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A KKM TYPE THEOREM AND ITS APPLICATIONS

Lai-Jiu LIN

In this paper we establish a generalised KKM theorem from which many well-known
KKM theorems and a fixed point theorem of Tarafdar are extended.

1. INTRODUCTION

In [6), Knaster, Kuratoaski and Mazurkiewicz established the well known KKM
theorem on the closed cover of a simplex. In [4], Ky Fan generalised the KKM theorem
to a subset of any topological vector space. There are many generalisations and many
applications of this theorem.

In this paper, we establish a generalised KKM theorem on a generalised convex
space as follows:

THEOREM 1. Let (X,D;T) be a G-convex space, Y a Hausdorff space and T €
G-KKM(X,Y) be compact, and G : D — 2¥. Suppose that

(1.1) for each z € D, Gz is compactly closed in Y ; and
(1.2) for any N € (D), T('n) C G(N).
Then T(X) NN{Gz : z € D} #£0.

Applying Theorem 1, we extend many well-known generalised KKM theorem, and
we give a unified treatment of these theorems (see [5, 7, 9, 10, 12, 14, 15, 16]). We
also obtain some equivalent forms of Theorem 1 and extend a fixed point theorem of
Tarafdar [15].

2. PRELIMINARIES
Let X,Y and Z be nonempty sets; 2¥ will denote the power set of Y. Let F: X — 2Y
be a set-valued map, AC X, BCY and y € Y. We define
F (B)={zeX:F@@)NB#0}, F(y={zeX:ye F(z)},
F(4)={F(z):z € 4}, Gi(F)={(z.9): vy € F(z),z € X}.
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For topological spaces X and Y, a map F : X — 2V is said to be upper semicontin-
uous if the set F'~(A) is closed in X for each closed subset A of Y. F is said to be closed
if G.(F) is a closed subset of X x Y, and F is said to be compact if F(X) is a compact
subset of Y. A subset B of Y is said to be compactly closed (compactly open) if for each
compact subset K of Y, the set BN K is closed (open) in K.

Given two set-valued maps F : X — 2¥, G : Y — 22 the composite GF : X — 2% is
defined by GF(z) = G’(F(z)) for z € X. Let X be a class of set-valued maps. We write
XX, Y)={T: X -2 |TeX}, X(X,)Y)={TwTh.,--Th: T €X,i=12,...,n
for some n}, that is, the set of finite composites of maps in X.

The following notion of an abstract class of set-valued maps was introduced by Park
[10]. A class U of set-valued maps is one satisfying the following:

(i) U contains the class C of single-valued continuous functions;
(ii) each T € U, is upper semicontinuous with compact values; and
(iii) for each polytope P, each T € U.(P, P) has a fixed point.

We write U%(X,Y) = {T : X — 2Y| for any compact subset K of X, there is
F € U(K,Y) such that F(z) C T(z) for each £ € K}. Each F € UF is said to be
admissible.

Let X be a convex set in a vector space and D a nonempty subset of X. Then (X, D)
is called a convex space if the convex hull of any nonempty finite subset of D is contained
in X and X has the topology that induces the Euclidean topology on the convex hull of its
finite subsets. For a nonempty subset D of X, let (D) denote the set of all nonempty finite

subsets of D. Let A, denote the standard n-simplex with vertices ey, es, ..., e,,1, where
n+l

e; is the ith unit vector in R™*!, that is A, = {u eRM™iu=3 A(u)e, Ai(u) >0,
i=1
n+l

> Mi(w) = 1}.
= A generalised convex space {12] or a G-convex space (X, D;T) consists of a topolog-
ical space X, a nonempty subset D of X and a function I : (D) — 2X with nonempty
values such that
1. foreach A, B € (D), AC B implies I'(4) C I'(B) and
2. for each A € (D), with |A| = n + 1, there exists a continuous function
¢4 : Dy — T(A) such that J € (A) implies ¢a(A,) C T'(J), where Ay
denotes the face of A, corresponding to J € (A).

We see from [12] that a convex subset of a topological vector space, Lassonde’s
convex space, S-contractible space, H-space, a metric space with Michael’s convex struc-
ture, Komiya’s convex space, Bielawski’s simplicial convexity, Joo’s pseudoconex space
are examples of G-convex spaces.

For a G-convex space (X, D;T'), a subset C of X is said to be G-convex if for each
A € (D), A C C implies I'(A) C C. We sometimes write ['(4) = I'4 for each A € (D).
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DEFINTION 1: Let (X, D;T) be a G-convex space, T: X — 2¥ and S: D —2Y
be two set-valued maps such that T(T"4) C S(A) for each A € (D). Then we call S a
generalised G- KKM map with respect to 7. Let T : X — 2¥ be a set-valued map. T is
said to have the G-KKM property if whenever S : D — 2¥ is any generalised G-KKM
map with respect to 7', then the family {Sz : z € D} has the finite intersection property.
We let G-KKM (X,Y) = {T : X — 2¥ | T has the G-KKM property}. If (X,D) is a
convex space, and I'y = Co A is the convex hull of A, then G-KKM(X,Y) = KKM (X,Y)
as defined in [3].

LEMMA 1. Let (X,D;I) be a G-convex space, and Y a Hausdorff space. Then
UX,Y)C G-KKM(X,Y)

PROOF: Lemma 1 follows immediately from the corollary of [13, Theorem 2] and
Definition 1. 1

LEMMA 2. [1] LetY be a compact space and F : X — 2Y be closed. Then F is
upper semicontinuous.

LEMMA 3. [1] Let F : X — 2Y be upper semicontinuous with compact values
from a compact space X toY. Then F(X) is compact.

LEMMA 4. [1] Let X — 2Y be upper semicontinuous with closed values. Then
F is closed.

LEMMA 5. [3] Let X be a convex subset of a linear space, and Y be a topological
space. Then T € KKM(X,Y) if and only if T|p € KKM(P,Y) for each polytope P in
X.

LEMMA 6. Let X be a convex subset of a linear space, Y a topological space, A
a convex subset of X, and T € KKM(X,Y). Then T|4 € KKM{A,Y).

PROOF: Let P be any polytope in A. Since T € KKM(X,Y), it follows from
Lemma 5 that T|p € KKM(P,Y). But (T'|a)lp = T|p € KKM(P,Y). Again by applying
Lemma 5, T|4 € KKM(A,Y). 0

A nonempty topological space is acyclic if all its reduced Céch homology groups
over rationals vanish. In particular, any contractible space is acyclic, any convex or star-
shaped space is acyclic. For a convex space Y, k(Y) denotes the set of all nonempty
compact convex subsets of Y, ka(Y) denotes the set of all compact acyclic subsets of Y
and V(X,Y) = {T | T: X — ka(Y) is upper semicontinuous}. Throughout this paper,
all topological spaces are assumed to be HausdorfL.

3. MAIN RESULTS

We prove a generalised G-KKM theorem which gives a unified approach to KKM-
type theorems.
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THEOREM 1. Let (X, D;T) be a G-convex space, Y a Hausdorff space and T €
G-KKM (X,Y) be compact, G : D — 2¥. Suppose that
(1.1) foreach z € D, Gz is compactly closed in Y; and
(1.2) forany N € (D), T(I'y) C G(N).
Then T(X)NN{Gz :z € D} #0.

PRroOOF: Since T is compact, there exists a compact set K of Y such that T'(X) C K.
From this, we see that 7(X) is compact. For each z € D, let Sz = T(X) N Gz, then it
follows from (1.1) that Sz is closed in T(X) for each z € D. By (1.2), we see that for any
N € (D), T(Tn) = T(Cxy) NT(X) € G(N)NT(X) = S(N). Hence S is G-KKM with
respect to T. It follows that {Sz : z € D} = {Sz : £ € D} has the finite intersection
property. Since T(X) is compact and {Sz :z € D} is a family of closed subsets in T'(X)
we have N{Sz : z € D} # 0. Therefore T(X) NN{Gz : z € D} # 0.

=3

REMARK 1. In Theorem 1, if the condition T € G-KKM (X,Y) is compact is replaced
by the condition that T € Uf(X,Y) and X is compact, then we obtain the following
corollary.

CoroLLARY 1. Let (X,D;T) be a compact G-convex space, Y a Hausdorff

space, and T € U*(X,Y). Suppose that
(C1.1) foreach z € D, Gz is compactly closed in Y; and
(C1.2) foreach N € (D), T(Tn) C G(N).

Then T(X) NN{Gz : = € D} # 0.

PROOF: Since X is compact and T € Uf(X,Y), there exists 7" € U,(X,Y) such
that T'x C Tz for all z € X. Since T" is upper semicontinuous with compact-values on
X, it follows from Lemma 3 that 7"(X) is compact. Hence 7" € U.(X,Y) C KKM(X,Y)
is compact. By (C1.2), for each N € (D), T'(I'y)} € G(N). Then all the conditions for
Theorem 1 are satisfied and it follows from Theorem 1 that T'(X)NN{Gz : z € D} # 0.
Therefore T(X) NN{Gz : z € D} #0. 0

THEOREM 2. Let (X, D) be a convexspace, Y a Hausdorff space andG : D — 2V,
T € UX(X,Y) be set-valued maps satisfying the following
(2.1) foreach N € (D), T(CoN) C G(N); and
(2.2) foreach N € (D), and each z € N, Gz N T(Co N) is relatively closed in
T(Co N).
Then, for each N € (D), T(CoN)NN{Gz :2 € N} # 0.
PROOF: Let N € (D), and Z = CoN. Since T € U5(X,Y) and Z is compact, there
exists F € U.(Z,Y) such that Fz C Tz foreach z € Z. As F is upper semicontinuous

with compact values, it follows from Lemma 4 that F(Z) is compact and F is compact.
Let G; : N — 2Y be given by G1z = Gz NF(Z) for £ € N. Then for each N € (N),
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F(CoN) = F(CoN)N F(Z) C T(CoN)NF(Z) C G{(N)n F(Z) = Gi(N). By (2.2,
for each z € N, Gz NT(Z) = Az NT(Z), where A : N — 2¥, Az is closed for each
z € N. Hence for each z € N, Gyz = Gz NF(Z) = G(z) NT(Z) N F(Z) = AzNT(Z)n
F(Z) = Az N F(Z) is closed in Y. This shows that for each z € N, G,z is compactly
closed in Y. Wesee F € UC(Z, F(Z)) € KKM(Z, F(Z)). Replacing (D, X, Y, T, G) by
(.7\7, Z,F(2),F, Gl) in Theorem 1, shows that F(Z)NN{G,z : z € N} # 0. This implies
T(Z)NN{Gz :z € N} # 0. Since N € (D) is arbitary, this completes the proof. 0

COROLLARY 2. Let X be a nonempty subset of a vector space, and G : X — 2Y,
T :CoX — ka(Y) set-valued maps satisfying the following

(C2.1) for each N € {(X), T(CoN) C G(N);

(C2.2) for each N € X, T|con is upper semicontinuous, where Co N is endowed

with the Euclidean simplex topology; and

(C2.3) for each N € (X), and each z € N, Gz NT(Co N) is relatively closed in

T(Co N).
Then for each N € (X), T(CoN)NN{Gz:z € N} #0.

ProoF: Let X € (X). By (C2.2), (CON,N) is a convex space and T, 5 €
V(Co N, Y) cur (Co N, Y). Then all conditions of Theorem 2 are satisfied and Corol-
lary 2 follows immediately from Theorem 2. 0

Applying Theorem 1, we generalise Fan [5, Theorem 6] and we improve [3, Theorem
8].

THEOREM 3. Let X be a convex space, Y a Hausdorff space and S : X — 2Y,
T € KKM(X,Y) maps satisfying the following conditions:

(3.1) for each compact subset C of X, m is a compact subset of Y,
(3.2) for each z € X, Sz is compactly closed in Y;
(3.3) for each N € (X), T(CoN) C S(N); and
(3.4) there exists a compact convex subset Xy of X and

ﬂ{S:z:::z:EXo} CK.

Then T(X)NN{Sz:z € X} #0.

PROOF: Suppose that T(X)NN{Sz : = € X} = 0. Since K is compact, there
exists a finite subset {z,,%2,...,2Z,} of X such that K C (T(X))c u (0 Sczi), where
i=1

Sz =Y\Sz. By (34), K°C U S°z; € (U Sz)U(T(X))". If we let X; = Co(XoU

z€Xo T€Xo
{z1,22,.. .,z,.}), then X, is a compact convex subset of X and Y = ( U S‘z)U(T(X))c,
T€EX)
that is, T(X) N N Sz = 0. We define F : X; = 2¥ by Fz = SznT(X,), z € X;.
z€X)
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Then (a) for each z € X;, Fz is a closed subset of T(X,), (b) for each N € (X)),
T(CoN) C F(N). Since T € KKM(X,Y), it follows from Lemma 6 and (3.1) that
T|x, € KKM(X,,Y)iscompact. By Theorem 1, we have Wﬂﬂ{.ﬂz z e X, }#0.
But T|x,(X1) € T(X), so we have T(X) NN{Sz : z € X,} # 0. This contradicts that
T(X)NN{Sz:z € X,} =0. Therefore T(X)NN{Sz:z € X} #0. 0

REMARK 2. Theorem 3 improves [3, Theorem 8]. We prove Theorem 3 by applying
Theorem 1, while [3, Theorem 8] is proved by applying the KKM property. From [3,

Theorem 8] we only obtain the conclusion N Sz # 0.
zeX

COROLLARY 3. [5] In a topological vector space, let Y be a convex set and § #
X CcY. Foreachz € X, let F(z) be a relatively closed subset of Y such that the convex
hull of every finite subset {z,,Zs,..., 2} of X is contained in the corresponding union

n
U F(z;). If there is a nonempty subset X, of X such that the interection | F(z) is
i=1 z€Xo

compact, and X, is contained in a compact convex subset of Y, then N F(z) £ 0.
zeX

Proor: Take T(z) = {z} and K = 1 F(z); then Corollary 3 follows immedi-
z€Xo

ately. 0

COROLLARY 4. Let X be a convex space, Y a Hausdorf space, and S : X — 2Y,
T € KKM (X,Y) maps satisfying the following

(C4.1) for each compact subset C of X, T(C) is compact;

(C4.2) foreach z € X, Sz is compactly closed in Y;

(C4.3) foreach N € (X), T(CoN) C S(N); and

(C4.4) there is a nonempty subset Xy of X such that X, is contained in a compact

convex subset X, of X and () Sz is a nonempty compact subset of Y.
z€Xo

Then T(X)NN{Sz:z€ X} #0.

PRroOF: If we take K = () Sz in Theorem 3, then Corollary 4 follows immedi-
z€Xo

ately. 0

THEOREM 4. Let X be a convex space, Y a Hausdorff space, S : X — 2V,
T € US(X,Y) satisfying
(4.1) for each z € X, Sz is compactly closed inY’;
(4.2) foreach N € (X), T(CoN) C S(N); and
(4.3) there exists a nonempty subset K of Y and a nonempty subset X, of

X such that X, is contained in a compact convex subset X; of X and
N{Sz:z € Xp} C K.

Then KNT(X)YNN{Sz:z€ X} #0.
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PROOF: Let N = {z,,%s,...,Z,} be any finite subset of X, then it follows from
(4.3) that X, = Co (X, U N) is a compact convex subset of X. By the assumption
T € Ur(X,Y), there exists T’ € U.(X3,Y) such that T’z C Tz for all z € X, and
T'(X2) is a compact subset of Y. Thus 7" € U,(X,,Y) C KKM(X,,Y) is compact.
Then all the conditions of Theorem 1 are satisfied. It follows from Theorem 1 that
T(X,)NN{Sz : z € X} # 0. Hence mnn{Szﬂﬂ{Sx :z€ X}z € N} #0.
But Xo C X, hence ({Sz : z € X1} C N{Sz : z € Xo} C K. This shows that
ﬂ{Sz N mn K:z¢€ N} # 0. Since for each z € X, Sz is compactly closed in
Y and T'(X;) is compact, it follows that {S:z: NT(X)NK : z € X } is a family of
closed sets with the finite intersection property in the compact set 7(X;) N K. Therefore
N{SzNT(X)NK : z € X} # 0. Since T'(X) C T(Xz) € T(X), it follows that
KnTX)NN{Sz:z€ X} #0. 0

The following theorem generalises a fixed point theorem of Tarafdar [15].

THEOREM 5. Let X be a convex space, Y a Hausdorff topological space, T €
KKM(X,Y), F:Y — 2% be set-valued maps satisfying

(5.1) for each compact set C of X, T(C) is compact;

(5.2) for each y € T(X), Fy is a nonempty convex subset of X;

(5.3) for each x € X, F~(z) contains a compactly open subset O, of Y’;
(54) U O,=Y; and

T€X
(5.5) there is a nonempty subset Xy C X such that X, is contained in a compact

convex subset X, of X and the set M = [ O¢ is compact (M may be
z€Xo

empty) and OF denotes the complement of O; in Y.
Then there exist T € X, and § € T (%) such that T € F (7).

PRrROOF: For each z € X, we let Sz = OZ, then S : X — 2 and for each z € X.
Sz is compactly closed in Y. There are two cases:

Cask (1) M = 0. In this case, if we take X = X, in Theorem 1, we have a finite subset
n
A ={zy,%s,...,2,} of Xg such that T(Co A) U Sz;. This means that there exist zy =

ZAz,, ;i 20,1=1,2,...,n, 2/\ —landyoeT:cosuchthatyogZ US::;,- UO

Thus yo € O C F~ (z,) for all z =1,2,. ,n Hence z; € F(y,) for all =1, 2

But by (3.1), Fyo is convex, so we have 1o = Z Aiz; € Fyo and Theorem 5 is proved for
i=1

thecase M = } O =0.
z€Xo

CASE (2) M # 0. We want to show that there exists a finite subset A = {z,,z2,...,Zn}
of X such that T(Co A) € U Sz;. Suppose that for each finite subset B = {u;, u2,...,um}
i=1

of X, T(Co B) C G Su;. Then it follows from Corollary 4 that T(X)NN{Sz: z € X} #
i=1
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@. Hence N O ﬂ Sz # 0, therefore x U O; # Y, which contradicts to the assump-
reX
tion (5.4) of thlS theorem ThlS shows that there exists a finite subset A = {:cl, T,...,Zn}

of X such that T(Co A4) € U Sz;. As in case (1), there exist zy = Z Az, Ay 2 0,

1=1,2,...,n, 'Z A=1 and yo € Tzg such that yp & U Sz;. From this relation, we get
that zo € Fyp and Yo € Txo.

0

Theorem 5 also gives a sufficient conditions for the existence of fixed points for the
composition of two set-valued maps.

COROLLARY 5. Under the assumption of Theorem 5, there exists zo € X such
that o € FTzy.

PRrooF: It follows from Theorem 5, that there exist g € X, y3 € Tz such that
zo € Fyo. Hence g € FTxz,. 0

COROLLARY 6. Let X be a nonempty compact convex subset of a topological
vector space, T € KKM(X,X) and F : X — 2% be set-valued maps satisfying

(C6.1) foreachy € X, F~(y) contains a relatively open subset O, of X (O, could
be empty);

(C6.2) for each z € X, Fxz is a nonempty subset of X; and

(C6.3) U O, =X.

yeX
Then there exists point g € X, yo € T'zo such that zq € Fyy.

PROOF: Since X is compact and Ux O, = X, it follows that condition (5.5) holds
vE

automatically and Corollary 6 follows immediately from Theorem 5. 0

COROLLARY 7.[15] LetX be a nonempty compact convex subset of a topological
vector space. Let F : X — 2% be set-valued maps such that

(C7.1) for each x € X, Fx is a nonempty convex subset of X ;

(C7.2) foreach y € X, F~(y) contains a relatively open subset Oy of X (O, may
be empty for some y);

(C7.3) U Oy=X; and

yEX
(C7.4) there exists a nonempty subset Xo C X such that X, is contained in a

compact convex subset X; of X and M = | O¢f is compact (M may be
z€Xo

empty).
Then there exists a point o € X such that 7y € Fzg.

PROOF: If we define T : X — 2X by Tz = {z} and take X = Y in Theorem 5, we
prove Corollary 7. 0
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COROLLARY 8.[2] Let X be a nonempty compact convex subset of a topological
vector space. Let F : X — 2% be set-valued maps such that

(C8.1) for each y € X, F~(y) is open; and

(C8.2) for each z € X, Fz is a nonempty convex subset of X.
Then there is 1o € X such that y € Fx,.

PRrROOF: Since for each z € X, Fz is a nonempty subset of X, there exists y € X

such that y € Fz. Hence x € F~y. This shows that X = {J F~y. If we define
yeX

T :X — 2Y by Tz = {z} for z € X, then all the conditions of Corollary 7 are satisfied
and Corollary 8 follows immediately from Corollary 7. 0

REMARK 3. Corollary 4 can be proved by using Theorem 5. Suppose that all the

conditions of Corollary 4 are satisfied; we want to show that T(X)NN{Sz:z € X} #0.

Suppose on the contrary that T(X)NN{Sz:z € X} = 0. We define H : T(X) — 2% by
Hy={z € X :y ¢ Sz}. For each z € X, we let Sz = Y\Sz and O, = S°z. Clearly for

each y € T(X), y € U S°z, hence y & Sz for some zy € X and H(y) is a nonempty
T€X

subset of X. Foreachz € X, H (z) = {y eT(X):y¢ Sa:} = SzNT(X) =0,NT(X)
is compactly open in T(X). Now we denote O, = O, N T(X). Let F : T(X) — 2¥
be defined by Fy = Co[Hy] for each y € T(X). Then for each y € T(X), Fy is
a nonempty convex subset of X and for each z € X, F~(z) 2 H (z) = O,. Since

T(X) N N{Sz : x € X} = 0, it follows that T(X) C U S° and T(X) = U [Sz N
zeX z€X
T( )] = U [Oz N T(X)] = U O,. We denote by O the complement of O, in T(X).
zeX z€EX

By (C42) and (C44), ) Oc = n [TO\O:] =TX) N N 0:=TX)N N Szis
TEXp 0 z€X0

- T€ z€Xo
compact in T(X). Then it follows from Theorem 5 that there exists T € X, 7 € T(Z) such

that T € F§ = Co[Hy]. This implies there exists A = {z1,22,...,2,} C H(@), A 2 0,
n n

1=1,2...,n, ¥ A\ =1such that T =3 Az;. Since z; € H(f) forall : =1,2,...,n, it
i=1 1

i=
follows that 7 ¢ Sz; foralli = 1,2,...,n. Therefore T(Co A) € _01 Sz;. This contradicts
the assumption (C4.3) of Corollary 4. Hence T(X)NN{Sz : z ’E_ X} # 0 and Corollary
4 is proved.
THEOREM 6. Let X be a convex space, Y a Hausdorfl topological space, T €

UMX,Y), F:Y — 2% be set-valued maps satisfying

(6.1) for each y € T{X), Fy is a nonempty convex subset of X ;

6.2) for each z € X, F~(z) contains an compactly open subset O, of Y ;

(
(6.3) U O.,=Y;and
yeEX
(6.4) there exists a nonempty subset Xo C X such that X, is contained in a
compact convex subset X, of X and the set M = () Of is compact (M
z€Xo
may be empty) and O denotes the complement of O, inY.
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Then there exist T € X and § € TZ such that T € Fy.

PROOF: For each z € X, we let Sz = Of. Then S : X — 2 and for each z € X.
Sz is compactly closed in Y. There are two cases.

Cask (1) M =0. In this case, we use Corollary 1 and follow the same argument as in
Theorem 5.

CAsSE (2) M # 0. In this case, we use Theorem 4 and follow the same argument as in
Theorem 5.

0
REMARK 4. In Theorem 5, we assume that T € KKM(X,Y) and T{C) is compact for
each compact set C of X, but in Theorem 6, we assume only that T € Uf(X,Y).

THEOREM 7. Let (X,D;T) be a G-convex space, Y a Hausdorff space, and T :
X — 2Y be compact and closed and G : D — 2Y. Suppose that
(7.1) for each xz € D, Gz is compactly closed;
(7.2) forany N € (D), T(I'y) C G(N); and
(7.3) there exist a nonempty compact subset K of Y and for each N € (D), a
compact, G-convex subset Ly of X containing N such that T(Ly)NN{Gz :
z€LyND}C K, and T € G-KKM (Ly,Y).
Then T(X)NKNN{Gz:z € D} #0.

PROOF: Suppose that T(X) N K NN{Gz : £ € D} = 0. Let Sz = Y\Gz, then

T(X)NK C S(D). Since T(X)NK is compact and for each z € D, Sz is compactly open,
it follows that there exists N € (D) such that T(X) N K C S(N). By (7.3), there exists
a compact G-convex subset Ly of X containing N such that T(Ly)\K C S(Ly N D).
Hence T(Ly) € S(Ly N D). Since T is compact and closed, it follows from Lemma 2
that T is upper semicontinuous We want to show that for each z € X, Tz is compact.

Let y € T(z), then there exists a net {y,} in Tz such that y, — y. Since T is closed,

it follows that y € Tz and Tz is closed. By assumption T is compact, hence T(X)
is a compact set. But Tz C T(X) and Tz is closed for each z € X. This shows
that Tz is compact for each z € X. Since T is upper semicontinuous with compact
values and Ly is compact, it follows from Lemma 3 that T(Ly) is compact. Therefore
T(Ly) = T(Ln) € S(Ly N D). Thus T(Ly)NN{Gz : € Ly N D} = 0. It follows from
Theorem 1 with (T|r,,Gliynp, Ln, Lv N D) replacing (T, G, X, D), that there exists
M € (Ly N DY C (D) such that T(T'y) € G(M). This contradicts (7.2). Therefore

TX)NKNN{Gz:z € D} #0. 0

COROLLARY 9. [12] Let (X,D;T) be a G-convex space, Y a Hausdorff space,
and T € UX(X,Y). Let G : D — 2¥ be a map such that

(C9.1) for each z € D, Gz is compactly closed in Y’;

(C9.2) for any N € (D), T(I'y) € G(N); and
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(C9.3) there exist a nonempty compact subset K of Y and for each N € (D), a
compact G-convex subset Ly of X containing N such that T(Ly)NN{Gz :
z€ LynNnD}CK.

Then T(X)N K NN{Gz :z € D} # 0.
ProOF: Since T € UF(X,Y) C G-KKM(X,Y), it follows from Lemma 6 that
T|.y € G-KKM(Ly,Y) and the conclusion of Corollary 9 follows from Theorem 7. [

4. GENERALISED G-KKM THEOREMS

As a consequence of the generalised G-KKM theorem, we prove a generalisation of
the Ky Fan matching theorem.
THEOREM 8. Let (X,D;T) be a G-convex space, Y a Hausdorff space, S : D —
2Y and T € G-KKM (X,Y) be compact. Suppose that
(8.1) for each z € D, Sz is compactly open in'Y; and
(8.2) T(X)c S(D).
Then there exists M € (D) such that T(Cy) NN{Sz=z € M} #0.
PRrOOF: Suppose that the conclusion of Theorem 8 is false. Then for any N € (D),
T(Ty)NN{Sz:z € N} = 0. Therefore T(I'y) C U{Gs: s € N} = G(N), where Gz =
Y\Sz. By (8.1), for each z € D, Gz is compactly closed in Y. Then all the conditions

of Theorem 1 are satisfied. It follows from Theorem 1 that T(X)NN{Gz :z € D} # 0.

Hence T(X) € S(D), but this contradicts (8.2). Thus there exists M € (D) such that
TTy)NN{Sz:z€ M} #0. a
CoROLLARY 10. [8] Let D be a nonempty subset in a compact convex space
X, Y a topological space, and A : D — 2Y a set-valued map satisfying
(C10.1) for each z € D, Az is compactly open in Y; and
(C10.2) A(D)=Y.
Then for any z € C(X,Y), there exist a finite subset {z,z2,...,2,} of X and z; €
Co{z\,...,z,} such that szq € ﬁl Az;.

PROOF: Since X is compact and s € C(X,Y), it follows that s(X) is compact.

Hence s € C(X,Y) C KKM(X,Y) is compact. By (C10.2), s(X) = s(X) C Y C A(D).

It follows from Theorem 8, that there exist a finite subset {z,,zs,...,z,} of X and
n

zo € Co{zy,...,Zn} such that szg € N Az;. 0
i=1

CoROLLARY 11.[5] In a topological vector space, let Y be a convex set and let
X be a nonempty subset of Y. For each x € X, let Az be relative open in Y such

that U Az =Y. If X is contained in a compact convex subset C of Y, then there
zeX
exist a nonempty, finite subset {z,,zs,...,z,} of X and zo € {z,,...,T,} such that

n
Iy € N Az;.
i=1
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PRrOOF: Let Tz = {z}, then T(C) = C is compact, and T is compact. T(C) =

C C Y C A(X). Then it follows from Theorem 8 that there exist a finite subset

{z1,z2,...,2,} of X and z¢ € {z,,...,2z,} such that =, € F] Az;. 0
i=1

REMARK 5. Theorems 1 and 8 are equivalent.

We saw that Theorem 8 can be proved by using Theorem 1. Now we prove Theorem 1

from Theorem 8. Suppose that T(X)NN{Gz : z € D} = 0. Let Sz = Y\Gz. Then
Sz is compactly open and T(X) C S(D). It follows from Theorem 8, that there exists
M € (D) such that T(Ta) NN{Sz : £ € M} # 0. Hence T(I'y) € G(M). This

contradicts (1.2). Thus the conclusion of Theorem 1 holds.

THEOREM 9. Let (X,D;T) be a G-convex space, Y a Hausdorff space and T :
X — 2Y be compact and closed. Suppose that

(9.1) for each z € D, Sx is compactly open;

(9.2) there exists a nonempty compact subset K of Y such that T(X) C S(D);
and

(9.3) foreach N € (D), there exists a compact G-convex subset Ly of X con-
taining N such that T(Ly)\K C S(LyN D), and T € G-KKM (Ly,Y).
Then there exists M € (D) such that T(Ty) NN{Sz:z€ M} #0.

PRrOOF: Suppose that for any N € (D). T(Tn)NN{Sz : z € N} = 0. Let
Gz = Y\Sz. Then by applying Corollary 9 and following an argument as in Theorem 8,
we prove Theorem 9. 0
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