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Abstract

The existence problem for balanced Room squares is, in general, unsolved. Recently, B. A. Anderson
gave a construction for a class of these designs with side 2" — 1, where n is odd and n > 3. For n even,
the existence has not yet been settled. In this paper, we use the affine geometry of dimension 2 k and
order 2, and a hill-climbing algorithm, to construct a number of new balanced Room squares directly.
Recursive techniques based on finite geometries then give new squares of side 22k - 1 for infinitely
many values of k.

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 25.

1. Introduction

A Room square of side r defined on an (r + l)-set V is an r X r array A satisfying
the following conditions:

(1) each cell of A is either empty or contains an unordered pair of distinct
elements from V;

(2) each element of V is contained in precisely one cell of each row and each
column of A;

(3) every pair of distinct elements from V is contained in exactly one cell of A.
We denote a Room square of side r by RS(r).

The spectrum for Room squares was determined in 1973.

THEOREM 1.1 (Mullin and Wallis [8]). There exists an RS(r) if and only if r is an
odd positive integer other than 3 or 5.
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A Room square RS(r) defined on set V is said to be ordered if every pair
{x, y) in the array is replaced by one of the ordered pairs (x, y) or (y, x). Let Ft

denote the set of all first components taken from the ordered pairs in row i and
let 5, denote the set of all second components in row /. Clearly, Fi U 5, = V,
1 < / < r. Let0 = {Ft, S

1,: 1 < / < r}.
If (V, B) is a balanced incomplete block design, then the ordered Room square

is called a balanced Room square of side r and is denoted BRS(r).

EXAMPLE

Ooo

46

23

15

26

loo

50

34

45

30
2oo

61

56
41

3oo

02

13

60

52

4oo

24

01

63

5oo

35

12

04

6oo

F, = {0,2,4,1},
F2= {1,3,5,2},
F3= {2,4,6,3},
F4= {4,3,5,0},
F5= {5,4,6,1},
F6= {2,6,5,0},
F7 = {1,3,0,6},

S, = {oo,5,5,3}.

52 = {oo,0,6,4}.
53 = {oo,1 ,0 ,5} .

S 4 = { 6 , o o , 2 , l } .

S 5 = {0 ,oo ,3 ,2} .

S6= { 3 , l , o o , 4 } .

S7 = {5 ,4 ,2 ,oo} .

A BRS(1)

A balanced Room square BRS(r) is sometimes called a complete balanced
Howell rotation on (r + 1) teams. This terminology arises from some of the early
history of the subject in connection with designing duplicate bridge tournaments
with various properties. The interested reader is referred to [9].

Unlike Room squares, the existence question for balanced Room squares is
unsolved. It is well known [3, 9, 10] that a necessary condition for a BRS(r) to
exist is r = 3 (mod 4). In this paper, we ate interested in the existence of
BRS(2" - 1). In a recent paper by B. Anderson [1], it is shown that for all odd
n > 3, such a design exists. We will briefly consider this construction in the next
section. In Section 3 we construct by direct methods a number of new BRS(2" - 1)
for various even values of n and in Section 4 recursive techniques are applied to
produce infinitely many new squares. The constructions considered throughout
this paper are based on finite affine geometries.

We identify the points of AG(n,2), the affine geometry of order 2 and
dimension n, with the elements of the field GF(2"). Let a be a generator for
GF(2") and define a00 = 0. Lines in this geometry contain two points. If
L = {aa,ab} is a line, then we will usually write this as L = {a, b). Two lines
L1 = {aa, ab} and L2 = {ac, ad} are parallel if and only if a" + ab = ac + ad.
A set of lines S = {L,: 1 < i; < 2""1} is said to be a skew resolution class of the
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geometry if 5 is a partition of the point set and no two distinct lines of S are
parallel. A skew resolution is a set of skew resolution classes which partition the
lines of AG(n, 2). We will make extensive use of the following result.

THEOREM 1.2 (Fuji-Hara and Vanstone [7]). If there exists a skew resolution in
AG(n, 2), then there exists a BRS(2" - 1).

PROOF. Let r = 2" — 1 and Pl9 P2,...,Pr be the r parallel classes of lines in the
geometry. Let Rlt R2,...,Rrbe r skew resolution classes forming a skew resolu-
tion. Index the rows and columns of an r X r array A by the parallel classes and
skew resolution classes respectively. In cell (Pt, Rj) place the set Pt n Rj. Clearly,
every cell is either empty or contains a line of AG(n, 2). It is easy to see that A is
a Room square. We now order the pairs in A to form a balanced Room square.

Since Pt is a parallel class of lines there is a unique pair of parallel hyperplanes
Fj and 5, such that each line of Pt contains one point from each. If L = { x, y } e P,
and x e Ft, y e 5,-, then replace L in A by (x, y). Since the set of all hyperplanes
forms a BIBD the resulting array is a BRS(2" - 1).

2. Preliminaries

In [1], B. A. Anderson proved the existence of a BRS(2" — 1) for all odd n > 3.
In this section, we briefly describe this construction in terms of affine geometries
and Theorem 1.2 above.

Consider AG(n, 2) (n odd, n > 3) and let a be a generator for GF(2"). Let

P = {{a',1 + a'):i = oo,0 < i < 2" - 2}.

Then P is a parallel class of lines which generates all other parallel classes of lines
under a cyclic automorphism of order 2" — 1. Let

S = {{a00,a0}} u { { l / a ' , l / ( l + a ' )} : 0 < i < 2" - 2}.

Then 5 is a skew resolution class of lines which generates a skew resolution under
the action of the automorphism group of order 2" - 1. It is not difficult to show
that S is a partition of the point set. Suppose two lines of S are parallel. For some
i and j then either

(I) I / a ' + 1/(1 + a') = \/aJ + 1/(1 + aj)
or

(II) a°° + a0 = I / a ' + 1/(1 + a').
In (I) we get that (a' + aj) + (a' + aJ) = 0 implying a' + aJ' = 0 or a' + aj = 1.
In either case the two lines are identical. In (II), 1 = l /a ' ( l + a') or a2' + a' + 1
= 0. Hence a' is a cube root of unity (not 1), which is impossible since n odd
implies 2" — 1 is not divisible by 3. We summarize this in the following theorem.
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THEOREM 2.1. There exists a cyclically generated skew resolution in AG(n, 2) for
all odd n > 3.

COROLLARY 2.1. There exists a BRS(2" - \)for all odd n > 3.

It is easy to see why the construction given here fails for n even. The lines
(0, oo} and {(2" - l ) /3 , (2"+1 - 2)/3} are both in P and S and, hence, S is not
a skew resolution class.

We require several more definitions. The concepts of starter adder and strong
starter are fundamental in the study of Room squares.

A starter T in a finite abelian group G of odd order is a partition of G \ {0}
into pairs which form a difference set (i.e., [±(a — b): {a, b} e T} = G\ {0}).

An adder A for a starter T in G is an injective mapping from T into G\ {0}
such that

{a + A({a,b)),b + A({a,b}): {a,b}^T} = G\{0).

If Tis a starter and U = {a + b: {a, b) e T) is a set of \T\ distinct elements
of G \ {0} then T is called a strong starter.

It is well known [8] that a starter and adder in a finite abelian group G of order
r imply the existence of an RS(r) and that a strong starter in G implies the
existence of a starter and adder in G.

Consider the parallel class P in AG(n, 2) as given above. P is a parallel class for
all values of n. If {a1,1 + a'} is a line of P, then replace this pair by {/, z{i)}
where 1 + a' = az(l) to get a set of pairs P'; P' is a starter in G = Zr where
r = 2" — 1. Anderson showed that P' is a strong starter in G. This is, of course,
not true when n is even. In the next section we construct adders for the starter P'
for various values of n even. It should be clear that P' and an adder will produce
a skew resolution class which will generate a skew resolution.

3. Some new balanced room squares

Given a starter in a finite abelian group G, Dinitz and Stinson [4] have devised
a hill-climbing algorithm for finding an adder for the starter. Applying this
algorithm to P' of the previous section we obtain the following results.

THEOREM 3.1. There exists a skew resolution in AG(n, 2) for n = 4,6,8 and 14.

PROOF. For n = 4,6,8, we list the polynomial used to define GF{2"), the
parallel resolution class P', an adder A for P', and the corresponding skew
resolution class S.
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„ = 4 f(x) = x + 1

P'

11,12

7,9

1,4

14,3

5,10

2,8

6,13

A

1

14

3

2

4

9

12

S

12,13

6,8

4,7

1,5
9,14

11,2

3,10

P'

57,58

51,53

31,34

39,43

1,6

62,5

37,44

15,23

A

59

26

39

23

35

12

28

15

S

53,54

14,16

7,10

62,3

36,41

11,17

2,9

30,38

n =

P'

18,27

2,12

38,40

61,10

28,41

11,25

40,55

30,46

6

A

25

6

37

41

4

33

50

52

S

43,52

8,18

12,23

39,51

32,45

44,58

27,42

19,35

= x6

P'

16,33

36,54

7,26

4,24

21,42

13,35

48,8

59,20

+ X

A

13

58

43

36

34

2

40

8

+ 1

S

29,46

31,49

50,6

40,60

55,13

15,37

25,48

4,28

P'

52,14

56,19

45,9

22,50

3,32

17,47

29,60

A

7

5

38

46

53

17

60

S

59,21

61,24

20,47

5,33

56,22

34,1

26,57
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n = 8

P'

230,231

117,122

135,144

156,169

187,204

245,11

254, 24

74,103

240,18

76,113

98,139

224,14

58,107

108,161

172,229

69,130

93,158

125,194

19,92

27,104

95,176

85,170

52,141

97,190

65,162

208, 54
7,112

184, 38

179, 37

133,250

212, 78

61,186

A

241

104

105

153

155

6

140

96

25
188

199

164

12

77

111

100

198

38

218

175

163

191

234

181

203

169

59

69

56

73

156

128

S

216,217

221,226

240,249

54,67

87,104

251,17

139,164

170,199

10,43

9,46

42,83

133,178

70,119

185,238

28,85

169,230

36,101

163,232

237, 55

202, 24

3,84

21,106

31,120

23,116

13,110

122,223

66,171

253,107

235, 93

206,68

113,234

189, 59

P'

205,207

64,70

234,244

31,45

15,33

20,42

57,83

189,219

119,153

71,109

235, 22

118,164

253,48

47,101

148,206

165,227

225, 36

191, 6

152,226

43,121

196, 23

13,99

193, 28

53,147

116,214

34,136

216, 67

129,239

89,203

91,209

138, 5

145,16

A

192

186

82

143

79

30

217

122

7

37

52

65
167

212

216

62

237

213

92

4

150

63

173

84

235

43

223

134

204

201

39

35

S

142,144

250, 1

61,71

174,188

94,112

50,72

19,45

56,86

126,160

108,146
32,74

183,229

165,215

4,58
109,167

227, 34

207,18

149,219

224, 63

47,125

91,173

76,162

111,201

137,231

96,194

77,179

184, 35

8,118

38,152

37,155

177,44

180, 51

P'

32,35
143,150

10,21

222,237

163,182

59,82

151,178

210,241

223, 3

149,188

134,177

154,201

17,68

192,247

173,232

200, 8

39,106

146,217

56,131

81,160

198, 26

88,175

46,137

79,174

242, 86

181, 29

197, 49

9,120

12,127

102,221

72,195

243,115

A

68

47

215

32

5

99

15

67

193

205

75

127

22

83

179

120

133

78

229

254

178

172

187

71

161

33

8

108

86

165

51

93

S

100,103

190,197

225,236

254,14

168,187

158,181

166,193

22,53

161,196

99,138

209,252

26,73

39,90

20,75

97,156

65,128

172,239
224, 40

30,105

80,159

121,204

5,92

233, 69

150,245

148,247

214, 62

205, 57

117,228

98,213

12,131

123,246

81,208

P'

155,159

55,63

128,140

110,126

213,233

1,25

62,90

220,252

30,66

171,211

40,84

2,50

114,166

124,180

123,183

185,249

238, 51
60,132

142,218

87,167

215,44

80,168

236, 73

4,100

251, 96

228, 77

94,202

248,105

41,157

246,111

75,199

A

129

90

242

224

49

197

113

189

146

132

107

80

29

124

88

206

81

247

115

228

222

112

170

110

45

184

40

136

61

24

145

S

29,33

145,153

115,127

79,95

7,27

198,222

175,203

154,186

176,212

48,88
147,191

82,130

143,195

248, 49

211,16

136,200

64,132

52,124

2,78

60,140

182,11

192, 25

151,243

114,210
41,141

157, 6

134,242
129,241

102,218

15,135

220, 89

In AG(14,2) there are 16,384 points and a skew resolution contains 8,192 lines.
We omit a listing of the skew resolution found. The hill-climbing algorithm took
11 seconds of CUP time on an Amdahl 580 computer to find an adder for the
parallel class P'.

COROLLARY 3.1. There exists a BRS(2" - I) for n = 4,6,8 and 14.
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The case n = 6 was recently done independently by B. A. Anderson [2] using a
related but somewhat different approach. Anderson begins with a pair of parallel
hyperplanes in AG(6,2) which he writes as a pair of supplementary difference sets
A and B in Z63.

A = {oo,l,2,3,4,5,7,8,9,10,13,14,15,17,19,20,25,27,28,29,33,34,36,37,

39,42,46,49,50,53,55,57}.

B= (0,6,11,12,16,18,21,22,23,24,26,30,31,32,35,38,40,41,43,44,45,47,

48,51,52,54,56,58,59,60,61,62}.

Using a modified version of the Dinitz-Stinson hill-climbing algorithm he con-
structs a strong starter T in Z63 where each pair in T contains one element from A
and one from B. The strong starter T is listed below.

{46,45}, {33,35}, {9,6},{57,61},{53,48},{49,43}, {37,44},
{13,21}, {7,16}, {36,26}, {20,31}, {5,56}, {1,51}, {25,11}, {8,23},
{15,62}, {29,12},{42,24},{10,54},{27,47},{39,18},{17,58},{55,32},
{2,41}, {34,59},{14,40}, {3,30},{50,22}, {4,38}, {19,52}, {28,60}.

T generates a BRS(63) whose associated BIBD is isomorphic to the design
consisting of the points and hyperplanes of AG(6,2). This BRS(63) is not
isomorphic to the one displayed in Theorem 3.1. Neither the rows nor the
columns form the parallel resolution of lines in AG(6,2).

4. Recursive constructions

Unlike the Room square case, there are very few recursive constructions for
balanced Room squares. In terms of finite geometries and skew resolutions,
several recursive constructions do exist. We will use these techniques to produce
infinitely many new balanced Room squares.

The definition of skew resolution class and skew resolution extend to AG(n, q).

THEOREM 4.1 (Fuji-Hara and Vanstone [6]). / / there exists a skew resolution in
AG(m, q) and a skew resolution in AG(n, qm), then there exists a skew resolution
in AG(mn, q).

THEOREM 4.2 (Fuji-Hara and Vanstone [6]). / / there exists a skew resolution in
AG(m + 1, q) and a skew resolution in AG(n, qm), then there exists a skew
resolution in AG(mn + l,q).

In order to apply Theorems 4.1 and 4.2 we need to know something about the
existence of skew resolutions in AG(n, q) for q > 2.
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THEOREM 4.3 (Fuji-Hara and Vanstone [5]). There exists a skew resolution in
AG(2' — 1, q) for all q and i > 2. In particular, there exists a skew resolution in
AG(2> - 1,2') for alii > 2,j > 2.

Applying Theorems 4.1 and 4.3 we get the following theorem.

THEOREM 4.4. There exists a skew resolution in AG(n(2' — 1), 2) for n = 4,6,8
and 14 and all i > 2.

Applying Theorems 4.2 and 4.3 we get

THEOREM 4.5. There exists a skew resolution in AG((n - 1)(2' - 1) + 1,2) for
n = 4,6,8 and 14 and all i > 2.

In terms of balanced Room squares we summarize the above results.

THEOREM 4.6. There exists a BRS(r)for all
(l)r = n(2i - l ) - l , i > 2 , n = 4,6,8 am/14,
(2) r = (n - 1)(2' - 1), i>2,n = 4,6,S and 14.

The smallest value of k for which a skew resolution in AG(2k,2) is not yet
known to exist is k = 10 and, in terms, of balanced Room squares the smallest
BRS(22k - 1) unknown is k = 10.

5. Conclusion

In this paper we have been concerned with balanced Room squares of side
2" — 1 where n is even and we have constructed infinitely many new ones in this
class. Since BRS(2m — 1), m odd and m > 3, are all known to exist, what would
be ideal is a recursive construction which doubles the point set. Such a construc-
tion would prove the existence of BRS(22k — 1). Unfortunately, no such method
is known. In terms of affine geometries the problem could be solved by showing
that a skew resolution in a space of dimension 2k — 1 implies the existence of a
skew resolution in a space of dimension 2k. Again, such a construction is not
known.

We finish by mentioning that it has recently been shown [11] that there are at
least 279 non-isomorphic skew resolutions in AG{5,2), and hence at least 279
non-isomorphic BRS(31).
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