ia3
2/O'-l)2

and this, as (l(Kj)/l([fJ(x), f~\x)])) is bounded away from zero (see Step 2 in
§ 4), implies l(Kj)ar djf, for some dx>0 and a l l ; > 1 .

Now for any XJ e 3T take K J e 3ST"~!, I = (jl,... ,jn_x), such that K ) a ; . Then

for some ^, 77 in /"|7|(A:'/). By construction of Kj we have /" '"(Xjje %•„, so
/(/~|/|^C5)>r~1/(AJ,n), with r > 0 a Lipschitz constant for the unstable foliation
holonomy. Also^ | / | (A:i)e/"1(^1) so l(f~{n(K',))^a. Replacing above we get

l(K'j) a exp (-Lip (log \Dsf\)(a + c)) • r - ' a - ' ^ ^ J / t X J ) .

By induction it follows
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if

d > exp (Lip (log \Dsf\) • (a + c)) radr1.

For the upper bound, case n = 1 is contained in the proof of Lemma 3.2 and the
inductive step is proved as above.

(e) Case n = 0 is contained in the proof of Lemma 3.2 and for the general case
we show as in (d) that

AJj s r.a.exp (Lip (log \D°f\)(a + c))Ajl(Ksj).

This completes the proof of the lemma. •

Proof of 5.1.a. From Lemma 5.2 we get in a straightforward way

Hence An(y)< An(y)<oo for y>\ and An, An are continuous on y. It follows from
Lemma 5.2(c) that sups?J{A j/r, rAj}< 1 for n > 1 big. This implies that An and An

are decreasing and limT_+oo An(y) = limr^+ao \n{y) = 0. Finally, from

it follows limy_(;/2)+ An(y) = limT^(1/2)+ An(-y) = +oo. This ends the proof of 5.1.a.

Proof of 5. l.b(i). Suppose HD(A n[p, x]) < a < an. Then

I(Ai/r)">l.
Take $ a finite set of indices (s, J) such that this inequality remains true when
the sum is taken over $. Let e0 be such that if °U is a covering of An[p,x]
with wa(%)<e0 then every Ue°U intersects at most one Kj, (s,J)e£. Since
HD(An[p,x])<a there is such an <%. Denote %} = {£/e <&: UnKsj^0}. Then
X^ »ia(^y)^ !««(*) s e0, so there is (f, L) e / , L= ( / , , . . . , /„), such that ma(<%L)^
(AL/r)Qe0. Form <fi = 7r?(H,n/~|L|((tti.)) where J ^ c / ^ ' ^ i . ) and TT-?: / / , ^ [p ,x]
are as at the beginning of the section. For every Ue °U'L we have

diam (TT1(A, nrW(U)))s(r/\'L) • diam (U),

so ma($)<(r/Ai.)amo(%'L)<£<). On the other hand °k has strictly less elements
than °U. Repeating this argument we get a covering of An[p, x~\ with no elements
at all. This contradiction proves HD(A n [/>, x]) > an for all n > 1.

iVoo/ of 5.1.b(ii). Suppose d(An[p,x])>j3n: then An(d(An[p, x]))< 1. Let
j3>rf(An[p,x])>a>j and take Ao>0 such that

for all 0 < e < l . If "U is a covering of An[p,x] by e-balls with not more than
(Aoe~p) elements and HJ^^J\KSJ) and n": H(-*[p,x] are as at the beginning of
the section, then Uit=i/|J'((f") '(^0) is a covering of KJ by no more than (kAoe~p)
intervals, each one of them contained in some (AJ • re)-ball. Therefore
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for 0<e<l , i.e.,

if 0<£<rA5- Take, for every 0<£< 1,

Then

»(£)=£! kA0(A
sj • r)sj • r)' u KJ, A

C7aim. There is A>0 such that n(\JrK
sj, f ) < A f ° for all 0 < £ < 1.

We postpone the proof of this claim and proceed to prove that it implies 5.1.b(ii).
Replacing above we get

n(f)s AoAn03) • r"+A- r " = A M ) • r "
for all 0<f< l , where

Repeating this argument we prove

for 0 < f s 1 and i> 1, where (A(£)), is defined by

(and A0(()^A0).
Clearly A,(f)> A0(An(j8))''. Let Ao be such that

An(d(An[p,x]))<A0<l

and, given 0< ̂ < 1, take j a 1 minimum such that

A • €'-a>Ao • (Ao-An03)) • An(py.

By induction, A(£) - ^o • Aj, for all 0< i <y and so

n(f)Si4oA{-r".
It follows that

[log «(f )/iog r
! ] ^ )8+(log A0/iog r 1 )+( log Ai

+ log(A0(A0-An()8))/A))].

Making f-»0 (and soy-»oo) we get

and this leads to a contradiction when /? -» d(An [/?, x]).
To prove the claim it is sufficient to show that for some c 0 , . . . , cn_! and i)o>0

we have

(y ) ̂  r1/2

Let

( i1 c,
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Suppose first

t^ra-H—2

Then, by the estimates in Lemma 5.2, A,, ss c0V? where c0 = ejad/r. This means
that such Kj are contained in the co\/f-ball centered at p and so their union may
be covered by co£~1/2£-balls. In general take k minimum such that

Then, again by Lemma 5.2,
^«"'nb-

A ; , Jk^
where bk = eVad3k 2/r, and so these Kj are contained in the bk\fi/{jx

centered at the corresponding p^ jk_t. Note that, by definition of k,

for all l < i < / c - l . Therefore the union of such Kj can be covered by not
more than (bk^~l/2Y, I/A " " • A-i) f-balls, where the sum is taken on the set of
jt, 1 s i < k - 1 , with ji < VrJJadJ). Now

ItVO'i • • •jk-i)] = ( I 1/7) s(clog(b0^~'/2))'c"1

for some universal c>0 and bo = \/r/ad. Repeating the argument for every
1 < k < n -1 we get

n(U/< XJ, ^) ^ T1 / 2 "Z* (c, (log (bo^"1"72))')
\ / 1=0

with ci = ci~lbilt
x for izl.

Proof of 5.1.b(iii). Let Sn = -(log fc(fer2)"»/log (AS"'r)). Then

S,J

Since An is decreasing it follows /?„ s an + Sn. As (an)n is bounded (by HD{A[p, x]))
this ends the proof of 5.1.b(iii) and so of Proposition 5.1.

From the proposition it also follows HDS(AO) = ds(A0)> 1/2. Note that
d(Aor,[p, x])^j is a simple consequence of the fact that dist (f(x),p) is of order
\/j (Lemmas 3.2 and 5.2) together with d{{\/j:j> 1}U{0}) = J (see Takens [11]).

Remark 5.3. The hypothesis that p is a quadratic saddle-node for / is not funda-
mental. If we assume that k > 2 is the order of the first non-degenerate jet of / at
the saddle-node then Lemmas 3.2 and 5.2 can be easily modified to give estimates
for l(.Kj) and AJ similar to the ones above. In particular one gets

fc-1
]) = d(Aon[p,x])>——.
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6. HD\A,)->HDS(AO) as f^0+

We show that the result HDS(AO) = limn an = limn /}„ obtained in § 5 can be extended
to HDs{A,) = \\mnan{t) = \\mnfin{t) for small positive t, where an(t), /3n(t) are
constructed below. These functions turn out to be continuous at zero and this implies
that HDS(A,) is continuous on the right at / = 0. Since «„(/), f$n(t) are natural
extensions of an, /?„ we just sketch their construction and go into details only when
they differ from § 5.

Let (Aj(t))j be a family of w-rectangles forf, satisfying, for every t > 0, properties
analogous to (Pi) — (P3) of §3, with A}{0) = Aj for all ; > 1 and depending con-
tinuously on t. By a w-rectangle we mean here an open imbedded rectangle contained
in W(qt) and bounded by W(0,), W(p,) and two segments of Ws{p,). As in § 5
we define x,, y,, Kj(t), Ksj(t), 3T{t), x'j(t), Asj(t), psj(t) and AJj(f). Finally let
<r(t) = \Dsft(p,t

LEMMA 6.1. There are a, b, dx, d2, e>0 and 0<A0<1 such that:
(a) a-l\'j(t)

(b)
(c)
(d,)
(d2)
(e)
for all / ! , / = (_/,, . . . ,jn), j , s and t > 0 small.

Proof, (a) and (c) are proved as in Lemma 5.2. The same holds for (b) once we
have extended Lemma 3.3. for f >0, (which is straightforward), with constant c>0
independent of f. This is possible because Lipschitz constants for &" holonomies
may be taken uniformly (see Remark 2.2).

To prove (dt) let <p,: [0, +°o)-»{p(}u W, be the parametrization by arc-length,
x, = <p7l(xt) and /, = (pT1 ° f, ° <p,- Take to> 0, xo> 0 and a, > 0 such that

o-(t)x -2axx
2 ^f,{x) < a(t)x - a,x2

for 0<x<x o and 0< f < ro. Take m a l such that /™(x,)<(xo/2) forO<<<r0and
ma,xo2 1 and let

By induction we get, for j s m,

Then
>•)•

0

1 **Jf
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for some a3 > 0 and all j > m. This proves case n = 1 in (dj). The inductive step goes
as in the proof of Lemma 5.2(d).

Case n = 1 in (d2) and n = 0 in (e) are weaker versions of estimates in the proof
of (d^. The inductive step goes again as in Lemma 5.2. The proof of Lemma 6.1 is
complete. •

Let, as in § 5,

and

S,J

where r is some uniform Lipschitz constant for 9"t holonomies.

PROPOSITION 6.2

(a) For n a l big enough, \n(t, •) and An(t,-) are finite, continuous and strictly
decreasing functions in (0, +oo). Moreover limy^+oo An(t, j) = limr^+0O An(t, y) =
0 and \imy_0+kn(t, y) = \imy^oo+An{t, y) = +oo.

(b) Let, for n big 0<an(t)^Pn(t)<+<x> be such that \n(t,an{t)) = l=An(t,pn(t)).
Then:
(i) HDs(A,)>an((),
(ii) <T(A,) </?„(/),
(iii) ( / U 0 - « „ « ) ) „ ^ 0 .

Proof. All the affirmatives in (a) proved as in Proposition 5.1 except for the last one
(which here is trivial). The same holds for b(i) and b(iii). Finally b(ii) also follows
as in Proposition 5.1, once we have shown that ds(A,)>^, which is a consequence
of 5.1, 6.2.b(i) and the proposition below. D

PROPOSITION 6.3. For n big an(t)->an and f)n(t)-> /3n as t-*0+.

Proof. Let e>0: then Y.S,J (\j/r)a»~e > 1. Take $ finite and 8>0 such that
Ijf (Aj(0/rr-~e>l for all 0<<s« . Then An(r, an - e ) > 1, and so an(t) >an-e.
On the other hand Y.*,J (*sj/r)a»+' = 1 - T for some T > 0 . Take / finite such that
£«?' (A/(')/r)a"+* < T / 2 for all t close to zero (recall Lemma 6.1(a) and specially
(d,)). Now, if t is small enough, £ , (A5(0/'')Qf"+e < 1 - T/2 and so An(f, an + e) < 1,
which implies an + e> an(t). The proof for fin(t) is the same. This proves the
proposition. •

Continuity of HDS(A,) and ds(A,) as f-»0+ now follows easily.

7. Proof of Theorem B'
Let a defining sequence for a Cantor set X <= R be a decreasing family (K")ns0 of
compact parts of R with K = f l ? ^", such that K° is an interval and for « > 1 each
JC""1 -component is a finite disjoint union of K"-components and open intervals,
the X"-gaps. In the proof of Theorem B' we use the lower bound for the Hausdorff
dimension biven by

LEMMA 7.1. Let T > 0 and K be a Cantor set with a defining sequence (K")n such
that [/(C)) /1(G)]>T for all K"'-component C and K"-gap G with dCndG*0, and
alIn>0. Then HD{K) a log 2/log (2 + r~l).
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Proof. We need the following result whose (elementary) proof we leave to the reader:
Let T > 0 and 0<log2/log (2 + T"1). Then

x + y + z = a, x^ry, z>ry with x,y, z>0=>x^ + z" >a1*.

Let /3 = log 2/log (2 + r"1). We prove that for all finite open covering <% of K we
have mpW>(diam K0)"- We may assume that °U is disjoint, since if I/,, U2e °U.
have non-empty intersection then (/([/, u C/2))

p < (/(t^))" + (/(t/2))", which means
that the covering obtained from °U replacing £/,, U2 by Ui u U2 has smaller
/3-measure than °ll. Let now «>0 be the smallest integer such that °U. covers
K". Let G be a JCn-gap not covered by °U and Q, Cr by the K"-components with
dC,ndG9i0^dGndCr. Denote by U,, Ur the elements of 1L containing
C, and Cr respectively and let U be their convex hull and V = 1/ - (£/, u l/r). Then

which implies / ( 1 / , ) > T - /(V), /([/r)>T- /(V) and so
This means that replacing f7(, l/r by U in °U we get a covering of K with smaller
/3-measure than °U. Repeating the argument we construct a covering V of K°
with m^(T')<m/3(%). Since we must have m^(T)a(diam K0)0 this proves the
lemma. •

FIGURE 5

We now prove Theorem B'. Take, for t > 0, A, a w-rectangle (i.e. an open domain
contained in Wu(6,) and bounded by Wu(p,), W"(q,) and two segments of Ws(p,))
containing 6, and let D, = A,-fj\A,) be a fundamental domain for W"(6,).
Let W, be the separatrix of Ws(p,)-{p,} not contained in W"(6,) and let
x,e\V,ri W"(q,) be the smallest element of W,nd"A, (for the natural ordering in
Wt, see § 3).

Define K° = [p,,x,~[ and, for M > 1 , K1 = K°,-fl{At) = K"~'i-f"{D,). Then A,n
[p»» *r] = Pi? ^T and (XJ")n is a defining sequence for A, n [/>„ x,]. Note that C is
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a X"-component if and only if C =f"(C0) <= [p, x,] for some connected component
Co of W,~A,. Also the X"-gaps are the G=f"(G0)c[p,,x,], Go a connected
component of W, n D,.

Claim. There is a>0 such that [/(/n(Co))//(/"(Go))]sa[/(Co)//(Go)] for all com-
ponent Co of W, - A,, all component Go of W; n D, with dC ndG*0, and all « > 1
and J > 0.

Take then b(t) = M{l(C0)/l(G0): Co, Go as above}. Clearly b(t)>0 and 6(f)->
+oo as <^0+. From the claim we get [Z(C)//(G)]>afe(/) for all .K"-component C
and X"-gap G with dCndG^0. Theorem B' now follows from Lemma 7.1.

We are now left to prove the claim above. Let W, be the separatrix of Ws{qt) - {q,}
not contained in W{6t) and let z, e W',n W(p,) be the smallest element of
W',nduA, (for the natural ordering in W',, see § 3).

Take y,e W,n Wu(p,) and w,eW',n W(q,) such that [x,,y,] and [zr, w,] are
connected components of W,nA, and ^ n / 1 , respectively. Let B, and C, be
u-rectangles intersecting all the connected components of W,-A, and such that
B, n [p,, x,] = [f,(y,)] and C, n [?„ z,] = [/,(z,),/(w,)]. (See figure 6.)

FIGURE 6

LEMMA 7.2. (Distortion Lemma). There is c>0 such that £o° l(f!(Gov H0))<c
for every connected component Go of W, n D,, every connected component Ho

of W, - (A, u B , u C,) wirft dHondGo * 0 and a// < > 0.

Lemma 7.2 is proved in almost the same way as Lemma 3.3 so we do not go into
details here. We just note that, by construction, iterates of (Go u Ho) passing near
p, (resp. q,) project into disjoint intervals in W, (resp. W',) and this permits the
same kind of estimates for the sum of the lengths of those iterates as in the proof
of Lemma 3.3 (see also the remark at the end of this section). We should also point
out that, in order to get c > 0 independent of t > 0, one must use the fact that
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Lipschitz constants for the unstable holonomy TT" may be taken uniform on t
(Remark 2.2).

Let now Co and Go be as in the statement of the claim. Take Ho a connected
component of W,-(A,u B, u C,) contained in Co, with dGo(^dHo^0. Then, for
some £e Go and 77 e Ho, we have

= [/(Co)//(Go)] • [/(Ho)//(Co)] exp ( V log |DV( | ( / f ) -

(-Lip (log |D'/,|) • I
\ 0

> a, • exp (-c • Lip (log |DS/,|)) • [/(C0)//(G0)],

where c>0 is given by Lemma 7.2 and a ^ O is some uniform lower bound for
(l(H0)/l(C0)), with Ho and Co as above. Since (/,), is continuous in the C2-topology
Lip (log |Dy,|) is bounded, so we may take a = ax exp (-c sup, Lip (log \Dsf,\)). This
ends the proof of our claim and thus of the theorem.

Remark 7.3. Xo" /(/"(Cou Go)), Co a component of (W, - A,) and Go a component
of (W, n D,) with 5C0naG05^ 0 , is not uniformly bounded. For example, it is not
hard to see that I"/(/7( |>( 5 *,]))-»+°o as t^0+. Note that (/?([/>„ x,]))n is not
disjoint.

8. Proof of Theorem C
We first claim that lim /i,(</>?)->0 as /-»0+. In fact by the variational principle
P(a<f>s,)> /JMr(/r) + «/*f(<^f), « s 0 , with equality for a = 1, and by Theorem 1 in [4]
we have P(HDs(A,)<f>s,) = 0 (see figure 7). Then noting that <f>s,<Q on A, we get

\

\

0

\p(a<t>',)

\

FIGURE 7
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0 2 ti,(<t>s,)^ P(4>s,)/(1 ~ HDS(A,)). Since / /D S (A,)^HD S (A O )< 1 as f - 0 + the claim
now follows from the fact that P(<f>s,)->0 as t-*0+. This was done in [4] but for the
sake of completeness we reproduce the argument here. Let 8, be the Dirac measure
at the fixed point p,. Clearly hSt(f,) = O and 8,(<f>s,) = <f>s,(p,) so (see also Theorem
4.11 in [1]) we have 0 > P(<£j) ><£*(/>,)-»0 as f->0+. Now the claim, together with
<j>s,<0 on A,, easily implies fi,-* 8 as f-»0+.

To show that 8 is the unique equilibrium state for if>s
0 we first note that

O=M/o) + S(<AS)sP(0S) = s u p { M / o ) + At(# ' ) : / i /-invariant}<0

(see Ruelle [9] for the last inequality).
Now if IJ. is an equilibrium state for <f>s

0 we must have ix((f>o) = 0 and so fi = 8.
Otherwise by Manning [5] we would have

HDS(AO) > HD( WS
1OC(P) nGJ* -M/o) / /* (*S) = l

(where GM is the set of generic points for /x) and this contradicts Theorem A'(a).
We should note that, although Manning's theorem is stated for Axiom A
diffeomorphisms, the proof of the inequality we use here is more general and still
applies in our context.
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