4.10

EXPECTED DISTRIBUTION OF SOME OF THE ORBITAL ELEMENTS OF INTERSTELLAR
PARTICLES IN THE SOLAR SYSTEM
O.I. Belkovich and I.N. Potapov

Engelhardt Astronomical Observatory, Kazan/U.S.S.R.

A two-dimensions distribution $p(e, q)$ of eccentricities e and perihelion distances q can be derived by means of the formula for the probability transformation:

$$
p(e, q)=p(v, \alpha) \cdot\left|\begin{array}{ll}
\frac{\partial v}{\partial e} & \frac{\partial \alpha}{\partial e} \tag{1}\\
\frac{\partial v}{\partial q} & \frac{\partial \alpha}{\partial q}
\end{array}\right|
$$

where v is the heliocentric velocity at infinity, α is the impact parameter. Assuming v and α are independent and $p(v)=C_{1}, p(\alpha)=C_{2} \alpha^{2}$, we have

$$
\begin{equation*}
p(v, \alpha)=p(v) p(\alpha)=C_{1} C_{2} \alpha^{2} . \tag{2}
\end{equation*}
$$

Here C_{1} and C_{2} are constants.
The well-known relations of celestial mechanics give

$$
\begin{equation*}
v^{2}=\frac{e-1}{q}, \quad \alpha^{2}=\frac{e+1}{e-1}, \tag{3}
\end{equation*}
$$

where q is in $A U$ and v is in units of the earth's velocity. From eq. (1) taking into account for eqs. (2) - (4) one can derive:

$$
\begin{equation*}
p(e, q)=\frac{c_{1} c_{2} q^{3 / 2} e(e+1)^{1 / 2}}{(e-1)^{2}} \tag{5}
\end{equation*}
$$

Distributions $p(e)$ and $p(q)$ were derived from the integration of eq. (5):

$$
p(e)= \begin{cases}c_{3} e\left(e^{2}-1\right)^{1 / 2}, & \left(1 \leqslant e \leqslant e_{0}\right) \tag{6}\\ c_{4} e\left(e^{2}-1\right)^{1 / 2}\left[\left(\frac{e_{m}-1}{e-1}\right)^{5 / 2}-1\right] & \left(e_{0} \leqslant e \leq e_{m}\right)\end{cases}
$$

e_{o} and e_{m} are found from the minimum and maximum values of the velocities and maximum size of the region near the sun that can be observed. In the real case $e_{o} \sim 1.0001$.

$$
\begin{equation*}
\mathrm{p}(\mathrm{q})=\mathrm{C}_{5} \mathrm{q}^{1 / 2} \tag{7}
\end{equation*}
$$

C_{3}, C_{4} and C_{5} are constants.
One can see from eq. (6) there is a strong concentration of the parameter e near 1.
Similar results were obtained for some other forms of the velocity distributions $p(v)$.

