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The recent Lagrangian relaxation towards equilibrium (LaRTE) approach (Fowler et al.,
J. Fluid Mech., vol. 934, 2022, A44) is a wall model for large-eddy simulations (LES)
that isolates quasi-equilibrium wall-stress dynamics from non-equilibrium responses to
time-varying LES inputs. Non-equilibrium physics can then be modelled separately, such
as the laminar Stokes layers that form in the viscous region and generate rapid wall-stress
responses to fast changes in the pressure gradient. To capture additional wall-stress
contributions due to near-wall turbulent eddies, a model term motivated by the attached
eddy hypothesis is proposed. The total modelled wall stress thus includes contributions
from various processes operating at different time scales (i.e. the LaRTE quasi-equilibrium
plus laminar and turbulent non-equilibrium wall stresses) and is called the multi-time-scale
(MTS) wall model. It is applied in LES of turbulent channel flow subject to a wide
range of unsteady conditions from quasi-equilibrium to non-equilibrium. Flows considered
include pulsating and linearly accelerating channel flow for several forcing frequencies and
acceleration rates, respectively. We also revisit the sudden spanwise pressure gradient flow
(considered in Fowler et al., J. Fluid Mech., vol. 934, 2022, A44) to review how the newly
introduced model features affect this flow. Results obtained with the MTS wall model show
good agreement with direct numerical simulation data over a vast range of conditions
in these various non-equilibrium channel flows. To further understand the MTS model,
we also describe and test the instantaneous-equilibrium limit of the MTS wall model. In
this limit, good wall-stress predictions are obtained with reduced model complexity but
providing less complete information about the wall-stress physics.
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1. Introduction

Simulations of wall-bounded turbulence at high Reynolds numbers are computationally
challenging because they must resolve a vast range of scales. For example, in the near-wall
region, the velocity scales with the viscous length scale, which at high Reynolds numbers
requires a very fine mesh near the wall. In large-eddy simulations (LES), ‘wall models’
are deployed to model rather than resolve these small near-wall length scales. Wall models
for LES have been reviewed in Piomelli & Balaras (2002), Piomelli (2008), Larsson et al.
(2016) and Bose & Park (2018). Here, we concentrate on ‘wall-stress models’ in which
the LES domain extends all the way to the wall, where the wall stress is applied as
a boundary condition. The simplest and most commonly used wall-stress model is the
equilibrium wall model (EQWM), which assumes that the velocity profile follows some
known functional form, an equilibrium velocity profile such as the log law (Deardorff
1970; Schumann 1975; Piomelli et al. 1989). While, strictly, such profiles tend to be
valid after long-time averaging under full equilibrium conditions, applications of the
EQWM in LES usually assume such profiles to be valid locally and instantaneously.
This enables us to use the LES velocity at the wall-model height to determine the
local friction velocity and thus the local wall stress. However, the application of a
model derived from pure equilibrium assumptions to situations in highly non-equilibrium
conditions poses conceptual and practical problems. One difficulty is that it combines
both quasi-equilibrium and non-equilibrium effects in a single model formulation, where
non-equilibrium effects tend to be clouded by the underlying quasi-equilibrium dynamics.
Alternative recent wall models such as the dynamic slip wall models impose a slip velocity
boundary condition (Bose & Moin 2014; Bae et al. 2019). Close connections between
slip-velocity and equilibrium wall models have been pointed out in Yang, Bose & Moin
(2016).

Existing wall models tend to model non-equilibrium and quasi-equilibrium effects in
a single formulation. A popular method for incorporating non-equilibrium effects is to
solve the full thin boundary layer equations in a near-wall mesh, given the LES velocity
(Balaras, Benocci & Piomelli 1996). Although this method includes all non-equilibrium
terms in the momentum balance, its computational cost can approach that of wall-resolved
LES since a refined near-wall mesh is used. Chung & Pullin (2009) developed a model
based on the wall-normal integrated thin boundary layer equations within the near-wall
region and a law of the wall assumption for the velocity profile. Certain non-equilibrium
effects can be captured since all terms are included in the momentum balance and
because the horizontal Reynolds-stress gradients are evaluated using the subgrid scale
(SGS) stresses at the wall-model height. Nevertheless, the model assumes a plug-flow
profile for the advection term. In order to account for the velocity profile below the
wall-model height, Yang et al. (2015) developed another wall model (called iWMLES)
based on the integrated momentum equations. They assume that the near-wall velocity
profile is linear in the viscous sublayer, above which it obeys the log law with an additional
linear term to capture non-equilibrium effects. Tests using iWMLES in non-equilibrium
flows such as flow over cubed roughness elements (Yang et al. 2015) and the sudden
spanwise pressure gradient (SSPG) flow in Lozano-Durán et al. (2020) have shown that
the model captures properly some non-equilibrium effects. However, iWMLES models
non-equilibrium solely through modifying the assumed velocity profile, still assuming
that non-equilibrium dynamics can be captured via an only slightly modified equilibrium
velocity profile. Thus equilibrium and non-equilibrium effects are mixed together in a
single formulation, and it remains unclear how to proceed for more complex flows where
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the modelling assumption of a near-equilibrium velocity profile is expected to break
down.

Recently, a formal approach to separate equilibrium, quasi-equilibrium and highly
non-equilibrium conditions for wall modelling was proposed in Fowler, Zaki & Meneveau
(2022). The formalism decomposes LES information into contributions from different
time scales, and models each component separately. Quasi-equilibrium is assumed to
hold for time scales slow enough so that the corresponding velocity profile satisfies
the law of the wall. An evolution equation for the friction-velocity vector was derived,
which may be described as a ‘Lagrangian relaxation towards equilibrium’, or LaRTE
for short. This LaRTE model then captures solely the quasi-equilibrium dynamics,
leaving non-equilibrium dynamics to be modelled separately. Consequently, the LaRTE
equation was supplemented with a laminar non-equilibrium (lamNEQ) model to capture
the wall-stress response to fast changes in the pressure gradient. This combination
captures the slow wall-stress behaviour by the LaRTE model, and captures the fast
wall-stress behaviour by lamNEQ. The LaRTE+lamNEQ wall model was applied to
standard equilibrium channel flow to compare with data and to document the various
properties of the approach. Then it was applied to simulate a strongly non-equilibrium
flow, the SSPG test case of Lozano-Durán et al. (2020), to demonstrate how the model
behaves during non-equilibrium conditions.

The Fowler et al. (2022) model, summarized here in § 2, included quasi-equilibrium
evolution (slow time scales, of the order of the integral scale turnover time) as well as
very fast laminar viscous sublayer dynamics very near the wall. However, the approach
did not represent turbulent fluctuations that would arise due to eddies of sizes below the
wall-model height, evolving at turbulent time scales represented by the smallest resolved
LES motions near the wall. The first objective of the present paper is to introduce a new
model turbNEQ for the turbulence portion that was not included before (see § 2.3). The
resulting model will thus include three separate parts (LaRTE, lamNEQ and turbNEQ),
and be termed the multi-time-scale (MTS) wall model.

While in general non-equilibrium may refer to any flow where the time derivative
and/or nonlinear advection terms in the ensemble-averaged momentum balance are
non-negligible, in this work we consider only non-stationary flows. Examples considered
previously in the direct numerical simulations (DNS), LES and experimental literature
include flows with spanwise wall movements in time such as wall oscillations (Jung,
Mangiavacchi & Akhavan 1992; Quadrio & Ricco 2003; Ricco et al. 2012; Yao, Chen
& Hussain 2019), flows where a spanwise pressure gradient is applied suddenly (Moin
et al. 1990; Lozano-Durán et al. 2020), flows with streamwise acceleration or deceleration
(He, Ariyaratne & Vardy 2008, 2011; He & Ariyaratne 2011; Jung & Chung 2012; He &
Seddighi 2013, 2015; Talha & Chung 2015; Jung & Kim 2017; Sundstrom & Cervantes
2018c; de Wiart, Larsson & Murman 2018), and flows with a streamwise oscillating
pressure gradient (Tardu, Binder & Blackwelder 1994; Scotti & Piomelli 2001; Weng,
Boij & Hanifi 2016; Sundstrom & Cervantes 2018b; Cheng et al. 2020).

A second objective of this paper is to apply and explore the performance of the MTS wall
model for two non-stationary non-equilibrium flows, in which the unsteadiness is applied
in the streamwise direction as opposed to the case presented by Fowler et al. (2022), who
examined a sudden change in the spanwise pressure gradient. The first application that we
consider is pulsating (or oscillating) channel flow (see § 3), where the streamwise pressure
gradient forcing oscillates sinusoidally, based on the work of Weng et al. (2016). The
second flow considered in this work is linearly accelerating channel flow (see § 4), where
the bulk mean velocity increases linearly during an acceleration period, based on the work
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of Jung & Kim (2017). Pulsating and linearly accelerating flows were chosen to apply and
explore the new wall model because these flows can cover the vast range of conditions
from quasi-equilibrium to highly non-equilibrium flow. For example, for pulsating flow,
slow oscillations lead to quasi-equilibrium conditions, whereas fast oscillations lead to
non-equilibrium conditions. For linearly accelerating flow, the acceleration rate can be
varied to cover different regimes. These flows are interesting application cases because
they span various different physical processes, relying on contributions from different
parts of the MTS wall model. There is also ample evidence that both of these flows exhibit
signs of a laminar Stokes layer during non-equilibrium conditions. For pulsating flow,
the periodic wall-stress amplitude and phase follow the Stokes solution (Stokes’ second
problem) when the pulsing frequency is very high. For linearly accelerating flow, the
deviations of the wall stress and velocity from their initial states follow a laminar solution
during the first stage of acceleration if the acceleration is fast enough. Therefore, the
lamNEQ model is expected to capture these limiting behaviours. However it is impossible
to know a priori how the MTS wall model will perform during conditions in between
quasi-equilibrium and laminar non-equilibrium. For these intermediate conditions, the
turbulent non-equilibrium model helps to bridge the gap between these two limiting
states. Since the wall model used in Fowler et al. (2022) to model rapid spanwise
pressure gradient flow did not include the turbulent non-equilibrium (turbNEQ) physics,
in Appendix A we briefly revisit that flow as well, showing that predictions using the MTS
wall model are comparable to those presented in Fowler et al. (2022) for channel flow
subjected to rapid spanwise pressure gradient.

While using the MTS wall model in LES, considerations of model simplicity led us
to also explore a simpler option, in which the LaRTE relaxation time scale is set to zero
but the model still includes effects from the lamNEQ dynamics. The resulting approach is
termed the ‘equilibrium multi-time-scale’ wall model. In § 5, it is shown that it also can
provide good predictions of the wall-stress evolution in various applications, but with less
complete information about the wall-stress physics. Overall conclusions from this work
are discussed in § 6.

2. Multi-time-scale wall model: from full equilibrium to non-equilibrium

We begin with a summary schematic containing all the constitutive parts of the MTS
wall model. Figure 1 includes the full spectrum of length and time scales captured in this
approach. The wall-modelling region is confined between the wall and the wall-modelling
height y = Δ, whereas the ‘LES region’ exists above, beyond y = Δ. The total wall stress
in the MTS wall model is evaluated as the superposition between the quasi-equilibrium,
lamNEQ and turbNEQ components:

τw(x, z, t) = τ̄w(x, z, t)+ τ ′′
w(x, z, t)+ τ ′

w(x, z, t). (2.1)

The quasi-equilibrium component τ̄w is modelled via the LaRTE wall model first
introduced in Fowler et al. (2022) and reviewed in § 2.1. The LaRTE model is named
according to its governing equation for the friction-velocity vector uτ , which relaxes to
its equilibrium value in a Lagrangian manner at a rate Ts called the relaxation time scale.
Therefore, the LaRTE model captures the quasi-equilibrium behaviour of the wall stress,
which occurs at time scales longer than the relaxation time scale. In figure 1, the LaRTE
region is shown in blue, with relaxation represented by the dark blue arrow pointing to the
dark grey equilibrium closure region.
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Figure 1. Multi-time-scale wall model length and time scales.

The LaRTE model is further supplemented by lamNEQ and turbNEQ models to capture
wall-stress dynamics faster than Ts. The lamNEQ component τ ′′

w covers fast dynamics
resulting from the pressure gradient forcing at time scales faster than a viscous time scale,
tν ∼ ν/u2

τ (where ν is the kinematic fluid viscosity, and uτ is the friction velocity). This
laminar ‘Stokes-like’ behaviour is assumed to be confined to the laminar viscous sublayer.
For intermediate time scales, i.e. for time scales between tν and Ts, turbulent eddies that
would occur between the wall and y = Δ but cannot be reproduced by LES must also
be modelled. In this paper (§ 2.3), we develop a turbNEQ wall model that completes the
spectrum of time scales covered by the MTS wall model.

Generally, the model terms are distinguished by the following notation and colours
(abbreviated model name, symbol, colour in parentheses): quasi-equilibrium is marked by
overline (LaRTE, φ̄, blue), laminar non-equilibrium by double prime (lamNEQ, φ′′, red),
turbulent non-equilibrium by single prime (turbNEQ, φ′, green), and full equilibrium by
superscript ‘eq’ (φeq, grey), where φ represents any relevant model variable. Averaging
over the homogeneous directions (and ensemble averaging, if applicable) is denoted
with angled brackets, with the subscript identifying any additional variables over which
averaging is done, i.e. 〈·〉 indicates averaging over x and z, and 〈·〉t indicates averaging
over x, z and t.

2.1. Quasi-equilibrium (LaRTE)
First, we summarize the primary governing equations for the LaRTE portion of the MTS
wall model. Derivations and additional details are discussed in Fowler et al. (2022). The
goal of the LaRTE portion is to capture quasi-equilibrium dynamics of the wall stress.
This is achieved by assuming an equilibrium mean-velocity profile in the near-wall region,
whose dimensional parameter (friction velocity) is allowed to evolve slowly in both space
and time. Generally, a slow, quasi-equilibrium quantity with LES horizontal resolution
is indicated with an overline. For all present applications, we assume that the horizontal
quasi-equilibrium velocity ūs = ūı̂ + w̄k̂ satisfies the law of the wall

ūs(x, y, z, t) = uτ (x, z, t) f ( y+), (2.2)

where uτ (x, z, t) is the friction-velocity vector and is a slowly varying function of
the horizontal coordinates (x, z) and time t. A schematic of this velocity profile is
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Figure 2. A schematic of the velocity profiles for the (a) LaRTE, (b) laminar non-equilibrium, and (c) turbulent
non-equilibrium components. Additional visualizations (including an interactive animation) of the various
terms comprising the MTS wall model are provided in Appendix A, in figure 27.

shown in figure 2(a). The quasi-equilibrium wall-stress vector can be found from the
friction-velocity vector using

τ̄w = uτuτ . (2.3)

LaRTE is based on an evolution equation for the friction-velocity vector uτ (x, z, t),
from which the wall stress can then be computed. The evolution of uτ (x, z, t) is based
on an unsteady Reynolds-averaged Navier–Stokes momentum equation for ūs(x, y, z, t),
the wall-parallel Reynolds averaged velocity as a function of vertical position y. The
momentum balance governing this velocity is

∂ūs

∂t
+ ∇h · (ūsūs)+ ∂y(v̄ūs) = − 1

ρ
∇hp̄ + ∂

∂y

[
(ν + νT)

∂ūs

∂y

]
+ ∇h · [(ν + νT)(∇hūs + ∇hūT

s )], (2.4)

where ∇h = ∂x ı̂ + ∂zk̂ represents the horizontal gradients on the x–z wall plane, and the
total (viscous plus eddy) diffusion cross-terms involving the (small) vertical velocity v̄
have been neglected. This partial differential equation (PDE) is then integrated vertically
from the wall to the wall-model height y = Δ, and the assumed velocity profile (2.2) is
substituted to get all terms as a function of uτ . After simplifying the PDE, i.e. neglecting
horizontal diffusion terms as well as a term representing the horizontal divergence of
the friction-velocity direction vector (see Appendix B, which provides an alternative
derivation of the LaRTE equation from that presented in Fowler et al. 2022), the following
evolution equation for the friction-velocity vector is obtained:

∂uτ
∂t

+ V τ · ∇huτ = 1
Ts

[
1
uτ

(
−Δ
ρ

∇hp̄ + τ̄Δ

)
− uτ

]
+ uτ

δ∗Δ
Δ

∂s
∂t
, (2.5)

where

Ts ≡ f (Δ+)
Δ

uτ
(2.6)

appears formally as a relaxation time scale, s ≡ uτ /uτ is the unit friction-velocity vector,

τ̄Δ ≡ (ν + νT)
∂ūs

∂y

∣∣∣∣
y=Δ

, (2.7)
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is the total shear stress (including viscous and turbulent stresses) at the wall-model
height y = Δ, V τ ≡ (1 − δ∗Δ/Δ− θΔ/Δ) f (Δ+)uτ is the advection velocity for the
friction-velocity vector, and δ∗Δ ≡ ∫ Δ

0 (1 − ūs( y)/ūs(Δ)) dy and θΔ ≡ ∫ Δ
0 (ūs( y)/ūs(Δ))

(1 − ūs( y)/ūs(Δ)) dy are the cell displacement and momentum thicknesses, respectively.
In this equation, the friction velocity relaxes in a Lagrangian fashion (with velocity V τ ),
to its equilibrium value ((2.13), introduced later in this subsection). Hence the model was
termed the Lagrangian relaxation towards equilibrium (LaRTE) wall model.

The LaRTE evolution equation is discretized in time using a forward Euler method
for explicit evaluation of uτ . To evaluate spatial gradients that arise from the advection
term in the Lagrangian time derivative, we use a semi-Lagrangian scheme (Staniforth
& Côté 1991) where the right-hand side of (2.5) is evaluated at the upstream location
using bilinear spatial interpolation. The additional numerical diffusion caused by the
discretization scheme furthermore reduces the need to evaluate the horizontal diffusion
term, thus we opt to neglect it. Specifics for evaluating (2.5) may be found in Fowler et al.
(2022).

The term towards which the friction velocity relaxes includes contributions from both
the pressure gradient and the total stress at the wall-model height. The LES information
(velocity and pressure gradient) contains the full spectrum of time scales resolved by the
LES. Therefore, we must remove explicitly the effects of the fast laminar Stokes layer
behaviour from the LES inputs, otherwise the friction velocity will relax to an incorrect
value. For the quasi-equilibrium pressure gradient, this is done through a one-sided
exponential filter that is evaluated as

∇hpn = δtn

tν
∇hpn

LES +
(

1 − δtn

tν

)
∇hpn−1, (2.8)

where n is the time step index, δt is the time step size, ∇hpLES is the LES pressure gradient
at the location (x,Δ, z), and tν is a viscous diffusion time scale associated with the laminar
Stokes layer. The laminar diffusion time scale tν ∼ l2s/ν is defined based on the assumption
that the laminar Stokes layer is confined to the region from the wall to a height ls in which
viscous effects dominate over inertial ones. The thickness of the viscous sublayer is fixed
in inner units, therefore we express tν in terms of l+s = lsuτ /ν according to

tν ≡ (l+s )
2ν/u2

τ , where l+s =12. (2.9)

This viscous time scale represents the time it takes for a Stokes layer to propagate from the
wall to the edge of the viscous sublayer. Throughout this paper, l+s = 12 is used. This value
marks the intercept between the log law and linear viscous sublayer velocity profiles with
the von Kármán constant κ = 0.4 and log-law intercept B = 5.8. This value also agrees
with the viscous sublayer thickness estimated by Nickels (2004) (called y+

c in that work).
The total stress at y = Δ, i.e. τ̄Δ, is the primary term to be closed in (2.5). The LaRTE

wall model uses an equilibrium closure for evaluating the total stress but with a ‘velocity
correction’ to the LES velocity that removes the contribution of the laminar Stokes layer
to the LES velocity, similar to what was done for the quasi-equilibrium pressure gradient.
The total stress closure is based on the full equilibrium momentum balance, where the
unsteady and advection terms are set to zero. The smooth-walled, full equilibrium solution
is found by solving the ordinary differential equation

0 = − 1
ρ

∇hp̄ + d
dy

(
(ν + νT)

dūeq

dy

)
, (2.10)
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with boundary conditions

ūeq(0) = 0, ūeq(Δ) = ūΔ, (2.11a,b)

where Δ is the wall-model height, and ūΔ is the velocity input to the model. This velocity
is related (but not exactly equal) to the LES velocity at y = Δ, ULES (as discussed
further in this section). The pressure gradient ∇hp̄ is determined from the LES pressure
gradient by low-pass filtering it at a viscous time scale, as introduced in (2.8). Finally,
the eddy viscosity is assumed to be unaffected by the pressure gradient and is evaluated
as νT( y) = [D( y) κy]2‖dūeq/dy‖, where D( y) is the van Driest damping function (van
Driest 1956).

Integrating (2.10) between y = 0 and y = Δ, one obtains

0 = −Δ
ρ

∇hp̄ + τ̄Δ − τ̄ eq
w , where τ̄ eq

w ≡ ν
dūeq

dy

∣∣∣∣
0
. (2.12)

The equilibrium wall stress τ̄
eq
w is the viscous stress at the wall involving the solution

ūeq( y) to (2.10). The obtained equilibrium wall stress, appropriately non-dimensionalized,
was fitted for general use in Meneveau (2020), expressing the result in terms of a
wall-model friction factor cwm,eq

f (ReΔ,ψp) ≡ 2τ̄ eq
w /ū2

Δ, or equivalently, a wall friction
Reynolds number Repres

τΔ (ReΔ,ψp) ≡ Δ(τ̄
eq
w )

1/2/ν, where the inputs to the fit are ReΔ ≡
ūΔΔ/ν and ψp ≡ (1/ρ)(∇hp̄ · êu)Δ

3/ν2, with êu ≡ ūΔ/ūΔ the velocity input unit vector.
Both are related via cwm,eq

f = 2[Repres
τΔ /ReΔ]2 (see Meneveau (2020) and Fowler et al.

(2022) for more details). Full equilibrium implies that we may use the equilibrium wall
model of τ̄

eq
w as a model for the total forcing at y = Δ, namely we replace

− Δ

ρ
∇hp̄ + τ̄Δ = τ̄ eq

w = 1
2

cwm,eq
f (ReΔ,ψp) ū2

Δêu (2.13)

in (2.5).
During LES of flows under strong non-equilibrium conditions, we have found that

simply using the LES velocity ULES as the input to the stress closure for τ̄
eq
w (i.e. using

ReΔ = ULESΔ/ν) yields incorrect results during periods of high non-equilibrium forcing.
For example, if the flow is accelerated in the streamwise direction by a sudden increase
in the pressure gradient, then a shear layer grows near the wall and the velocity outside
the shear layer increases. If we were to use the LES velocity as the input, then (2.13)
incorrectly attributes the increase in velocity to an increase in the turbulence and the wall
stress. Ample evidence from the literature (He & Jackson 2000; Greenblatt & Moss 2004;
He et al. 2008; He & Seddighi 2013; Vardy et al. 2015; Sundstrom & Cervantes 2018a)
shows that the stress outside of this shear layer remains unchanged for some time after
application of the sudden change in the pressure gradient, consistent with the concept
of ‘frozen turbulence’. To mimic this effect while also keeping the simplicity of the
equilibrium wall model, we correct the LES velocity by subtracting from it the anticipated
increase in velocity due to rapid changes in pressure gradient. This velocity correction is
denoted as u′′

Δ and is modelled as the solution to the model equation

∂u′′
Δ

∂t
= − 1

ρ
∇hp′′ − u′′

Δ

TΔ
, (2.14)

where TΔ = tν +Δ/κuτ represents the time scale associated with the destruction of the
laminar Stokes layer as it diffuses away from the wall. In the absence of mean shear,
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Multi-time-scale wall model

the fluid acceleration is equal to the pressure gradient. However, because the underlying
flow has shear, the laminar Stokes layer above ls weakens and becomes turbulent as it
diffuses away from the wall. The characteristic time for this diffusive process to take
place, TΔ, is modelled as the time it takes for the laminar Stokes layer to diffuse to the
edge of the viscous sublayer, tν , plus the eddy turnover time at the wall-model height,
Δ2/νT(Δ) = Δ/κuτ . In figures 1 and 2, the dark red region corresponds to the laminar
Stokes layer near the wall, which diffuses to the edge of the viscous sublayer, ls, by time tν .
The Stokes layer’s growth is then interrupted by the turbulent flow, which further diffuses
it over an eddy turnover time. This is represented by the light red region in figures 1 and 2.
Here, ∇hp′′ ≡ ∇hpLES − ∇hp̄ is the high-pass filtered non-equilibrium pressure gradient
containing the high-frequency content of the LES pressure gradient affecting mostly the
laminar sublayer dynamics. Equation (2.14) effectively models the changes in the LES
velocity due to fast changes in the pressure gradient. Note the similarities between (2.14)
and (2.16), soon to be introduced. Equation (2.14) is essentially a model for (2.16) evaluated
at the wall-model height Δ where the viscous term is replaced by a modelled destruction
term.

The velocity input used in (2.13) is then given by

ūΔ = ULES − u′′
Δ. (2.15)

The velocity correction u′′
Δ is shown schematically with the thick red vector in figure 2,

and the resulting corrected velocity input ūΔ is shown by the light grey vector. During
non-equilibrium events, u′′

Δ cancels the changes in the LES velocity, which ultimately
leads to a delayed response by τ̄Δ. In previous applications of the LaRTE wall model
(Fowler et al. 2022), ULES was filtered using a 2Δ spatial filter to remove LES velocity
fluctuations that ultimately lead to an overpredicted wall stress (Bou-Zeid, Meneveau &
Parlange 2005). However, we have found that the velocity correction eliminates the need
to filter the LES velocity since it inherently removes the high-frequency content in ULES.
Therefore, in the present test cases using the LaRTE wall model, the LES velocity remains
spatially unfiltered.

2.2. Laminar non-equilibrium
The lamNEQ wall model developed in Fowler et al. (2022) is based on the concept of
frozen turbulence where the Reynolds stresses remain unaffected during a short period
after a fast change in the pressure gradient forcing. Since the Reynolds stresses may
be neglected, the resulting governing equation for this process is laminar. The lamNEQ
velocity u′′ is then modelled by solving

∂u′′

∂t
= − 1

ρ
∇hp′′ + ν

∂2u′′

∂y2 , (2.16)

where
∇hp′′ = ∇hpLES − ∇hp̄ (2.17)

may be interpreted as the high-frequency pressure gradient fluctuations around the LaRTE
quasi-equilibrium pressure gradient (see (2.8) for the evaluation of ∇hp̄). The resulting
flow is confined to a thin region near the wall where the flow is quasi-parallel and advection
terms may be neglected, therefore ∇hp′′ is the sole driving force for accelerating the flow.
The solution to (2.16) is represented in figure 2 by the dark red Stokes layer profile near
the wall.

974 A51-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.585


M. Fowler, T.A. Zaki and C. Meneveau

Analytical solutions to (2.16) can be obtained, from which we find the lamNEQ wall
stress to be

τ ′′
w(t) =

√
ν/π

∫ t

t0
− 1
ρ

∇hp′′(t′) (t − t′)−1/2 dt′. (2.18)

Efficient evaluation of (2.18) is challenging due to the non-local nature of the
convolution integral. For practical implementation, we use the ‘sum-of-exponentials’
method developed by Jiang et al. (2017). In this method, the kernel is approximated as
a sum of exponential terms

(tn − t′)−1/2 ≈
Nexp∑
m=1

ωm e−sm(tn−t′), (2.19)

where the constants ωm and sm are determined a priori. The number of exponential terms,
Nexp, is fixed in time, therefore leading to reduced storage and computation requirements.
Upon substituting (2.19) into (2.18), one can show that the integral can be evaluated
recursively. Exponential time filtering is known to be advantageous because the recursive
structure does not require storing the entire time evolution, and the current time-filtered
variable depends only on the filtered value at the last time step and the current increment
(Meneveau, Lund & Cabot 1996). The advantage of this method is that it requires O(Nexp)
storage and O(NTNexp) computational work, whereas a direct method requires storing the
entire time evolution, i.e. O(NT) storage and O(N2

T) work, which becomes unwieldy for
long simulations. The accuracy of this algorithm was tested and verified in Fowler et al.
(2022).

2.3. Turbulent non-equilibrium
The wall-model physics described so far captures the slow, quasi-equilibrium behaviour
and the fast, lamNEQ behaviour caused by fast changes in the pressure gradient. The
velocities associated with each of these models are governed by (2.2) and (2.14) for the
LaRTE and lamNEQ models, respectively. We now introduce a simple model that accounts
for the velocity difference between the LES velocity and the LaRTE and lamNEQ models.
This velocity deficit is expressed as

u′
Δ = ūΔ − uτ f (Δ+) = ULES − u′′

Δ − uτ f (Δ+), (2.20)

and is represented in figure 2 by a thick green vector. Turbulent non-equilibrium is assumed
to occur when turbulence affects the velocity profile at a rate faster than the relaxation time
scale, thus the LaRTE model is unable to account for this effect.

Since ULES is known from the simulation, and the laminar velocity u′′
Δ and LaRTE

velocity contribution are known from their respective models, during LES, the remainder
represents the turbulence that is left out and not yet included in the wall model. While
this velocity can be computed during LES based on (2.20), what remains is to determine
the contribution to the wall stress from turbulent flow structures that are associated with
the velocity fluctuation u′

Δ. For this purpose, we invoke the attached eddy hypothesis of
Townsend (1976), which has been refined further in various more recent works (Mathis,
Hutchins & Marusic 2009; Smits, McKeon & Marusic 2011; Marusic & Monty 2019).
Based on the attached eddy hypothesis, u′

Δ may be viewed as a turbulent velocity
fluctuation caused by the large, wall-attached eddies with height of the order of Δ, as
portrayed in figure 3. We are interested only in the wall stress filtered to the LES resolution,
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z
ls

x

y
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�z

�x
u′

�

u′
�

Figure 3. A schematic of the turbNEQ velocity profiles resulting from two counter-rotating wall-attached
eddies. Circles indicate the LES grid points, and the blue surface indicates a possible region of negative velocity
fluctuation (green arrows) induced between wall-attached eddies (yellow) that can be only partially resolved on
the LES resolution.

i.e. the local average of effects of eddies over the LES resolution. It is this local average
that is associated with the velocity fluctuation u′

Δ. The contribution of eddies smaller
than Δx ×Δ×Δz is neglected. In the absence of additional information or any further
assumptions, we model the resulting flow structures as consisting of streamwise elongated
high- and low-speed regions in which the velocity profile is approximated as mostly plug
flow. When approaching the wall, one assumes that there is a linear shear layer connecting
the profile to the no-slip boundary condition on the smooth wall. We assume that this layer
has the thickness of the viscous sublayer (the same as that assumed for the Stokes layer,
ls). The turbNEQ velocity is then

u′ = u′
Δ

y
ls

for 0 ≤ y ≤ ls,

u′ = u′
Δ for y ≥ ls,

⎫⎬
⎭ (2.21)

where ls = l+s ν/uτ with l+s = 12, and the friction velocity uτ comes from the LaRTE
model. The wall stress is then computed as

τ ′
w ≡ ν

∂u′

∂y

∣∣∣∣
0

= uτu′
Δ

l+s
. (2.22)

Very recently, Hansen et al. (2022) have shown that very similar vertical profiles can be
obtained from proper orthogonal decomposition analysis, showing that the most important
(energetic) modes of the unresolved turbulence can be described by plug flow with a
viscous layer towards the wall starting at y+ ∼ 12, consistent with our simple model.

2.4. Summary of the MTS wall model
The total wall stress for the MTS wall model is evaluated as the superposition of the
three components according to (2.1), where τ̄w = uτuτ is the quasi-equilibrium/LaRTE
wall stress governed by (2.5), τ ′′

w is the lamNEQ wall stress governed by (2.18), and τ ′
w

is the turbNEQ wall stress governed by (2.22). The LaRTE model has two inputs, the
quasi-equilibrium pressure gradient ∇hp̄, and the quasi-equilibrium velocity ūΔ, needed
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for the equilibrium stress closure that is evaluated as a wall-model friction factor according
to (2.13). Dynamics occurring faster than a viscous time scale tν (see (2.9)) is assumed to
contribute to a laminar Stokes layer that is confined to the laminar viscous sublayer near
the wall. The laminar viscous sublayer thickness is fixed in inner units (we use l+s = 12
throughout the paper). Dynamics occurring faster than tν must be removed from the inputs
to the equilibrium stress closure, otherwise the predicted stress will be incorrect. For the
quasi-equilibrium pressure gradient, this is done by filtering explicitly the LES pressure
gradient according to (2.8). For the quasi-equilibrium velocity, the LES velocity ULES must
be corrected by subtracting from it the estimated change in velocity due to fast laminar
Stokes layer dynamics. The velocity correction is modelled according to (2.14), which is
then subtracted from the LES velocity to get the velocity input according to (2.15).

The lamNEQ model captures wall-stress dynamics responding to fast changes in the
LES pressure gradient (∇hp′′ defined in (2.17)). The resulting governing equation for
the lamNEQ wall stress requires evaluating a non-local convolution integral. Efficient
evaluation is achieved through the use of a sum-of-exponentials approximation to the
kernel, (2.19), where Nexp terms must be stored per horizontal grid point. This leads to
a noticeable but relatively small increase in the computational cost, as discussed at the
end of § 5. However, the key point is that the storage requirement remains fixed in time
while still accurately capturing wall-stress dynamics operating in this laminar Stokes layer
regime, as discussed in the subsequent results sections.

The turbNEQ model captures wall-stress dynamics responding to LES velocity
fluctuations not accounted for by the LaRTE and lamNEQ models. This turbNEQ
velocity fluctuation (u′

Δ defined according to (2.20)) is predicted to occur in response
to wall-attached eddies with sizes similar to the LES grid resolution. To connect the
wall-stress response to this velocity fluctuation, we must model the corresponding velocity
profile. The velocity profile is modelled as mostly plug flow with a linear shear layer
near the wall, with the thickness being the same thickness as the viscous sublayer, ls. The
turbNEQ wall stress may then be computed according to (2.22).

3. Wall-modelled LES for pulsating channel flow

Large-eddy simulations of pulsating channel flow, with an oscillating streamwise pressure
gradient forcing, were conducted with the MTS wall model and with the classical EQWM.
These results are compared with the DNS of Weng et al. (2016) upon which the simulation
set-up is largely based. As in Weng et al. (2016), we adopt a triple decomposition where
any variable, F(x, t), may be written as

F(x, t) = 〈F〉t( y)+ F̃( y, t)+ F′(x, t), (3.1)

where 〈F〉t is the steady, time and horizontally averaged field, F̃ is the periodic component
caused by the oscillatory pressure gradient, and F′ corresponds to turbulent fluctuations.
Note that the turbulent fluctuations are the only cause for variability in the x and z
directions for channel flow. Also note that a single prime in this section is not to be
confused with a turbNEQ quantity unless specified otherwise. The time and horizontally
averaged component is computed as

〈F〉t( y) = 1
(tNt − t0)LzLx

∫ tNt

t0

∫ Lz

0

∫ Lx

0
F(x, t) dx dz dt, (3.2)

where t0 and tNt are the initial and final times, respectively, over which time averaging is
done. The periodic component is found by subtracting the time-averaged flow field from
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the phase average:

F̃( y, t) ≡ 1
NpLxLz

Np∑
n=1

∫ Lz

0

∫ Lx

0
F(x, t + (n − 1)Tf ) dx dz − 〈F〉t( y), (3.3)

where Tf is the pressure gradient forcing period, and Np is the total number of periods over
which phase averaging is done.

Simulations are performed using LESGO (an open-source, mixed pseudo-spectral
and finite difference code available on github, LESGO 2021) with a steady friction
Reynolds number 〈Reτ 〉t = uτph/ν = 350, where h is the channel half-height, and
uτp ≡

√
−hρ−1(∂x〈p〉t) is the friction velocity based on the steady pressure gradient.

The Lagrangian scale-dependent dynamic subgrid stress model (Bou-Zeid et al. 2005)
is used in the bulk of the flow. The domain size, number of grid points and grid
size are (Lx, Ly, Lz)/h = (8π, 2, 3π), (Nx,Ny,Nz) = (128, 30, 48) and (Δx,Δy,Δz)/h =
(0.196, 0.067, 0.196), respectively. The third grid point is used for the wall-model height
(i.e. Δ = 5Δy/2) because for low-Reynolds-number simulations, the first grid point falls
beneath the log layer where the SGS model lacks accuracy. This underperformance causes
an incorrect velocity to be fed into the wall model, which in turn produces an incorrect
wall stress. Choosing a point further away allows a more accurately computed velocity
to be fed into the wall model. It is also in agreement with the recommendations made
by Larsson et al. (2016). Time advancement is done using an Adams–Bashforth method
with a varying time step size to achieve a constant Courant–Friedrichs–Lewy (CFL) value
0.05. On average, this gives a time step size δt ≈ 4.2 × 10−4h/uτp, which is two orders
smaller than the fastest forcing time scale. This assures that all dynamics are well resolved
temporally.

Sinusoidal flow variation is caused by the time-periodic streamwise pressure gradient
forcing

∂〈p〉
∂x

= ∂〈p〉t

∂x
[1 + β cos(ωf t)], (3.4)

where ∂〈p〉t/∂x is the steady pressure gradient forcing, and ωf and β are the pressure
gradient forcing frequency and amplitude, respectfully. In our simulations, we use a sine
function instead of a cosine function to avoid a discontinuous change in the pressure
gradient forcing at t = 0 when the forcing starts; however, we adopt the nomenclature
of Weng et al. (2016) which uses a cosine function. Therefore, all phases reported are
consistent with a cosine pressure gradient forcing. A wide range of forcing frequencies are
tested, which cover the full range of possible flow types. This is summarized in table 1.
The forcing frequency determines the extent to which the Stokes layer penetrates into the
flow. Similarly, the Stokes length scale provides an estimate of this penetration depth and
is related to the frequency through lf = √

2ν/ωf or in inner units l+f =
√

2/ω+
f , where

inner units normalization is done with the friction velocity uτp and the kinematic viscosity
ν. If the Stokes layer stays within the viscous sublayer, then it does not interact with
the turbulence and the flow remains ‘quasi-laminar’. This is estimated to occur when
ω+

f > 0.04 or l+f < 7 (Weng et al. 2016). Several of the other frequencies tested are in
the so-called ‘intermediate frequency range’ 0.006 < ω+

f < 0.04, where the wall-stress
amplitude is actually less than the amplitude from the Stokes solution. Finally, a couple
of low-frequency cases are tested where the flow is in a quasi-steady state. In other words,
the flow has time to adjust to the instantaneous pressure gradient.
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ω+
f 〈Tf 〉t uτp/h l+f lf /h Flow regime

0.001 18.0 44.7 0.1278 Quasi-equilibrium frequency
0.003 6.0 25.8 0.0738 Low frequency
0.006 3.0 18.3 0.0522 Intermediate frequency
0.01 1.8 14.1 0.0404 Intermediate frequency
0.02 0.9 10.0 0.0286 Intermediate frequency
0.04 0.45 7.1 0.0202 High frequency
0.2 0.09 3.2 0.0090 Very high frequency
1.0 0.018 1.4 0.0040 Very high frequency

Table 1. The forcing frequencies ω+
f and periods and their corresponding Stokes lengths lf in inner units and

outer units, and the flow regime classification. For comparison, the relevant wall-modelling time scales are
〈Ts〉t uτp/h = 2.57, 〈tν〉t uτp/h = 0.41 and 〈TΔ〉t uτp/h = 0.83.

Following Weng et al. (2016), the pressure gradient forcing amplitude is set to give
a constant ratio for the periodic centreline velocity amplitude over the mean centreline
velocity. This is done by fixing acl ≡ |ũcl|/Ucl = 0.1, where Ucl is the centreline velocity
of the laminar flow with the same flow rate as the turbulent mean flow. The relationship
between β and acl can be determined by finding an analytical expression for the periodic
centreline velocity ũcl. This is obtained by writing the momentum balance at the centre of
the channel and then neglecting the total periodic stress – a valid assumption if the Stokes
layer is far from the centre of the channel. The periodic centreline velocity is then found
to be

ũcl = |ũcl| cos(ωf t + φũcl), (3.5)

where

|ũcl| = βu2
τp

ωf h
, φũcl = −π/2. (3.6a,b)

Combining the amplitude shown in (3.6a,b) and the definition of acl, β can be found using

β = aclω
+
f Recl, (3.7)

where Recl ≡ Uclh/ν ≈ 9078 for Reτ = 350, and acl is set to a constant value 0.1.
For the figures throughout this paper, the line types and colours of the various

models/data have the following forms: DNS are shown with dashed black lines; LES with
the MTS wall model are shown with solid black lines; and LES with the EQWM are shown
with dashed-dot grey lines. For vertical profiles, open circles and plus symbols correspond
to the location of LES grid points for LES with the MTS wall model and the EQWM,
respectively. Extraneous lines, such as analytical laminar solutions, are shown with thin
dotted lines. The different wall-stress components of the MTS wall model are shown with
different colours: total wall stress is black, LaRTE wall stress is blue, lamNEQ wall stress
is red, and turbNEQ wall stress is green.

Figure 4 shows the periodic centreline velocity for a wide range of pressure
gradient forcing frequencies. For the intermediate and high frequencies, the LES are
nearly indistinguishable from the DNS, whereas for ω+

f = 0.001, 0.003, there are some
discrepancies. These differences may be attributed to the LES overprediction of the mean
velocity in the centre of the channel (see figure 5), which becomes important only for
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Figure 4. The time evolution of the periodic centreline velocity ũcl for several forcing frequencies, ω+
f =

0.001, 0.003, 0.006, 0.01, 0.02, 0.04 (plots (a–f ), respectively). Line types correspond to LES using the MTS
wall model (thick solid black), LES using the EQWM (thick dashed-dot grey), and DNS from Weng et al.
(2016) (thick dashed black). The phase within the cycle is based on the imposed pressure gradient forcing.

low frequencies when the Stokes layer interacts with the turbulence near the centre of the
channel. However, for the intermediate and high frequencies, the centreline velocity agrees
quite well with (3.5) and (3.6a,b), and the target periodic centreline velocity amplitude
(acl = 0.1) has been met.

Figure 5 shows the time-averaged mean velocity profiles and Reynolds stresses for the
MTS wall model and for the EQWM compared with the DNS of Weng et al. (2016). The
MTS wall model and the EQWM give nearly identical first- and second-order statistics.
This indicates that the mean behaviour of the LES is largely unaffected by the wall-model
choice. As discussed in Fowler et al. (2022), there is a slight overshoot in the mean velocity
profile in the wake region. However, this overshoot is attributed to simulation details other
than the wall model, such as subgrid model and numerical effects. Additionally, for these
low Reynolds number simulations, the SGS model tends to underpredict the subgrid stress
beneath the log layer, thus leading to an overpredicted velocity. This is evident from the
first grid point in figure 5. The Reynolds shear stress agrees well with DNS, as expected
from momentum conservation, and the streamwise normal stress is also well predicted
(except for the near-wall peak that is unresolved in LES). The spanwise and wall-normal
diagonal Reynolds stress profiles are overpredicted by the LES, but in equal measure by
all the wall models, pointing to remaining limitations of the SGS closure and not the wall
models.

The governing equation for the periodic component of the streamwise velocity is found
by subtracting the time-averaged streamwise momentum equation from the phase-averaged
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Figure 5. The time-averaged mean (a) velocity profiles and (b) Reynolds stresses. Dashed lines correspond to
the DNS of Weng et al. (2016) for Reτ = 350 with pulsations; circles with solid connecting lines correspond
to LES with the MTS wall model; and plus symbols with dashed-dot connecting lines correspond to LES
with the EQWM. In (b), 〈u′u′〉t, 〈v′v′〉t, 〈w′w′〉t and 〈u′v′〉t are shown with blue, red, green and black lines,
respectively. For the LES, only the high-frequency case (ω+

f = 0.04) is shown since the time-averaged velocity
and Reynolds stress profiles are independent of the pulsation frequency.

streamwise momentum equation:

∂ ũ
∂t

= − 1
ρ

∂ p̃
∂x

+ ν
∂2ũ
∂y2 − ∂ ũ′v′

∂y
. (3.8)

Laminar analytical solutions to (3.8) can be found by setting the Reynolds stress term
to zero and using ∂xp̃ = β(∂x〈p〉t) cos(ωf t). The frequencies considered in table 1 are
high enough such that the Stokes solution is similar to the laminar channel flow solution
since lf � h, as shown in table 1. Therefore we will simply use the Stokes solution as the
‘laminar channel flow solution’, which is

ũ/Ucl = acl[sin(ωf t)− e−y/lf sin(ωf t − y/lf )]. (3.9)

Figure 6 shows the amplitude and phase of the periodic velocity for the six lowest
forcing frequencies. The Stokes solution curve is also shown for reference. In the plots,
it is clear that for the lowest frequency, the DNS and LES deviate from the Stokes solution
significantly, thus a quasi-laminar state is not achieved. However, for the highest frequency
shown, the DNS and LES follow the Stokes solution very closely, thus indicating that the
flow is in a quasi-laminar state. Generally, the LES agree closely with the DNS. The MTS
wall model and EQWM produce similar results, with the greatest discrepancies between
the two occurring in the first few grid points away from the wall. These grid points are
more sensitive to the wall model since they are affected more directly by the wall stress.

Figures 7–10 show how the periodic wall stress changes with frequency, where figures 7
and 8 show the periodic wall-stress time signals, and figures 9 and 10 show the periodic
wall-stress amplitude and phase as functions of frequency. Figure 7 compares LES with
the MTS wall model (solid black lines) against the DNS of Weng et al. (2016) (dashed
black lines), and the LES with the EQWM (dashed-dot grey lines). The figure shows that
the MTS wall model and EQWM perform similarly well for low frequencies, but as the
frequency is increased, the EQWM degrades in performance, whereas the MTS wall model
follows the trends of the DNS quite well. This is expected since the EQWM is based
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Multi-time-scale wall model
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Figure 6. (a) Amplitude and (b) phase lead of the periodic velocity for six forcing frequencies, ω+
f =

0.001, 0.003, 0.006, 0.01, 0.02, 0.04. The DNS of Weng et al. (2016), the LES with the MTS wall model, the
LES with the EQWM, and the Stokes solution are shown with dashed black lines, open circles connected with
solid black lines, grey plus symbols connected with grey dashed-dot lines, and dotted black lines, respectively.
Animations of the periodic velocity can be accessed at https://www.cambridge.org/S0022112023005852/
JFM-Notebooks/files/Figure-6/u_animation.html, and the corresponding source code can be found at https://
www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-6/pulse_velocity_profiles.ipynb. Note
that the animations of the DNS velocity profiles are computed from the provided amplitudes and phases.

on equilibrium assumptions and therefore cannot capture properly the non-equilibrium
dynamics of the high-frequency test cases. Figure 8 shows the different wall-stress
contributions in the MTS wall model for the low, intermediate and high frequencies.
This figure demonstrates why the MTS wall model can capture the trends of the DNS,
and highlights the usefulness of such an approach. For the low, intermediate and high
frequencies, the dominant contributors to the periodic wall stress are the quasi-equilibrium
(LaRTE), turbNEQ and lamNEQ components, respectively. This is consistent with the
length and time scale schematic in figure 1, where each component of the MTS wall
model targets dynamics within a range of time scales. Using table 1, we see that the
flow dynamics relative to the relaxation time scale (the frequencies in figure 8) are of
the orders (a) Tf /Ts  1, (b) Tf /Ts ∼ 1 and (c) Tf /Ts < 1, which again is consistent with
the model picture in figure 1. Note that in this flow, the scale separation between the
laminar viscous time scale tν and the relaxation time scale Ts is not very large (from the
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Figure 7. Single-period time evolution of the periodic streamwise wall stress τ̃wx for several forcing
frequencies, ω+

f = 0.001, 0.003, 0.006, 0.01, 0.02, 0.04 (plots (a–f ), respectively). Line types correspond to
LES using the MTS wall model (thick solid black), LES using the EQWM (thick dashed-dot grey), and DNS
from Weng et al. (2016) (thick dashed black). The phase within the cycle is based on the imposed forcing
frequency.
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Figure 8. Single-period time evolution of the periodic streamwise wall stress τ̃wx for low, intermediate and
high forcing frequencies: ω+

f = 0.001, 0.006, 0.04 (plots (a–c), respectively). Line types correspond to LES
using the MTS wall model (thick solid black), with LaRTE (thin solid blue), lamNEQ (thin solid red) and
turbNEQ (thin solid green) parts, and DNS from Weng et al. (2016) (thick dashed black). The phase within the
cycle is based on the imposed forcing frequency.

caption in table 1, we see that 〈tν〉t/〈Ts〉t = 0.16). This is a direct result of the low Reynolds
number of the flow considered. As seen from the expression tν/Ts = (l+s )2/f (Δ+)Δ+, the
numerator is constant while typically, the denominator (and thus the scale ratio) increases
with increasing Reynolds number.
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Multi-time-scale wall model
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Figure 9. (a) The periodic wall-stress amplitude normalized by the Stokes solution amplitude. (b) The periodic
wall-stress phase relative to the centreline velocity phase. Asterisks correspond to outside experimental, LES
or DNS data from Ronneberger & Ahrens (1977) (experimental), Tardu et al. (1994) (experimental), Scotti &
Piomelli (2001) (LES) and Weng et al. (2016) (DNS). The DNS data of Weng et al. (2016) are emphasized
with filled circles and connected with thick dashed black lines. LES using the MTS wall model are shown with
open circles and connected with thick solid black lines. LES using the EQWM are shown with plus symbols
and connected with thick dashed-dot grey lines. The thin dotted horizontal black lines correspond to the Stokes
solution.
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Figure 10. (a) The periodic wall-stress amplitude normalized by the Stokes solution. (b) The periodic
wall-stress phase relative to the centreline velocity phase. Line types correspond to the DNS of Weng et al.
(2016) (filled circles connected with thick dashed black lines) and LES using the MTS wall model (open
circles connected with thick solid black lines), with LaRTE (open circles connected with thick solid blue
lines), lamNEQ (open circles connected with thick solid red lines), and turbNEQ (open circles connected with
thick solid green lines) components. The thin dotted horizontal black lines correspond to the Stokes solution.

Figures 9 and 10 show the periodic wall-stress amplitude and phase. They provide the
same information as figures 7 and 8, but in a more succinct manner, allowing trends
to become more obvious. In general, as the forcing frequency increases, the wall-stress
amplitude (normalized with the Stokes solution amplitude) decreases, and the wall-stress
phase (relative to the centreline velocity phase) increases, until they reach their Stokes
limit values 1 and 45 degrees, respectively. Figure 9 demonstrates clearly that the EQWM
is unable to capture the non-equilibrium effects caused by the high-frequency pressure
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gradient pulsations. The wall-stress amplitude continues to decrease past its Stokes limit
value, while the phase remains relatively constant. The MTS wall model, on the other hand,
agrees quite well with DNS trends. It even captures the non-monotonic behaviour in the
intermediate frequency range where the periodic wall-stress amplitude falls beneath the
Stokes amplitude. The wall model’s ability to capture the full spectrum of frequencies,
from quasi-equilibrium conditions to Stokes limit conditions, is due to the separate
modelling of quasi-equilibrium and non-equilibrium effects. This is observed most clearly
in figure 10, where the model’s decomposition into quasi-equilibrium, lamNEQ and
turbNEQ parts is shown. The periodic wall stress, which is the wall-stress deviation
from equilibrium conditions, is captured best by the LaRTE model for low frequencies,
the lamNEQ model for high frequencies, and the turbNEQ model for intermediate
frequencies (since the LaRTE and lamNEQ models become out of phase with each other).
These models effectively turn on or off depending on if the conditions consistent with
these models are met. This is an important quality to have to capture both extremes of
non-equilibrium.

Figures 11–15 show the periodic Reynolds stresses as functions of height and phase
for several forcing frequencies. In order to compare LES with DNS, the SGS stresses
are included for the shear stress component, although the SGS contribution is negligible
relative to the resolved stresses. Figure 11 shows ũ′v′ profiles at different times (where
time is indicated by a shift in the vertical direction), whereas figure 12 shows the ũ′v′
amplitude and phase. For succinctness, only the amplitude and phase plots are shown
for the normal stresses. Unlike the time-averaged Reynolds stress profiles in figure 5,
the periodic Reynolds stresses for the wall-model LES do exhibit a dependency on the
wall-model choice. For instance, in figure 12(c), the EQWM agrees well with the DNS,
whereas the MTS wall model significantly underpredicts the amplitude. This discrepancy
(for this particular frequency) is discussed further in detail below. Overall, the LES with
the EQWM appear to agree with the DNS better than the MTS wall model for the ũ′v′
and ũ′u′ components; however, the reverse is true for the ṽ′v′ and w̃′w′ components,
where the EQWM tends to overpredict the amplitudes. It is interesting to note that the
discrepancy between the MTS wall model and the EQWM is greatest for the intermediate
frequencies and not for the highest frequency. This might be explained by the fact that for
these frequencies, the Stokes length is roughly the same height as the height of the first
LES grid point, which is the point that is most sensitive to the wall model.

The periodic Reynolds stress sensitivity to the wall model may be understood further by
examining the different contributions to the phase-averaged, integrated momentum budget.
These are related by∫ y

0

∂〈u〉
∂t

dy′ = − y
ρ

∂〈p〉
∂x

+ ν
∂〈u〉
∂y

− 〈u′v′〉 − 〈τwx〉, (3.10)

where angled brackets represent phase averaging. Figure 16 shows the time signals of
the different terms in (3.10) at three heights for the intermediate frequency ω+

f = 0.01.
Although the MTS wall model predicts the wall stress much better than the EQWM,
small discrepancies in the ∂t〈u〉 term are correlated with noticeable discrepancies in the
Reynolds stress since the Reynolds stress oscillation amplitude is small relative to the ∂t〈u〉
term. This figure highlights the intricate relationship between each term in the momentum
balance. Instead of focusing on how a wall model might be able to capture these details
(i.e. how wall-stress fluctuations can affect the near-wall turbulence), we give a greater
focus on capturing the mean wall-stress behaviour, which is arguably the most important
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Multi-time-scale wall model

100

5

ω+
f = 0.001 ω+

f = 0.006 ω+
f = 0.01 ω+

f = 0.02 ω+
f = 0.04

4

3

2

1

u′
v

′ /U
2 cl

 ×
 1

0
3

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

101 102

y+ y+ y+ y+ y+

100 101 102 100 101 102 100 101 102 100 101 102

(b)(a) (d )(c) (e)

Figure 11. The time evolution of ũ′v′ at different phases of the wave cycle for different forcing frequencies:
ω+

f = 0.001, 0.006, 0.01, 0.02, 0.04. The profiles are Tf /32 apart, and are offset by 1 × 10−1 units in the
vertical direction. Grey lines correspond to the DNS of Weng et al. (2016). Black lines correspond to
LES using the MTS wall model. Animations of the different periodic Reynolds stress components can
be viewed by clicking on the links corresponding to the following frequencies: ω+

f = 0.001, https://www.
cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/rs_pul1_animation.html; ω+

f = 0.006,
https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/rs_pul3_animation.html;
ω+

f = 0.01, https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/rs_pul4_
animation.html; ω+

f = 0.02, https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-
11/rs_pul5_animation.html; ω+

f = 0.04, https://www.cambridge.org/S0022112023005852/JFM-Notebooks/
files/Figure-11/rs_pul6_animation.html. The source code for generating these animations is located at https://
www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/pulse_reynolds_stress_profiles.
ipynb.
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Figure 12. (a–e) Amplitude and ( f –j) phase lead of ũ′v′ for five forcing frequencies, ω+
f =

0.001, 0.006, 0.01, 0.02, 0.04. The DNS of Weng et al. (2016), the LES with the MTS wall model, and the
LES with the EQWM are shown with dashed lines, open circles with solid black connecting lines, and plus
signs with grey dashed-dot connecting lines, respectively.

974 A51-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/rs_pul1_animation.html
https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/rs_pul1_animation.html
https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/rs_pul3_animation.html
https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/rs_pul4_animation.html
https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/rs_pul4_animation.html
https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/rs_pul5_animation.html
https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/rs_pul5_animation.html
https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/rs_pul6_animation.html
https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/rs_pul6_animation.html
https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/pulse_reynolds_stress_profiles.ipynb
https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/pulse_reynolds_stress_profiles.ipynb
https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-11/pulse_reynolds_stress_profiles.ipynb
https://doi.org/10.1017/jfm.2023.585


M. Fowler, T.A. Zaki and C. Meneveau

100 101 102

y+
100 101 102

y+
100 101 102

y+
100 101 102

y+
100 101 102

100 101 102 100 101 102 100 101 102 100 101 102 100 101 102

y+

4

3

2

1

0

500

0

–500

4

3

2

1

0

500

0

–500

4

3

2

1

0

500

0

–500

4

3

2

1

0

500

0

–500

4

3

2

1

0

500

0

–500φ
u′

u′
 (d

eg
.)

|u
′ u

′ |/U
2 cl

(×10–3) ω+
f = 0.001 ω+

f = 0.006 ω+
f = 0.01 ω+

f = 0.02 ω+
f = 0.04(b)(a) (d )(c) (e)

(g)( f ) (i)(h) ( j)

Figure 13. (a–e) Amplitude and ( f –j) phase lead of ũ′u′ for five forcing frequencies
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Figure 14. (a–e) Amplitude and ( f –j) phase lead of ṽ′v′ for five forcing frequencies,
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f = 0.001, 0.006, 0.01, 0.02, 0.04. Line types are the same as in figure 12.

feature in wall modelling since an accurate skin friction prediction is usually the goal. We
have shown in figures 7–10 that the MTS wall model is more successful than the EQWM
at achieving this goal.

4. Wall-modelled LES for linearly accelerating channel flow

Wall-modelled LES were also conducted for a turbulent channel flow that is accelerated
linearly over a ramp time T . The flow set-up is based on the DNS study of Jung &
Kim (2017). In their work, the linear acceleration is imposed by modifying the pressure
gradient forcing. The governing equation for the pressure gradient is found by integrating
the ensemble-averaged streamwise momentum equation in the wall-normal direction over
the entire channel. This yields

− 1
ρ

∂〈p〉∗
∂x

(t∗) = 1
2 Reτ,i

dRem(t∗)
dt∗

+
(

Reτ (t∗)
Reτ,i

)2

, (4.1)
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where a star indicates normalization with h and uτp,i ≡
√

−hρ−1(∂x〈p〉)i (the friction
velocity based on the pressure gradient forcing before acceleration), Reτ,i ≡ uτp,ih/ν is the
initial friction Reynolds number, and Rem ≡ Um2h/ν is the bulk mean Reynolds number,
with Um being the bulk mean velocity (averaged over the entire channel). Each term on
the right-hand side of (4.1) is modelled since they are not known a priori. A benefit of
this approach is that the pressure gradient remains unaffected by the LES wall model, and
the LES have the exact same pressure gradient forcing as used in the DNS of Jung & Kim
(2017). If t∗ = 0 marks the beginning of the acceleration, then Rem is set according to

Rem(t∗) = Rem,i, t∗ < 0, (4.2)

Rem(t∗) = Rem,i + t∗

T∗ (Rem,f − Rem,i), 0 ≤ t∗ < T∗, (4.3)

Rem(t∗) = Rem,f , t∗ ≥ T∗, (4.4)

where the initial and final bulk mean Reynolds numbers Rem,i and Rem,f , respectively,
are estimated to give the correct initial and final friction Reynolds numbers. For all
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T∗ ≡ Tuτp,i/h Flow regime

0.1 Transitional
1.0 Transitional
3.0 Intermediate acceleration
5.0 Quasi-steady
10.0 Quasi-steady

Table 2. The acceleration/ramp rates simulated, and the flow regime classification. For comparison, the
relevant wall-modelling time scales are T∗

s = 2.20, t∗ν/h = 0.80 and T∗
Δ = 1.22, where the time scales are

computed before the flow is accelerated (i.e. t∗ ≤ 0).

simulations considered in this study, the initial and final friction Reynolds numbers are
Reτ,i = 180 and Reτ,f = 395 to match those of Jung & Kim (2017). Since these are low
Reynolds numbers, following Jung & Kim (2017) we use the empirical relationship given
by Dean (1978) to relate the bulk mean Reynolds number to the friction Reynolds number:
Cf ≡ τw/

1
2 U2

m ≈ 0.073 Re−1/4
m . To obtain Rem,i and Rem,f as functions of Reτ,i and Reτ,f ,

respectively, we use Rem = (8/0.073)4/3 Re8/3
τ . Then once Rem(t) has been obtained from

(4.2)–(4.4), we use the inverse relation Reτ = (0.073/8)1/2 Re3/8
m to substitute Reτ (t) into

(4.1) to obtain the pressure gradient forcing.
Table 2 shows the acceleration rates considered and their corresponding flow regimes.

The flow regime classification is based on the work of Jung & Kim (2017) and the
trends observed for the skin friction. A flow is considered ‘transitional’ if laminar-like
behaviour is observed initially (e.g. through the skin friction) that breaks down into a new
turbulent state as turbulent spots form. A flow is considered ‘quasi-steady’ if the skin
friction does not deviate far from its steady value at a given flow rate (i.e. it agrees with
‘Dean’s correlation’ specified above). The ‘intermediate’ flow does not exhibit transitional
characteristics, yet its skin friction differs enough from its steady value that it cannot be
labelled quasi-steady.

Large-eddy simulations were performed with the MTS wall model and compared against
LES with the EQWM. The domain length, resolution and other simulation details are the
same as the pulsatile channel flow, specified in § 3. Again, a constant CFL 0.05 was used,
which gives an initial time step size δt∗ ≈ 4.6 × 10−4, and a final time step size (long
after the acceleration) δt∗ ≈ 1.9 × 10−4. Note that the time step size decreases as the flow
accelerates, to achieve a constant CFL. This time step size is several orders of magnitude
smaller than the fastest acceleration rate, thus ensuring that all dynamics are well resolved
temporally.

Figure 17 shows time signals of the imposed pressure gradient forcing and the resulting
bulk mean Reynolds numbers for each of the acceleration rates. The pressure gradient
forcing is designed to be the same between the LES and the DNS of Jung & Kim
(2017), which is observed in figure 17(a). However, the mean Reynolds number is not
controlled directly, so there can be discrepancies between the LES and DNS, which we
see in figure 17(b). The acceleration rates match well between the DNS and the LES
with largest deviations occurring for the slowest acceleration rate (T∗ = 10) at the end
of the acceleration period. This is caused by a combination of factors, with the primary
contributors being the performance of the wall model and the SGS model.
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Multi-time-scale wall model
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Figure 17. Time signals of (a) the pressure gradient forcing, and (b) the mean Reynolds number (Rem =
2hUm/ν) divided by the initial mean Reynolds number, Rem,i, for different acceleration ramp rates. Ramp
rates T∗ = 0.1, 1.0, 3.0, 5.0, 10.0 correspond to black, blue, red, green and magenta lines, respectively. Line
types for the DNS of Jung & Kim (2017), LES with the MTS wall model, and LES with the EQWM are dashed,
solid and dashed-dot, respectively.

Figure 18 shows the mean velocity (figures 18a,c) and mean Reynolds stresses
(figures 18b,d) before the acceleration (figures 18a,b) and long after the acceleration
once the flow has reached its new steady-state (figures 18c,d). The LES and DNS
agree reasonably well, with overall trends similar to those observed and discussed for
the time-averaged profiles of pulsating channel flow (figure 5). Note that the slight
overprediction of the velocity near the centre of the channel causes the overprediction
of the mean Reynolds number after the acceleration period seen in figure 17(b).

Time signals of the planar-averaged wall stress for each of the acceleration rates
considered are shown in figures 19 and 20. We first show the results in terms of the
skin friction coefficient Cf ≡ 2τw/U2

m in figure 19, in order to highlight the evolution
during what is often termed a ‘turbulent to turbulent transition’. The acceleration process
is marked by an initial fast increase in the skin friction, where a laminar Stokes layer
develops; the skin friction then decays until the transition time, where (in the DNS)
turbulent streaks would start developing and ultimately increase the skin friction to a new
turbulent state at a higher Reynolds number. For example, He et al. (2011) identify three
acceleration stages for the wall stress with the following characteristics: (1) the turbulence
remains ‘frozen’ and the wall stress is governed by a laminar solution; (2) the wall stress
increases rapidly, with many signatures of a transition-like process; (3) the wall stress
approaches its quasi-steady value asymptotically. Across each of these stages, the velocity
deviation from its initial value (ensemble-averaged) is governed by the equation

∂〈u〉∧
∂t

= − 1
ρ

∂〈p〉∧
∂x

+ ν
∂2〈u〉∧
∂y2 − ∂〈u′v′〉∧

∂y
, (4.5)

where angled brackets represents ensemble averaging, and F∧ ≡ F(t)− F(t < 0) (for any
variable F) indicates the change in a variable from its initial value before the acceleration.
Typically, the Reynolds shear stress deviation is neglected during the first stage because the
turbulence is assumed to be ‘frozen’ (He et al. 2011). These arguments lead to a laminar
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Figure 18. The mean velocity profiles and Reynolds stresses (a,b) before acceleration and (c,d) after
acceleration, once the flow has achieved its new steady state. Dashed lines correspond to the DNS of Moser,
Kim & Mansour (1999), circles with solid connecting lines correspond to LES with the MTS wall model, and
plus signs with dashed-dot connecting lines correspond to LES with the EQWM. In (b,d), 〈u′u′〉, 〈v′v′〉, 〈w′w′〉
and 〈u′v′〉 are shown with blue, red, green and black lines, respectively.

solution to (4.5) (Sundstrom & Cervantes 2018c):

〈ulam〉∧ = Um

[
1 − (1 + 2η2) erfc(η)+ 2√

π
η e−η2

]
, where η = y√

4νt
, (4.6)

which has the corresponding wall stress

〈τw,lam〉∧ = 2
dUm

dt

√
νt
π
. (4.7)

The thin dotted line in figure 19 shows the laminar analytical solution during this initial
acceleration stage (shifted to have initial wall stress u2

τp,i). The DNS of Jung & Kim (2017)
are shown with the thick dashed line. All acceleration rates have a brief period where DNS
wall stress closely follows the laminar solution. However, for T∗ = 0.1 and T∗ = 1, the
laminar solution persists longer (relative to the acceleration rate), and there is a distinctive
time where the skin friction increases quickly, departing from this laminar state. This is
a feature of stage 2, and is indicative of a transition-like process occurring. Jung & Kim
(2017) identified these two acceleration rates as having a bypass-like transition. The rest
of the acceleration rates are in a state of quasi-equilibrium where the wall stress does not
differ far from its steady value at the instantaneous Reynolds number.
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Figure 19. Time signals of the skin friction coefficient for different acceleration ramp rates. Ramp rates T∗ =
0.1, 1.0, 3.0, 5.0, 10.0 correspond to plots (a–e), respectively. The curves compared are the DNS of Weng et al.
(2016) (thick dashed black line), LES with the EQWM (thick dashed-dot grey line), and LES with the MTS
wall model (thick solid black line). The thin black dotted line is the laminar solution given by (4.7).

For the slowest acceleration case considered (T∗ = 10), the MTS wall model and
the EQWM show little difference between them over the entirety of the acceleration.
This trend is expected since the flow is in a state of quasi-equilibrium, and equilibrium
assumptions made by the EQWM are a good approximation. Note that both LES skin
frictions differ from the DNS long after the acceleration because of the overpredicted
velocity in the wake region as seen in figure 18(c). For the faster acceleration rates, the
EQWM performs very poorly relative to the DNS. The EQWM is unable to capture the
quick increase in the skin friction caused by the developing laminar Stokes layer. The
EQWM also overpredicts the skin friction once the flow starts transitioning to its new
turbulent state. During this time, the EQWM incorrectly attributes the increase in velocity
to an increase in the wall stress. This undesired effect justifies the use of a velocity
correction in the equilibrium closure for the MTS wall model, as introduced in § 2.1.

The MTS wall model, on the other hand, does quite well over each of the acceleration
rates considered. It is able to capture the wide range of flow features, from the rapid
increase in Cf initially, to the transition between turbulent states. Figure 20 shows the
different contributions to the MTS wall stress so we may see clearly how each component
behaves during the different stages of the flow. For all of the acceleration rates, the
lamNEQ wall model is dominant when the flow first accelerates. This response allows the
MTS wall model to capture the sharp initial increase in the wall stress, which the EQWM is
unable to do. Conversely, the LaRTE wall model has a delayed response to the acceleration
because of its inherent relaxation dynamics. Without the velocity correction, however, the
LaRTE model responds too quickly, causing the wall stress to be overpredicted initially.
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Figure 20. Time signals of the wall stress for different acceleration ramp rates. Ramp rates T∗ =
0.1, 1.0, 3.0, 5.0, 10.0 correspond to plots (a–e), respectively. The curves compared are the DNS of Weng
et al. (2016) (thick dashed black line) and the LES with the MTS wall model (thick solid black line), with
LaRTE (thick blue line), lamNEQ (thick red line) and turbNEQ (thick green line) components.

Also as expected, after the flow has accelerated and approaches its new steady state,
the LaRTE model is the primary contributor to the wall stress. In between these two
extremes (after the lamNEQ contribution decays, but before the LaRTE model responds),
the turbNEQ response is the most prominent. This also happens to be the time when the
turbulent-to-turbulent transition occurs. Figures 20(a) and 20(b) show that the turbNEQ
model helps to speed up the wall-stress response during this transition stage.

Further insights can be obtained by focusing on the relationship between the LES
velocity at the wall-model point and the wall-stress evolution and fluctuations. According
to the turbNEQ model (2.20) and (2.22), an increase in τ ′

wx means that the LES velocity is
increasing faster than the quasi-equilibrium velocity obtained from LaRTE, thus leading to
a velocity deviation u′

Δ (see figure 21 for time signals of this velocity as well as other model
contributions to the LES velocity). For channel flow with a constant pressure gradient,
this velocity deviation may be explained by turbulent fluctuations. However, for linearly
accelerating channel flow, this velocity deviation has a non-zero average, which can be
explained as follows. As the flow accelerates, the initial growth in ULES is accounted for
by the laminar contribution u′′

Δ, and the turbulent contribution u′
Δ is small. However, near

the flow transition time, the laminar Stokes layer decays as it interacts with the ‘outside’
turbulence, and there is no change in the pressure gradient to drive its growth. This occurs
at approximately the time t = tν since this time scale is defined as the time for a Stokes
layer to grow from the wall to the edge of the laminar viscous sublayer. After this time,
there is a difference between the turbulent state away from the wall and near the wall.
In DNS studies, this leads to the generation of near-wall streaks and a breakdown to a
new turbulent state (He & Seddighi 2013, 2015). In LES with the MTS wall model, this

974 A51-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.585


Multi-time-scale wall model

0

0 01 2 2 43

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

U
LE

S/
u τ

p,
i

U
LE

S/
u τ

p,
i

0

10

20

30

40

0

10

20

30

40

2 4 0 5 10 0 5 10

t∗ t∗ t∗

t∗t∗

(e)

(b)(a)

(c) (d )

Figure 21. Time signals at a representative single point (x, y, z) = (Lx/2,Δ,Lz/2) of the different modelling
components of the LES velocity for several acceleration ramp rates. Ramp rates T∗ = 0.1, 1.0, 3.0, 5.0, 10.0
correspond to plots (a–e), respectively. The different lines correspond to ULES, uτ f (Δ+), u′

Δ and u′′
Δ, shown in

grey, blue, green and red, respectively.

is measured through u′
Δ, and the turbNEQ model attempts to account for the expected

increase in the wall stress during transition. In practice, the turbNEQ model responds less
quickly than is desirable, as seen by the difference between the DNS and LES curves
after transition in figure 20. A possible explanation is that the breakdown to turbulence
caused by near-wall streak instabilities is a rapid phenomenon (Hack & Zaki 2014) that is
not detected by the first LES velocity point, which is too far from the wall. The turbNEQ
model relies solely on LES velocity information and therefore cannot account for this
subtle effect whose modelling requires more detailed future efforts.

Single-point time signals (no planar averaging) of the different modelled components
of the LES velocity are shown in figure 21. The LES velocity (ULES shown in grey) is
decomposed according to (2.20), with LaRTE (uτ f (Δ+), shown in blue), lamNEQ (u′

Δ,
shown in red) and turbNEQ (u′′

Δ, shown in green) contributions. It is clear from the figure
that the LaRTE portion effectively filters out the large LES velocity fluctuations due to the
relaxation dynamics of LaRTE. It also captures the mean value before and after the linear
acceleration. The lamNEQ portion captures the initial linear behaviour of the velocity as
soon as the flow accelerates. The turbNEQ contribution is twofold. On the one hand, it
is responsible for capturing the majority of the LES velocity fluctuations. On the other
hand, it captures the behaviour of the velocity in response to transition, as discussed
previously. Figure 21 demonstrates the usefulness of decomposing a complicated flow into
its constitutive parts, as is possible with the MTS wall model.

Figure 22 shows time signals of the (planar-averaged) velocity perturbation at different
heights for a fast acceleration case (T∗ = 0.1) and a slow acceleration case (T∗ = 5).
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Figure 22. Time signals of the velocity perturbation (from the initial condition) at several heights for
(a) T∗ = 0.1 and (b) T∗ = 5.0. From light to dark lines, the heights correspond to y/h = 0.167, 0.5, 0.967,
which are the third, eighth and centreline LES grid points, respectively. The DNS (from Jung & Kim 2017), the
LES with the MTS wall model, and the LES with the EQWM correspond to dashed lines with filled circles,
solid lines, and dashed-dot lines, respectively. The circles correspond to the sample times given for the DNS.

For the fast acceleration case, the LES for both wall models gives the correct linear
trend during the accelerating phase. However, after the acceleration is over, the LES
predicts a decrease in the velocity perturbation too soon (with the exception of the channel
centreline), with the EQWM generally giving a larger drop in the velocity perturbation
than the MTS wall model, the latter therefore being closer to the DNS data. For the slow
acceleration case, the LES and the DNS agree well over all times. This is expected since
the flow is in a state of quasi-equilibrium and thus both wall models yield similar mean
wall stresses.

5. The MTS wall model in the limit of instantaneous relaxation

A possible variant of the MTS wall model is now explored by considering the limit of a
vanishingly small relaxation time scale, i.e. Ts → 0. In that limit, the friction velocity from
LaRTE is equal to its equilibrium value (i.e. uτ = τ̄

eq
w /(τ̄

eq
w )

1/2, with the corresponding
wall stress uτuτ = τ̄

eq
w ), and the quasi-equilibrium velocity becomes ūΔ = uτ f (Δ+),

since uτ is obtained from the equilibrium model that uses ūΔ as input velocity. Therefore,
according to (2.20), u′

Δ = 0 and the turbulent turbNEQ portion is subsumed into the
equilibrium wall-model contribution. The total wall stress for the MTS wall model in the
limit Ts → 0 is then simply

τw = τ̄ eq
w + τ ′′

w, (5.1)

where τ̄
eq
w is evaluated according to the fit from (2.13), and τ ′′

w is governed by (2.18).
The MTS wall model in the limit of instantaneous relaxation, governed by (5.1), is
referred to as the equilibrium MTS (EQMTS) wall model. It is important to note that the
quasi-equilibrium velocity input still contains the velocity correction to the LES velocity
((2.14) and (2.15)) to account for changes in the LES velocity caused by the laminar Stokes
layer. For succinctness, the equilibrium model component τ̄

eq
w with a corrected velocity

input is referred to as the ‘corrected equilibrium’ model.
We now apply this model to pulsating and linearly accelerating channel flow.

Representative resulting stress evolution plots are shown in figures 23–25. For pulsating
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Figure 23. Single-period time evolution of the periodic streamwise wall stress τ̃wx for several forcing
frequencies, ω+

f = 0.001, 0.003, 0.006, 0.01, 0.02, 0.04 (plots (a–f ), respectively). Line types correspond to
LES using the MTS wall model (thick solid black), LES using the EQWM (thick dashed-dot grey), LES using
the equilibrium MTS wall model (thick dotted black) and DNS from Weng et al. (2016) (thick dashed black).
The phase within the cycle is based on the imposed forcing frequency.

channel flow, the EQMTS wall model is nearly identical to the EQWM for the two
lowest frequencies (ω+

f = 0.001, 0.003). For low frequencies, the lamNEQ contribution
is relatively small, meaning that the corrected equilibrium wall stress is dominant.
Additionally, while Tf  TΔ, the velocity correction has a negligible impact and the
corrected equilibrium wall model thus behaves similarly to the standard EQWM (e.g. see
figure 24(a) where the corrected equilibrium wall-stress component and EQWM curves
are nearly indistinguishable). These two effects cause the EQMTS wall model to behave
similarly to the EQWM for low frequencies where performance is good.

Most evident in figure 23(d), the total EQMTS wall stress is not sinusoidal. From
figure 24, we see that this is caused by the corrected equilibrium model component, which
becomes non-sinusoidal as frequency is increased. This must be caused by the velocity
correction since this is the only difference between the corrected equilibrium and EQWM
models. The model (2.14) shows that u′′

Δ evolves at time scale TΔ. When subtracted from
the LES velocity (which evolves at the forcing period Tf ), the quasi-equilibrium velocity
input becomes distorted and non-sinusoidal if Tf and TΔ are of similar order. This occurs
in the intermediate- and high-frequency regimes.

For high frequencies, the EQMTS wall model behaves similar to the regular MTS
wall model. This is primarily because the lamNEQ model is dominant here, which is
shared between the two models and therefore any differences between the corrected
equilibrium model and the LaRTE+turbNEQ stresses (figure 24c) are small relative to
the total wall stress. At high frequencies (ω+

f ≥ 0.04), the velocity correction effectively
filters out the corresponding high frequency content of the LES velocity, which causes
the equilibrium portion of the equilibrium MTS wall model to respond slowly, similarly
to the LaRTE model. Without the velocity correction, the total wall stress for the EQMTS
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Figure 24. Single-period time evolution of the periodic streamwise wall stress τ̃wx for low, intermediate
and high forcing frequencies, ω+
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Figure 25. Time signals of the skin friction coefficient for different acceleration ramp rates. Ramp rates T∗ =
0.1, 1.0, 3.0, 5.0, 10.0 correspond to plots (a–e), respectively. The curves compared are the DNS of Weng et al.
(2016) (thick dashed black line), LES with the EQWM (thick dashed-dot grey line), LES with the EQMTS wall
model (thick dotted black line), and LES with the MTS wall model (thick solid black line). The thin black dotted
line is the laminar solution given by (4.7).

wall model is simply the lamNEQ wall stress plus the EQWM wall stress. This leads to an
overprediction of the total wall stress, thus showing the necessity of the velocity correction
for non-equilibrium flows.

For linearly accelerating channel flow, the EQMTS wall model is able to achieve some
of the same trends in the skin friction as the full MTS wall model (e.g. the sharp increase
in the skin friction initially), although it tends to overpredict the skin friction after the
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laminar stage of the acceleration. The velocity correction allows the EQMTS model to
have a delayed response to changes in the pressure gradient so that the lamNEQ model can
capture the non-equilibrium response to fast changes in the pressure gradient. However,
the velocity correction time scale TΔ appears to not be long enough for the EQMTS wall
model to give the correct wall stress since the skin friction begins to increase too early for
all of the acceleration rates shown in figure 25. In fact, the EQMTS wall stress even exceeds
the EQWM wall stress during portions of the flow acceleration for the slow acceleration
cases. This must be caused by the slow decay of the lamNEQ wall stress since the corrected
equilibrium wall stress τ̄

eq
w can never be greater than the EQWM wall stress (since it is

essentially just a delayed version of it).
We now comment briefly on the differences in computational cost between the wall

models considered. For all wall-modelled LES considered here, the computational cost
remains insignificant compared to wall-resolved LES because the wall models do not
require solving equations on a fine, near-wall mesh (see e.g. Choi & Moin (2012) and Yang
& Griffin (2021) for more details). For pulsatile channel flow, the average percentage of
time spent in the wall-model function call (over the total time spent per time step) was
measured to be 18.973 % for the MTS wall model, 16.373 % for the EQMTS wall model,
and 3.390 % for the EQWM. Similar percentages were found for the linearly accelerating
channel flow. The ∼3 % of time spent for the EQWM is consistent with expectations since
30 grid points were used in the wall-normal direction, and wall model computations are
done over a single horizontal plane. The additional ∼15 % of time spent for the MTS and
EQMTS wall models is a direct result of the additional 48 exponential terms (per point
on the horizontal wall-modelling plane) needed for the lamNEQ model. This increase in
cost is expected since Nexp times more computations were used for the lamNEQ model.
However, it is clear from the present results that the lamNEQ model plays a critical role in
properly modelling the wall stress in instances of high non-equilibrium, therefore no effort
was made to reduce Nexp to decrease the computational cost. It is possible that further
gains in efficiency could be made by reducing Nexp following a careful study of loss of
accuracy versus computational efficiency. In this work, we opted to keep the model highly
accurate since the overall cost increase was relatively small. Finally, the minor difference
in cost between the MTS and EQMTS wall models shows that the additional complexity
of the LaRTE model does not equate with a significant increase in computational time.

Overall, the EQMTS wall model is able to capture several of the important features in
non-equilibrium flows (since the lamNEQ model captures the majority of these dynamics)
while maintaining some of the simplicity of the EQWM. While the full MTS model agrees
somewhat better with the DNS for the majority of the non-equilibrium flows tested, the
EQMTS wall model can be considered as a simpler alternative since it does not require the
solution of the LaRTE friction-velocity transport equation.

6. Conclusions

A multi-time-scale (MTS) wall model for large-eddy simulations has been developed and
applied to a wide variety of flows, from quasi-equilibrium to non-equilibrium conditions.
The MTS wall model consists of LaRTE, lamNEQ and turbNEQ components that allow
the wall model to capture the full range of time scales necessary to model non-equilibrium
flows. Figure 1 presents the various length and time scales included in the MTS
wall model. The LaRTE+lamNEQ model (originally introduced in Fowler et al. 2022)
has been augmented to represent additional physical effects not included before. For the
LaRTE model, this includes a newly added ‘velocity correction’ to the LES velocity input
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to the equilibrium closure, and inclusion of the full pressure gradient term in the closure
(both discussed in § 2.1). The velocity correction allows for a more accurate prediction of
τ̄Δ when using an equilibrium closure. And to represent the contributions from unresolved
turbulent eddies, we introduced the turbNEQ term, which models the wall-stress response
to velocity fluctuations around their quasi-equilibrium value (see (2.20)). It is worthwhile
pointing out that the quasi-equilibrium portion of the MTS model bears resemblance to
behaviour of slow, large-scale outer boundary layer motions that have been observed to
cause amplitude modulation of near-wall, small-scale turbulence (Mathis et al. 2009).
Amplitude modulation is a phenomenon that has received considerable attention over the
past decade (Marusic & Monty 2019). In future work, it would be of interest to explore the
relationship between the LaRTE inherent time scale Ts and the characteristic time scale of
the modulating motions identified in the work of Mathis et al. (2009).

The MTS wall model was then applied to two distinct non-equilibrium flows, namely
pulsating channel flow in § 3, and linearly accelerating channel flow in § 4. For pulsating
channel flow, the forcing frequency was varied to achieve conditions ranging from
quasi-equilibrium to non-equilibrium. As expected, for low frequencies, the MTS wall
model and EQWM are very similar and agree well with the DNS of Weng et al. (2016).
However, as the frequency is increased, the EQWM departs progressively from the DNS
results, whereas the MTS wall model displays good agreement with the DNS. Time signals
of the different components of the MTS wall model show that the LaRTE, turbNEQ and
lamNEQ wall stresses are most dominant for low, intermediate and high frequencies,
respectively. This is consistent with the length and time scale schematic of figure 1.
Amplitude and phase plots of the periodic velocity show little difference between the MTS
wall and the EQWM over all of the frequencies tested. However, amplitude and phase plots
of the periodic Reynolds stresses show a dependency on the wall model, with complicated
trends that have so far eluded any straightforward explanation.

For linearly accelerating flow, the acceleration rate was varied from very rapidly
accelerating, non-equilibrium conditions (where bypass transition-like behaviour is
observed in the DNS) to slowly accelerating, quasi-steady conditions. The MTS wall
model performs significantly better than the EQWM for the majority of the acceleration
rates (except for the slowest T∗ = 10 case, where performance is similar). Time signals of
the various constitutive components of the MTS wall model show that different terms are
dominant during each stage of the flow acceleration. During the laminar, transition and
quasi-steady stages, the lamNEQ, turbNEQ and LaRTE components, respectively, provide
the largest contribution to the wall-stress response to acceleration. These trends are again
consistent with the situation illustrated in figure 1.

Finally, motivated by practical considerations, we explore the MTS wall model in
the limit of instantaneous relaxation called the equilibrium MTS wall model (EQMTS).
This approach keeps some of the simplicity of the traditional EQWM while maintaining
most of the accuracy of the full MTS wall model during non-equilibrium conditions. It
leverages the observation that the EQWM with velocity correction behaves similarly to
the LaRTE+turbNEQ models. For both pulsating and linearly accelerating channel flow,
the EQMTS wall model captures the majority of the mean wall-stress time evolution.
The most noticeable differences between EQMTS and the full MTS wall models include
non-sinusoidal behaviour during intermediate forcing frequencies, and an overprediction
of the skin friction during the transition stage for the two fastest flow accelerations
considered.

In Appendix A, the equilibrium/stationary channel flow and SSPG test cases from
Fowler et al. (2022) are repeated for the MTS wall model. The streamwise wall-stress
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probability density functions for the equilibrium channel flow actually improve relative
to the original LaRTE+lamNEQ wall model. This is due primarily to the turbNEQ
model, which dominates wall-stress fluctuations for the MTS wall model. The spanwise
wall-stress variance is overpredicted, however, which appears to be related to the
overprediction of the spanwise resolved velocity fluctuation variance in the LES due to
the SGS closure, as mentioned in § 3. For the SSPG flow, the MTS wall model shows
good agreement with the DNS for the spanwise component of the wall stress, similar to
what was seen in the LaRTE+lamNEQ model of Fowler et al. (2022). The streamwise
wall-stress component, however, shows an increased delayed response to the SSPG, and
still cannot predict the short drop in τwx caused by the scrambling of momentum-carrying
turbulent structures, which would require further modelling.

Future work will focus on developing and testing the MTS wall model for flows with
non-equilibrium in space instead of the temporal non-equilibrium conditions considered in
this work. The shear stress closure for τ̄Δ already contains weak effects of non-equilibrium
since the fit Repres

τΔ incorporates the LES pressure gradient information in estimating the
local shear stress. However, further testing is needed to ascertain the performance of the
MTS model for spatial non-equilibrium where ‘history effects’ are significant, or cases
with separation where the wall stress is zero locally. Due to the Lagrangian nature of
the relaxation time delay in the LaRTE portion of the MTS model, there is nothing
structurally preventing us from simulating flows with spatial non-equilibrium. However,
the non-equilibrium portions of the MTS model, especially the laminar model, may be
different from the temporal models developed here. More work is needed to examine such
modelling aspects.

Supplementary material. Computational Notebook files are available as supplementary material at https://
doi.org/10.1017/jfm.2023.585 and online at https://cambridge.org/S0022112023005852/JFM-Notebooks.
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Appendix A. Revisiting wall-stress probability density functions and SSPG flow

The wall-stress probability density functions (PDFs) in equilibrium channel flow, as well
as the sudden spanwise pressure gradient (SSPG) flow studied in Fowler et al. (2022)
(based on the DNS of Lozano-Durán et al. 2020), are revisited here, in order to discuss
how the addition of the non-equilibrium turbulent model (and the other model changes)
affects the results. The same grid and subgrid scale model as in the original SSPG test in
Fowler et al. (2022) are used. The first grid point is used for the wall model height. Major
differences between LaRTE+lamNEQ and the newly proposed MTS wall model include:
(1) treatment of the pressure gradient in the LaRTE relaxation term; (2) introducing
velocity correction to the LES velocity input for computing the equilibrium stress; and
(3) addition of the turbNEQ wall model.

First, we consider equilibrium channel flow at Reτ = 1000 and 5200, repeating figure 10
of Fowler et al. (2022) but using the MTS model. Results are shown in figure 26 and are

974 A51-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.585
https://doi.org/10.1017/jfm.2023.585
https://cambridge.org/S0022112023005852/JFM-Notebooks
https://orcid.org/0000-0001-6839-442X
https://orcid.org/0000-0001-6839-442X
https://orcid.org/0000-0002-1979-7748
https://orcid.org/0000-0002-1979-7748
https://orcid.org/0000-0001-6947-3605
https://orcid.org/0000-0001-6947-3605
https://doi.org/10.1017/jfm.2023.585


M. Fowler, T.A. Zaki and C. Meneveau

10

5

0

10

5

0

10

5

0

10

5

0

–0.2 –0.2 0 0.2

–0.2 0 0.2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

–0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

P
D

F
P

D
F

τwx τwz

(a) (b)

(c) (d )

Figure 26. PDFs for τwx and τwz, for (a,b) Reτ = 1000, and (c,d) Reτ = 5200. The PDF curves correspond
to the filtered DNS (dashed black lines), the LaRTE model (blue lines), the lamNEQ model (red lines), the
turbNEQ term (green lines) and the MTS model (solid black lines). DNS data are obtained from the Johns
Hopkins Turbulence Database (Graham et al. 2016; JHTDB 2021). The DNS PDFs are obtained from the
Gaussian filtered wall stress where the filtering size is the same as the LES mesh size in the horizontal
directions.

compared with DNS (dashed black line). Compared to the model version used in Fowler
et al. (2022), it is evident that the addition of the turbNEQ portion of the model in the
MTS approach yields very realistic PDFs of the streamwise component of the wall stress
as compared to filtered DNS, but overestimates the level of variability of the spanwise
wall-stress component. A simple explanation is that the current LES overpredicts the
spanwise velocity fluctuations in the near-wall region, as can be seen in figures 5(b) and
18(b,d) for low Reynolds numbers, and figure 5 in Fowler et al. (2022) for high Reynolds
numbers. Since the turbNEQ wall stress is proportional to the LES velocity fluctuations at
the wall-model height, this leads directly to overpredicted wall-stress fluctuations.

In order to help to visualize the response of the wall stress to velocity fluctuations in
the LES using the MTS wall model, in figure 27 we show the superposition of the various
model terms. An animation can be rotated interactively to improve understanding of the
model.

Next, we examine the SSPG flow. The evolution of the predicted spatially averaged mean
wall stress is shown in figure 28. For the streamwise wall stress, the MTS wall model has a
slightly more delayed response compared with the LaRTE+lamNEQ results in Fowler et al.
(2022) (results not shown here). This delayed response is likely caused by differences (1)
and (2) stated above. However, we deem this behaviour acceptable since these differences
to the DNS are small relative to the total wall-stress change after the SSPG is introduced.
The spanwise wall stress, shown in figure 28(b), is very similar to that shown in Fowler
et al. (2022) despite the significantly slower response of the LaRTE model shown by the
blue curve. For the spanwise direction, the LaRTE model is slower, due primarily to the
treatment of the pressure gradient in the relaxation term (∇hp̄ in (2.5)). In both Fowler
et al. (2022) and the present work, the quasi-equilibrium pressure gradient is evaluated as
the filtered LES pressure gradient with the filtering time scale tν . However, in Fowler et al.
(2022), part of this pressure gradient is brought into the equilibrium stress closure (see
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Figure 27. Assumed velocity profile below the wall-model grid point for the MTS wall-model approach.
For an interactive animation of this sketch, see https://www.cambridge.org/S0022112023005852/JFM-
Notebooks/files/Figure-27/steady_channel_flow_wm_velocity_profiles.html. (To play the animation, select
‘Controls’ and ‘Play loop’ on the K3D panel.) The source code that generated the animation can be
found at https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-27/steady_channel_
flow_wm_velocity_profiles.ipynb. Line colours for the total modelled velocity and its LaRTE, lamNEQ and
turbNEQ components are black, blue, red and green, respectively. Thin coloured lines are the model’s
streamwise and spanwise velocity profiles.

(2.13)) and part of it is left in the relaxation term as a ‘band-pass filtered pressure gradient’.
In the present work, all of ∇hp̄ is brought into the equilibrium stress closure, therefore
there is no leftover relaxation term. When changes in the pressure gradient are large (as
is the case with the SSPG flow), this term can become quite significant and speeds up
the response of the LaRTE model. We chose to keep all of the quasi-equilibrium pressure
gradient in the equilibrium stress closure since the LaRTE model now truly relaxes to its
‘equilibrium stress’ while the turbNEQ model makes up for the delayed response of the
LaRTE model.

The turbNEQ wall model, by design, assumes that a wall stress is generated if the
LES velocity (with velocity correction) responds more quickly than the quasi-equilibrium
velocity uτ f (Δ+). The green curve in figure 28(b) shows that initially the difference
between these two velocities is small. It then reaches a peak at approximately tuτp,i/h =
0.5, subsequently decaying until the flow reaches a new quasi-equilibrium state long
after the SSPG is applied. Other wall-stress trends for the LaRTE and lamNEQ models
discussed in Fowler et al. (2022) are also observed here (e.g. the fast initial response of
the lamNEQ model). Overall, the MTS wall model agrees well with the DNS results, with
improvement over the popular EQWM.

Figure 29 shows contour plots of the wall-stress fluctuations for each component of
the MTS wall model after the SSPG is applied. Only one time instance, tuτp,i/h = 2.22, is
shown in the figure here; however, the entire time history before and after the SSPG may be
viewed using the animation link provided in the figure caption. From the figure, it is clear
that the turbNEQ wall model is the primary contributor to wall-stress fluctuations. This is
generally true for all conditions from quasi-equilibrium to non-equilibrium. The LaRTE
model tends to capture slow large-scale wall-stress fluctuations that appear as elongated
turbulent streaks in figures 29(a,b). Similar to what was reported in Fowler et al. (2022),
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Figure 28. (a) Streamwise and (b) spanwise wall stress after a suddenly applied spanwise pressure gradient.
Line types correspond to the DNS of Lozano-Durán et al. (2020) (thick dashed black lines), LES with the
EQWM (dashed-dot grey lines), and the total wall stress for LES with the MTS wall model (solid black lines).
In (b), wall stresses for the LaRTE, lamNEQ and turbNEQ components of the MTS wall model are shown with
blue, red and green lines, respectively. The thin dotted line in (b) corresponds to the Stokes solution wall stress.
Angled brackets represent ensemble averaging over the horizontal plane and over five independent simulations.

we observe a break-up of the LaRTE wall-stress streaks initially after the SSPG is applied,
which then eventually re-align themselves with the mean wall-stress direction as the flow
approaches asymptotically its new quasi-equilibrium state. We stress that these streaks are
very large, corresponding to the response time Ts, which is significantly larger than the
large-eddy turnover time Δ/uτ (by a factor f (Δ+)).

For this particular flow, the lamNEQ wall-stress fluctuations are small in magnitude,
although with large spatial variability, relative to the turbNEQ wall-stress fluctuations.
Generally, the lamNEQ wall-stress fluctuations relative to the turbNEQ fluctuations
decrease as Reynolds number increases. This is because τ ′′

w/u
2
τ scales with Re−1/2

τ ,
whereas τ ′

w/u
2
τ scales with u′

Δ/uτ , which increases with Reynolds number. For Reτ =
1000, the Reynolds number is large enough such that turbulent velocity fluctuations are
the dominant contributors to wall-stress fluctuations.

Appendix B. Alternative derivation of the LaRTE equation

The original derivation of the LaRTE equation in Fowler et al. (2022) focused on the terms
along the near-wall streamline direction s. As shown below, a more complete derivation
can be done using index notation that brings out an additional term not included in the
original derivation. The horizontal momentum equation (2.4) rewritten in index notation
is given by

∂ ūsi

∂t
+ ∂j(ūsiūsj)+ ∂y(v̄ūsi)

= −ρ−1 ∂ip̄ + ∂

∂y

[
(ν + νT)

∂ ūsi

∂y

]
+ ∂j[(ν + νT)(∂iūsj + ∂jūsi)], (B1)

where indices correspond to the horizontal directions, i.e. i = 1, 3, and the horizontal
velocity follows the law of the wall, i.e. ūsi = uτ i f ( y+) = uτ si f ( y+). The continuity
equation is
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Figure 29. Contour plots of the wall-stress fluctuations (both streamwise and spanwise directions)
for each component in the MTS wall model after the SSPG is applied at tuτp,i/h = +2.22. These
components include (a,b) LaRTE, (c,d) lamNEQ, (e, f ) turbNEQ, and (g,h) the total MTS wall stress.
The dashed lines in (a,b) represent the total wall-stress angle. Angled brackets represent averaging over
the horizontal plane. An animation of the wall-stress evolution before (t < 0) and after (t > 0) the
SSPG can be seen at https://www.cambridge.org/S0022112023005852/JFM-Notebooks/files/Figure-29/sspg_
ws_contour_animation.html. The corresponding source code can be found at https://www.cambridge.org/
S0022112023005852/JFM-Notebooks/files/Figure-29/sspg_ws_contour_animation.ipynb.

∂iūsi + ∂yv̄ = ∂sūs + ūs(∂isi)+ ∂yv̄ = 0, (B2)

where we have used the relation ∂s = si∂i. Equation (B2) can be integrated to obtain the
vertical velocity at the wall-model height:

v̄(Δ) = −
∫ Δ

0
∂iūsi dy = −

∫ Δ

0
∂i(uτ sif ) dy = −(∂suτ )ΔfΔ − uτ (∂isi)

∫ Δ

0
f dy, (B3)

where fΔ ≡ f (Δ+), and the term proportional to ∂isi was omitted in Fowler et al. (2022).
Equation (B1) is now integrated vertically from the wall to the wall-model height to

obtain the LaRTE equation. The nonlinear advection term is then∫ Δ

0
[∂j(ūsiūsj)+ ∂y(v̄ūsi)] dy =

∫ Δ

0
∂j(ūsiūsj) dy + v̄(Δ) uτ sifΔ. (B4)
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The first term requires expanding, and after some manipulation can be written as∫ Δ

0
∂j(ūsiūsj) dy = uτ i(∂suτ )Δf 2

Δ + [uτ (∂suτ i)+ u2
τ si(∂jsj)]

∫ Δ

0
f 2 dy. (B5)

Substituting (B5) and (B3) into (B4), and dividing by ΔfΔ (the coefficient for the time
derivative term), yields for the LaRTE advection term

1
ΔfΔ

∫ Δ

0
[∂j(ūsiūsj)+ ∂y(v̄ūsi)] dy = Vτ j(∂juτ i)− uτ fΔ(∂jsj)

(
θΔ

Δ

)
uτ i, (B6)

where V τ is the advection velocity for the friction velocity introduced in § 2.1, and
integrals have been rewritten in terms of the cell displacement (δ∗Δ) and momentum (θΔ)
thicknesses, also introduced in § 2.1. The complete LaRTE model, without simplifications,
is then (returning to Gibbs notation)

∂uτ
∂t

+ V τ · ∇huτ = 1
Ts

[
1
uτ

(
−Δ
ρ

∇hp̄ + τ̄Δ

)
− uτ

]
+ uτ

δ∗Δ
Δ

∂s
∂t

+ uτ fΔ(∇h · s)
(
θΔ

Δ

)
uτ + 1

ΔfΔ
∇h · Dτ , (B7)

where Dτ is the horizontal diffusion term (vertical integral of the last term in (B1)),
discussed in Fowler et al. (2022). The last two terms in (B7) are excluded in numerical
implementation of the model due to their expected minor impact on the results (e.g.
θΔ/Δ � 0.1) and added complexity in evaluating them numerically.
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