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Graphite is commonly used as a moderator in many reactor designs and is a leading candidate core 
material for the envisioned Generation IV reactor concepts like the very high temperature reactor 
(VHTR). In reactors graphite is exposed to high-temperature neutron irradiation leading to the creation 
of lattice defects. These lattice defects cause changes in the mechanical properties of graphite which 
may adversely affect the performance of reactor components. When initially subjected to neutron 
irradiation, volumetric shrinkage is observed in nuclear graphite. With prolonged irradiation a 
turnaround point is reached where the volume then begins to increase. The turnaround point has been 
shown in literature to be a strong function of temperature [1], which suggests that there exists a 
temperature dependence to the atomistic nature of accumulated irradiation damage; however, the atomic 
mechanisms governing this defect evolution are not well understood. This knowledge gap is partly due 
to a lack of experimental data and difficulties in observing the dynamic nature of the defects.  
  
In situ transmission electron microscopy (TEM) provides a method to monitor the dynamic atomic 
response of graphite during high-temperature irradiation. In situ electron irradiation and thermal 
annealing experiments were performed on nuclear graphite IG-110 and natural graphite. IG-110 was 
prepared by conventional ion-milling techniques for irradiation experiments conducted perpendicular to 
the c axis. In addition, irradiation experiments were conducted on natural graphite parallel to the c axis. 
Graphite specimens were irradiated with a 200 kV electron beam between a temperature range of 25-
800°C. Electron energy loss spectroscopy (EELS) was conducted on irradiated areas to analyze bonding 
character and density. In addition, in situ annealing experiments were conducted at low operating 
voltages (80 kV) on IG-110 specimens prepared to electron transparency via oxidation-based methods. 
Oxidized specimens contain no milling-induced artifacts; therefore, experimentally observed defect 
structures are only the result of irradiation.  
  
Figure 1 shows (a) bright-field and (b) dark-field micrographs of natural graphite irradiated with 
equivalent electron-irradiation doses at temperatures of 25°C, 400°C, and 800°C. A clear distinction 
between size, shape and distribution of accumulated irradiation damage is observed at the respective 
temperatures. Figure 1(c) shows EELS spectra of the respective areas. Assuming a quasi-free electron 
model, the energy shift of the π+σ plasmon peak may be correlated to density, in which case a trend of 
decreasing density as irradiation temperature increases is observed. Figure 2(a) shows an HRTEM image 
of an oxidized specimen of IG-110 conducted at 800°C with near-zero electron irradiation. At 
temperatures above 700°C, basal planes often curl and close, which behavior was not observed 
previously at lower temperatures [2]. Figure 2(b) shows an ion-milled specimen of IG-110 imaged 
800°C with near-zero irradiation where the curling and closure of basal planes is also observed. Figure 
2(c) shows the same crystallite in (b) post electron-irradiation, where basal planes curl and recombine 
around a prismatic dislocation resulting in swelling along the c axis.     
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Electron-irradiation studies show clear evidence that the nature and accumulation of defects changes 
significantly as a function of temperature. In situ TEM results reveal new atomic mechanisms governing 
dimensional change in irradiated graphite via the formation of newly discovered defect species in high-
temperature irradiated graphite. In situ annealing experiments on graphite TEM specimens prepared via 
oxidation establish a temperature regime where the curling and closure of basal planes due solely to 
annealing is favourable. In addition, EELS analysis shows qualitative trends in density and bonding 
changes as a function of irradiating temperature [3].  
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Figure 1.  (a) Bright-field and (b) dark-field micrographs of electron-irradiated natural graphite 
conducted at 25°C, 400°C, and 800°C. (c) Low loss EELS on the respective areas shown in (a) & (b). 

 
Figure 2.  (a) Oxidized and (b) ion-milled specimens of IG-110 imaged at 800°C showing the curling 
and closure of exposed basal plane edges. (c) Post electron-irradiation of the crystallite in (b) showing 
basal planes which curl and recombine around a prismatic dislocation. 

Microsc. Microanal. 25 (Suppl 2), 2019 1569

https://doi.org/10.1017/S1431927619008572 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927619008572

