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Marine-terminating glaciers, such as those along the coastline of Greenland, often
release meltwater into the ocean in the form of subglacial discharge plumes. Though
these plumes can dramatically alter the mass loss along the front of a glacier, the
conditions surrounding their genesis remain poorly constrained. In particular, little
is known about the geometry of subglacial outlets and the extent to which seawater
may intrude into them. Here, the latter is addressed by exploring the dynamics of an
arrested salt wedge – a steady-state, two-layer flow system where salty water partially
intrudes a channel carrying fresh water. Building on existing theory, we formulate
a model that predicts the length of a non-entraining salt wedge as a function of
the Froude number, the slope of the channel and coefficients for interfacial and
wall drag. In conjunction, a series of laboratory experiments were conducted to
observe a salt wedge within a rectangular channel. For experiments conducted
with laminar flow (Reynolds number Re < 800), good agreement with theoretical
predictions are obtained when the drag coefficients are modelled as being inversely
proportional to Re. However, for fully turbulent flows on geophysical scales, these
drag coefficients are expected to asymptote toward finite values. Adopting reasonable
drag coefficient estimates for this flow regime, our theoretical model suggests that
typical subglacial channels may permit seawater intrusions of the order of several
kilometres. While crude, these results indicate that the ocean has a strong tendency to
penetrate subglacial channels and potentially undercut the face of marine-terminating
glaciers.

Key words: stratified flows, ocean processes

1. Introduction

The thinning and retreat of land ice is a major and rapidly increasing contributor
to global sea level rise (Meier et al. 2007; Rignot et al. 2011). Such ice loss is most
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extreme along the margins of marine-terminating glaciers, in regions where the ocean
has experienced substantial warming (van den Broeke et al. 2009; Pritchard et al.
2012). This is especially the case for the many fjords along Greenland’s coastline
that have direct access to the rapidly warming waters of the North Atlantic (Straneo
& Cenedese 2015). The heat transport and corresponding rate of glacial ice loss
that occur in fjords are controlled by a multitude of factors. These include offshore
ocean circulation and mixing, ice geometry, fjord bathymetry and the presence of
subglacial discharge (Straneo et al. 2011; Jackson, Straneo & Sutherland 2014;
Rignot et al. 2016). Here, we focus on the potential impact of the last contributor,
specifically the dynamics of subglacial meltwater as it transitions into a buoyant
plume. Though many studies have analysed the downstream effects of meltwater
plumes along ice faces exposed to the open ocean (e.g. Jenkins 2011; Xu et al. 2012;
O’Leary & Christoffersen 2013; Kimura et al. 2014; Fried et al. 2015; McConnochie
& Kerr 2017), few have explored the hydrographical conditions that influence their
genesis. This is in large part due to the inaccessibility of subglacial channels and
the glacier–ocean interface in general. Recent modelling work suggests the submarine
melt rate along a glacier’s front is sensitive to the spatial distribution of subglacial
meltwater outlets (Carroll et al. 2016; Cenedese & Gatto 2016). Notably, Slater et al.
(2015) demonstrates that a distributed line plume can produce up to five times as
much melting as a single point source with the same volume flux. This high sensitivity
indicates that the poorly constrained near-terminus hydrography of marine-terminating
glaciers is potentially a major source of uncertainty for future projections of glacial
ice loss and global sea level rise.

This study is primarily concerned with the factors that determine the location
of meltwater plume liftoff within a subglacial channel. Equivalently, we seek to
determine the extent to which seawater may intrude into a subglacial channel, based
on its size and the properties of its flow. Since seawater is generally warmer than
glacial ice, deep seawater intrusions would likely widen existing subglacial channels.
This would effectively undercut the front of the glacier and reduce its overall stability
(Rignot, Koppes & Velicogna 2010). To assess the viability of this scenario, we
explore the dynamics of the two-layer flow occurring in a confined channel when an
imposed volume flux of freshwater discharges into a saline ambient. The dynamics of
the resulting flow is closely related to a more widely studied flow system: the arrested
salt wedge. The salt wedge model is commonly used to describe the two-layer flow
that occurs when seawater partially intrudes an estuary (Schijf & Schonfeld 1953;
Geyer & Ralston 2011). Such estuaries are ubiquitous and tend to arise in inlets
that feature strong river discharge and weak vertical mixing by tidal motion (Hansen
& Rattray 1966). This dynamical framework has also been applied to seawater
intrusions on smaller scales, such as within man-made wastewater outfalls and
submarine aquifers that lead into the ocean (e.g. Dermissis 1993; Adams et al. 1994;
Ali, Wose & Burrows 1995).

Unlike salt wedges in estuaries or man-made outfalls, the geometry of a subglacial
channel is intrinsically linked to the intrusion of relatively warm seawater. Therefore, a
full description of the advance or retreat of seawater within a subglacial channel will
ultimately require a model that can evolve the boundaries of the channel. However,
as a first step, we explore the steady-state dynamics of a salt wedge within a static
subglacial channel. This simplified approach greatly facilities our ability to explore
this system within a laboratory setting – an important check on the viability of the
theory.

In this work, we derive a theory for a shallow two-layer flow featuring freshwater
flow through a channel that opens into a large reservoir of denser saltwater. The
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channel is either horizontal or inclined at a shallow angle to the horizontal. We
find that the flow depends on a Froude number, which characterizes the ratio of
flow speed to gravity wave speed, based on the speed, depth and reduced gravity of
the inflowing fresh water. The theory predicts that no wedge forms for supercritical
flow with Froude number larger than one, but subcritical flow allows penetration
of dense salt water into the channel and formation of a salt wedge. The length
of the wedge increases with decreasing Froude number, and with decreasing drag
coefficients for the walls and layer interfaces. When varying the channel slope, the
wedge length increases with slope (i.e. as the freshwater layer flows increasingly
uphill). The theory predicts a transition to a two-layer flow throughout the channel
length for slopes larger than a critical value, with inflowing freshwater and intruded
salt water filling finite depths of the channel. Our analogue laboratory experiments
demonstrate many of these phenomena for flow in a pipe with square cross section.
For horizontal inclination the theory captures the observed shape of the wedge and
variation of wedge length with Froude number, when using a drag coefficient that
varies inversely with Reynolds number, as is appropriate for laminar flow. As the
pipe is tilted the theory captures the broad qualitative trend with increasing slope, but
quantitatively overestimates wedge lengths when using the same drag coefficients as
for the horizontal pipe.

The next section presents the theoretical model for a subglacial salt wedge (§ 2).
This is followed by sections that describe our laboratory experiments (§ 3) and
highlight our key observational results (§ 4). We end with a brief discussion of the
applicability of our results to realistic subglacial systems (§ 5) and a summary of all
our findings (§ 6).

2. A theoretical model for a subglacial salt wedge

To develop our subglacial salt wedge model, we begin with the two-layer, estuarine
model presented by Geyer & Ralston (2011), which is an adaptation of the salt wedge
theory first outlined by Schijf & Schonfeld (1953). In this framework, the freshwater
and saltwater layers are well mixed and the interface between the two layers, as
defined by the pycnocline, is infinitely thin and features no interfacial mixing. These
assumptions may be relaxed to obtain a more complex model to account for potential
entrainment and overturning within each layer, as is done by Arita & Jirka (1987a).
However, since our primary goal is to obtain a first-order estimate for the length of
seawater intrusions within a subglacial channel, we proceed with the simpler Schijf
& Schonfeld (1953) model, which has been shown to adequately capture the shape
and length of salt wedge intrusions in estuaries and laboratory experiments (Arita
& Jirka 1987b; Sargent & Jirka 1987; Geyer & Farmer 1989). As will be discussed
further, a key feature of the Schijf & Schonfeld (1953) model is that it treats the
drag coefficients as free parameters, which may be obtained by comparing theory
with observations.

Departing from Geyer & Ralston (2011), we consider a channel with a rigid upper
boundary that is either horizontal or tilted at a slight angle θ to the horizontal
(figure 1). We use a shallow angle approximation, such that we can approximate
cos θ ≈ 1 and the along-slope velocities as approximately horizontal. We also assume
the fluid is incompressible and invoke the Boussinesq approximation, neglecting
density differences except within the buoyancy forces.

Given these assumptions, the channel flow can be modelled by a pair of shallow
water equations, with a rigid lid as the upper boundary condition. With no entrainment,
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FIGURE 1. Schematic showing a cross-sectional view of a salt wedge in a rectangular
channel. The channel is assumed to be uniform with constant width, W, and height,
H, while oriented at a small angle θ . The freshwater layer, with thickness H1, flows
leftward over a salt wedge that has a corresponding layer thickness of H2. Flow within
the freshwater and saltwater layers is assumed to be uniform and characterized by
along-channel flow velocities U1 and U2, respectively. The left end of the channel is
attached to a reservoir of salty water (representing the open ocean), while the right end
is fed by a pressurized freshwater discharge.

the continuity equations for the upper and lower layers are

W
∂H1

∂t
+
∂Q1

∂X
= 0, (2.1)

W
∂H2

∂t
+
∂Q2

∂X
= 0. (2.2)

Here, H1 and H2 are the thicknesses of the upper and lower layers, respectively, with
H=H1+H2. Similarly, Q1=WH1U1 and Q2=WH2U2 are the volume fluxes of each
layer, which in steady state are conserved along the channel, and U1 and U2 are the
layer-averaged velocities. The momentum balance for both layers is given by

∂U1

∂t
+U1

∂U1

∂X
+
∂P
∂X
+

Ci |U1 −U2| (U1 −U2)

H1
+Cd U2

1

(
1

H1
+

2
W

)
= 0, (2.3)

∂U2

∂t
+U2

∂U2

∂X
+
∂P
∂X
+ g′

(
∂H2

∂X
+ tan θ

)
−

Ci |U1 −U2| (U1 −U2)

H2

+Cd U2
2

(
1

H2
+

2
W

)
= 0, (2.4)

where Ci and Cd are the coefficients for interfacial and wall drag, ∂P/∂X is an
along channel barotropic pressure gradient and g′ = g∆ρ/ρ0 is the reduced gravity
for density difference ∆ρ between the two layers, acceleration due to gravity g
and reference density ρ0. At near-freezing temperatures, the thermal expansion and
haline contraction coefficients are approximately 2× 10−5 ◦C−1 and 8× 10−4 (g/kg)−1,
respectively. Given that temperature variations within a subglacial channel are likely
of the order of a few degrees, the magnitude of g′ is effectively set by the salinity
difference between seawater and freshwater ∆S= S2 − S1.

In (2.3) and (2.4), we parameterize the interfacial and wall drag forces using a
quadratic drag law. For interfacial drag, the shear stress between the two layers is
assumed to be proportional to the square of the difference between the layer-averaged
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velocities. For wall drag (i.e. the drag along all surfaces in contact with the flow),
the shear stress is assumed to be proportional to the square of the average velocity
of the relevant flow. Multiplying these shear stresses by the surface area over which
they act, and distributing the net effect of this force uniformly over the cross sectional
area of the layer gives rises to the 1/H1, 1/H2 and 2/W terms in (2.3) and (2.4). The
along channel pressure gradient, ∂P/∂X, serves a similar role to the hydrostatic or
barotropic pressure gradient induced by the gradient in sea surface height in a salt
wedge estuary. For salt wedge estuaries, the sea surface slopes downward towards
the ocean and forces flow in the seaward direction. This is distinct from the force
represented by g′ (∂H2/∂X + tan θ), the baroclinic pressure gradient, which acts to
drive flow that flattens the interface between the two layers. For a subglacial channel,
we assume that the channel roof is rigid and thus can support a pressure gradient. This
barotropic pressure gradient is implicitly determined and arises in (2.3) to ensure mass
conservation for the assumed incompressible flow and imposed volume flux. Further
up the glacier than the region of interest here, this pressure gradient usually follows
closely the gradient of the ice surface (Röthlisberger 1972).

To simplify the system, we seek solutions for an arrested salt wedge, for which the
freshwater volume flux Q1=Q> 0, is constant, and the average velocity of the lower
layer U2 is zero. In this case, equations (2.3) and (2.4), can be combined, eliminating
P, to give

(
Fr2
− 1
) ∂H1

∂X
= Fr2

[
Ci

H
H −H1

+Cd

(
1+ 2

H1

W

)
−

H1

W
∂W
∂X

]
−

(
tan θ +

∂H
∂X

)
,

(2.5)
where

Fr=
U1
√

g′H1
=

Q√
g′H3

1W2
, (2.6)

is the local Froude number of the upper layer. The final term in (2.5) accounts for
variations in the channel height relative to the base of the channel.

It is also useful to define the freshwater or densimetric Froude number,

Fr0 =
Q√

g′H3W2
, (2.7)

which is the value taken when the upper layer occupies the full depth of the channel.
Note that Fr = Fr0(H/H1)

3/2, so the local Froude number is equal to the freshwater
Froude number at the nose of the salt wedge (where H1 → H) and must be larger
further down stream (where H1 <H). We take the channel mouth to be at X= 0, and
write the location of the nose as X=−L, where L is the length of the salt wedge, to
be determined from the theory.

To avoid the singularity in (2.5) as Fr→ 1, transition through Fr = 1 requires a
hydraulic control point, where the right-hand side goes to zero simultaneously. The
two terms proportional to Ci and Cd are positive, and hence this hydraulic control
point must occur near the mouth of the channel where the width or surface slope of
the channel increase sufficiently so that the right-hand side of (2.5) can equal zero.
To further simplify the discussion, we consider the case of a channel with uniform
width W and height H, except near the channel mouth. Whilst in reality the opening
occurs over some finite distance, here we assume the variation is rapid compared to
the length of the subglacial channel, and approximate it as a sudden opening at X= 0
(this is the case in our laboratory experiments, and a similar approximation is often
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applied for estuaries). A hydraulic control point, if it exists, must then be located at
X = 0.

It is helpful to non-dimensionalize the model by introducing scaled variables
h = H1/H, w =W/H, x = C0X/H, l = C0L/H, where C0 is a characteristic scale for
the drag coefficients (set by the larger of Cd or Ci). Note that the drag coefficients
are treated as free parameters at this stage; appropriate values may depend on the
Reynolds number for the flow, as discussed later when we compare the theoretical
predictions to laboratory experiments. With these scalings, equation (2.5) becomes

(
Fr2
− 1
) ∂h
∂x
= Fr2

[
C̃i

1
1− h

+ C̃d

(
1+ 2

h
w

)]
−Θ, (2.8)

where Fr= Fr0/h3/2, and where

C̃i =
Ci

C0
, C̃d =

Cd

C0
, Θ =

tan θ
C0

, (2.9a−c)

are the scaled drag coefficients and channel slope. Note that Fr0 in (2.7) is now a
constant parameter that encodes information about the magnitude of the freshwater
discharge relative to the size of the channel and the density contrast. At least one of
C̃i and C̃d may be taken equal to 1 (by the definition of C0), so the solutions shown
in this section all have C̃i = C̃d = 1. We also restrict our attention to the case of a
square channel cross-section, so w= 1. In this case the dependence is reduced to the
two parameters Fr0 and Θ .

Different flow scenarios arise depending on whether the freshwater Froude number
Fr0 is supercritical (> 1) or subcritical (< 1). If a finite salt wedge exists, it occupies
−l< x< 0, and satisfies h= 1 at x=−l. It is also possible that no salt wedge forms,
or that the saltwater intrusion extends indefinitely into the channel. In particular, given
that the first interfacial-drag term tends to infinity as h→1, the right-hand side of (2.8)
must always be positive close to the nose of the wedge. Thus, if Fr0> 1, the equation
predicts ∂h/∂x > 0 at that point. This is impossible since the upper layer already
occupies the full thickness of the channel and cannot increase in thickness. We are
led to the important conclusion that no salt wedge forms when Fr0 > 1.

Turning to subcritical inflow conditions Fr0 < 1, we note that in this case (2.8)
indicates that ∂h/∂x < 0 near the nose, so the upper layer thickness decreases with
distance, as expected. Since Fr = Fr0/h3/2, the local Froude number Fr therefore
increases. As noted above, the transition past Fr = 1 (i.e. h = Fr2/3

0 ) must occur at
a hydraulic control point which is located at the mouth of the channel, x = 0. A
finite-length salt wedge must therefore satisfy the combined conditions

h= 1 at x=−l, h= Fr2/3
0 at x= 0. (2.10a,b)

The solution of (2.8) subject to (2.10) determines both the shape of the wedge h(x)
and its length l. We integrate (2.8) numerically, starting from the critical point at x=
0 and continuing backwards in x until h approaches 1, which defines the length l.
This can be converted back to the dimensional wedge length L= lH/C0. (For practical
purposes, we set Fr= 1− ε at x= 0, with ε= 10−4, to avoid the singularity associated
with critical flow.)

Solutions for the case of a horizontal channel (Θ = 0), are shown in figure 2(a,b).
Consistent with the singularities in (2.8), the slope of the interface is steepest at the
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FIGURE 2. Numerical solutions to (2.8) and (2.10) for a range of values of freshwater
Froude number Fr0 and scaled channel slope Θ . (a,b) Show solutions for the interface
height 1− h and the wedge length l for varying Fr0 for a horizontal channel, with dots
in (a) highlighting the interface height at the channel mouth, and dots in (b) indicating
the cases shown in (a). (c,d) Show solutions for varying channel slope Θ for the case
Fr0 = 0.1. Dots in (c,d) have similar meanings as those in (a,b). These solutions all have
C̃i = C̃d =w= 1; other values of these parameters give qualitatively the same behaviour.

ends, where h≈ 1 and h≈ Fr2/3
0 . There is always a salt wedge solution in this case,

and the wedge length varies inversely with Fr0 for 0 < Fr0 < 1. Solutions for non-
zero channel slopes are shown in figure 2(c,d). These demonstrate that the length and
shape of the salt wedge are sensitive to the channel slope as well as the freshwater
discharge. As the slope is made negative and fresh water is forced to flow downwards
against its buoyancy, the salt wedge length decreases. Similarly, as the slope becomes
positive, the length of the salt wedge increases. However, for a sufficiently large Θ ,
the right hand side of (2.8) may equate to zero. In such a case, a solution satisfying
both boundary conditions in (2.10) ceases to exist. Instead, there are two equilibrium
solutions with constant h, which satisfy

Fr2
0

h3

[
C̃i

1
1− h

+ C̃d

(
1+ 2

h
w

)]
=Θ. (2.11)

For C̃i = C̃d = w= 1, the above equation has two solutions for h when Θ & 14.8 Fr2
0,

where the prefactor is determined by calculating the minimum of the left hand side
of (2.11) over h. For a drag coefficient C0= 0.1, and Fr0= 0.1, this is a critical angle
of just θ ≈ 0.85◦ (figure 2d).
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¡35 cm

Width = 16 cm
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2.1 cm ÷ 2.1 cm

Freshwater
plume Freshwater

inflow

Saltwater
inflow
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outflow

Styrofoam
barrier

Saltwater tank

FIGURE 3. A schematic detailing the salt wedge experiments. A freshwater flux Q is
pumped into a long channel of square cross-section, whose slope was varied at an angle
relative to the horizontal (not shown), and submerged within a larger tank filled with
saltwater. This freshwater flux partially flushes the channel, before feeding a freshwater
plume at the channel mouth, with a salt wedge intruding from the channel mouth.

3. Laboratory experiments
3.1. Experimental set-up

We use laboratory experiments to validate the theory outlined in the previous section
and to obtain a scaling relationship that allows us to predict the extent of seawater
intrusion in a realistic subglacial channel. Freshwater was pumped through a narrow
rectangular channel into a much larger tank approximately 150 cm long, 16 cm wide
and 35 cm deep that was filled with saline water (figure 3). The rectangular channel
was approximately 100 cm long and had an inner cross-section of 2.1× 2.1 cm2. This
experimental configuration was chosen so that a steady salt wedge would develop
within the rectangular channel for the range of flow rates that could be supplied by
the freshwater pump.

Three control parameters were varied in these experiments: the freshwater flow rate,
the salinity of the main tank and the slope of the rectangular channel. The freshwater
flow rate was varied using an adjustable pump to supply volume fluxes over the
range 5 6 Q 6 30 cm3 s−1. Defining the Reynolds number as Re = UH/ν = Q/Wν,
where ν = 10−6 m2 s−1 is the kinematic viscosity, this range of freshwater flow rates
corresponds to 250 6 Re 6 1400. The salinity of the tank was varied by mixing
local seawater (∼33 g kg−1) with various amounts of freshwater to achieve salinities
166 S6 33 g kg−1, corresponding to 0.136 g′6 0.26 m s−2. The slope of the channel
was varied over an approximate range of 0–8◦ using a simple pulley system.

Over the course of an experiment, a layer of diluted seawater would form at the
top of the tank and grow over time. Since changes in ambient salinity are expected to
impact the dynamics of the salt wedge, experiments were terminated when the depth
of the diluted mixed layer filled the upper two thirds of the tank. To increase the
duration of the experiments, a siphon was inserted just below the free surface to expel
diluted water from the tank. In some runs, this was complemented by pumping salt
water from an external reservoir into the base of the tank (figure 3). By tuning the
siphon drainage and salt water inflow rates, it was possible to maintain a quasi-steady
mixed layer depth and thus a constant ambient salinity at the level of the rectangular
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FIGURE 4. A closeup image of an intruding salt wedge during an experiment. Here,
freshwater (dyed blue) is observed exiting the channel as a salt wedge intrudes the lower
portion of the channel. The freshwater plume and the diluted mixed layer are visible in
the left and upper sections of the image respectively.

channel for an extended period of time. Lastly, a 10 cm high Styrofoam block was
inserted above the channel’s outlet, spanning the width of the tank, to simulate the
presence of the glacier face. By forming a partial dam over the mouth of the channel,
the block had the added benefit of routing diluted seawater towards the outflow siphon.

3.2. Experimental procedure and data processing
After turning on the freshwater pump, its flow rate was held constant until a salt
wedge visibly came to rest within the channel. Once a steady state was realized, the
flow rate was adjusted to a different value and held constant until the salt wedge
adjusted to its new equilibrium. This procedure was repeated until the surface mixed
layer began to encroach the lower third of the tank, at which point the tank was
drained and refilled.

Each experiment was video recorded with a digital camera. To highlight the
interface between the two layers, the inflowing freshwater was dyed blue and the
tank was backlit by a diffuse light source (figure 4). To obtain quantitative data, the
video recordings were converted to a series of images sampled at 1 Hz and analysed
using custom written Python code. Since the dyed water was almost completely
opaque to red light, analysing the images through their red channel provided a sharp
contrast between the fresh and saline layers. Scanning each image upwards from the
base of the channel, the interface was taken to be wherever the red light intensity
fell below 10 % of its maximum value. Given the sharp contrast between the two
layers, the results are not sensitive to moderate changes to this threshold value. To
obtain estimates of the wedge length, we calculated the distance between the nose
of the salt wedge and where Fr= 1 (i.e. the hydraulic control point). For the sloped
channel experiments, this entire process was carried out after rotating each image so
that the channel was oriented horizontally within the image frame.

While our theory assumes the hydraulic control point exists at the mouth of the
channel, in our experiments we find that this transition point tends to occur 1–2
centimetres inside the channel. This minor discrepancy possibly reflects an important
limitation to our shallow layer theory, which is only formally justified for properties
varying over horizontal length scales much larger than the thickness of the layer.
Additionally, external factors such as the circulation just outside the entrance of the
channel may also influence flow properties near the entrance of the channel in ways
not accounted for by our theory.
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FIGURE 5. Example evolution of a salt wedge for a horizontal channel experiment
immersed in 25 g kg−1 seawater (g′ ≈ 0.2 m s−2). (a) Evolution of the salt wedge
interface height following successive step reductions in freshwater flow rate. Each line
represents the position of the salt wedge interface at a 5 s interval. The bold lines indicate
the final wedge position just before the freshwater volume flux was changed. Note that
the axes are not to scale in this plot. (b) Wedge length versus time for the volume fluxes
shown in (a). The vertical dashed lines indicate when the freshwater flow rate was abruptly
reduced to a new value.

Sample results from an experimental run done with a horizontal channel are
illustrated in figure 5. In this case, the freshwater flow rate was step-wise reduced
from 17 to 5 cm3 s−1. The time series of the wedge length illustrates that a
near-steady state was achieved before each step change in the flow rate was initiated.

4. Experimental results
4.1. Horizontal channel experiments

Figure 6(a) shows the length of the equilibrated salt wedge versus the freshwater flow
rate for all horizontal channel experiments. Consistent with theory, larger freshwater
flow rates produced shorter salt wedges. Similarly, when the salinity difference
between the two layers was reduced, so did the length of the salt wedge. Both of
these follow directly from figure 2, since either change leads to an increase in the
freshwater Froude number.

To quantitatively compare these laboratory results with theoretical predictions, it is
necessary to evaluate the interfacial and wall drag coefficients. The magnitude of these
coefficients is obtained by comparing experimental data with theoretical predictions
and finding values for the drag coefficients that produce the best agreement. To
simplify the problem, we first reduce the number of unknowns to one by considering
three limiting cases: Ci = Cd, Ci = 0 and Cd = 0. Assuming the drag coefficients
are constant in each limiting case yields (C̃i, C̃d) = (1, 1), (C̃i, C̃d) = (0, 1) and
(C̃i, C̃d)= (1, 0). Next, we recall that by integrating (2.8) over the range of Fr0 used
in our experiments we may obtain the dimensionless salt wedge length ` = L C0/H.
Thus, we can derive an empirical estimate for C0 by computing a least-squares
regression line through the predicted ` versus observed L. The slope of this line is
equivalent to C0/H, provided the line is forced to pass through the origin.
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FIGURE 6. Results from all horizontal channel experiments. (a) Relationship between
wedge length and freshwater flow rate. Dark circles represent baseline experiments
conducted with 33 g kg−1 seawater (some of which were repeated several times) while
coloured squares represent experiments done with diluted seawater. (b) Same as (a) but
with the wedge length and freshwater flux reformulated as non-dimensional quantities.
Dashed line shows solutions of (2.8), assuming Ci =Cd = 7/Re.

Carrying out this procedure for each limiting scenario yields values that range from
C0= 0.02 for C̃i= C̃d to C0= 0.08 for C̃i= 0 (figure 7a). In each case, the coefficient
of determination (r2) for each fit is approximately 0.80, which suggests a moderately
linear relationship between predicted ` and observed L. However, deviations are
noticeably large for shorter wedge lengths, which corresponds to higher Froude
numbers and freshwater flow rates. In this parameter range, the theoretical predictions
systematically underestimate the observed wedge length. This discrepancy suggests
that the drag coefficients may have an inverse relationship with the freshwater flow
rate, becoming smaller as the flow rate increases. Such an inverse relationship is
not unexpected, since the drag coefficients for laminar flows are known to vary
inversely with the Reynolds number, which for these experiments had a maximum
value of approximately 785. For the case of single-layer laminar pipe flow, we expect
Cd= 8/Re for Re< 2000 (Moody 1944; Chen 1979). (Note that this is often expressed
in terms of the Darcy friction factor fD = 64/Re, where fD = 8 Cd.) For the two-layer
flow in our set-up, the dependence may be slightly different, but we assume the same
dependence on Re should apply for both Cd and Ci.

We therefore repeat the previous procedure to determine C0, but now taking C0 =

Ĉ0/Re and applying the least-squares fit to determine Ĉ0. Using this Reynolds-number-
dependent parameterization improves the quality of the best fit line in all three cases
(figure 7b). When Ci =Cd, the best agreement (r2

= 0.97) is obtained with

Ci =Cd ≈
7

Re
, (4.1)

which is similar to the drag parameterization for laminar flow in a pipe (Moody 1944).
Re-scaling the observed wedge lengths by the Reynolds number and plotting those

values against the freshwater Froude number causes all the results from the horizontal
channel experiments to collapse onto a single curve (figure 6b). More importantly,
we are able to reproduce this observed relationship with our theoretical model. This
is demonstrated using predictions for the case where Ci = Cd ≈ 7/Re. A similar
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FIGURE 7. Plots showing theoretical versus experimental wedge lengths assuming C̃i = 0
(blue dots), C̃d=0 (orange dots) and C̃d= C̃i (green dots). (a) Case where drag coefficients
C0 are assumed to be constant. (b) Case where drag coefficients C0= Ĉ0/Re are inversely
proportional to the Reynolds number Re. Coloured lines represent the linear least-squares
fit for their respective data points, assuming no y-intercept.

correspondence between observations and theory is obtained when drag coefficients
from the other limiting cases are used (not shown).

Using the Reynolds-number-dependent drag coefficients, we also assess our theory’s
ability to reproduce the shape of the salt wedge interface (figure 8). This is illustrated
using results from a special set of runs wherein the freshwater flow rate was varied
back and forth between 7 cm3 s−1 (Fr0≈ 0.20) and 14 cm3 s−1 (Fr0≈ 0.43). As with
the other experiments, the salt wedge was allowed to come to rest before changing
the freshwater flow rate. While the three limiting cases of our theory predict similar
wedge lengths, the shape of the interface differs slightly in each case, with the no-
interfacial-drag limit (C̃i= 0) being the most distinct. For the low Fr0 runs (red lines
in figure 8), the (C̃i, C̃d) = (1, 1) and (C̃i, C̃d) = (1, 0) limits do a generally better
job of capturing the slope and height of the wedge interface compared to the C̃i = 0
limit. However, the C̃i= 0 limit does better near the mouth of the channel, where the
interface becomes very steep. Similarly, we find that the C̃i= 0 limit produces the best
agreement with observations for the higher Fr0 runs, when the intrusions are relatively
short. These results suggest that the wall and interfacial-drag forces vary somewhat
along the length of the salt wedge, with the former being more prominent near the
mouth of the channel. Nevertheless, we find that by using integrated approximations
of these forces, as captured by our constant-valued drag coefficients, our theory is still
able to approximate the general features of the salt wedge interface. Since our primary
goal is to predict the overall length of salt wedge intrusions, these results demonstrate
that our current theory is suitable for this task.

The runs summarized in figure 8 were also carried out to verify repeatability and
to assess how the progressive freshening of the ambient seawater impacted our results.
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FIGURE 8. Comparisons between observed and theoretical wedge shapes. The coloured
lines show results from an experiment where the freshwater flow rate was alternated
between 7 cm3 s−1 (red) and 14 cm3 s−1 (blue). Lighter lines represent interface shapes at
later times in the experiment. Overlain are theoretical wedge shapes obtained by assuming
C̃i= C̃d (solid black line), C̃i= 0 (dashed line) and C̃d = 0 (dotted line). In each case, the
magnitude of the drag coefficients is given by Ĉ0/Re, with Ĉ0 assuming the values shown
in figure 7(b). To facilitate a more direct comparison with theory, each observed profile
has been translated horizontally so that its hydraulic control point (i.e. the location where
Fr= 1) is aligned with the origin. The inset shows the time evolution of the wedge length.

While the wedge lengths did not change appreciably with each repetition, the shape
of the wedge evolved slightly with time. Most notably, the wedge became marginally
thinner just downstream of the mouth. This result is consistent with our theory, which
predicts a gradual thinning of the salt wedge as g′ decreases (figure 2a). While it is
not immediately obvious why these changes are most noticeable near the mouth of
the channel, these results confirm that our main results were not adversely affected
by variations in experiment duration.

4.2. Sloped channel experiments
Several additional experiments were conducted with the channel tilted so that
freshwater and saltwater layers flowed upward and downward under the influence
of their own buoyancy, respectively. This effectively enhanced the velocity shear
across the salt wedge interface, thereby promoting instabilities and interfacial mixing.
To maintain salt wedges that fit within our 1 m long channel, we conducted these
sloped channel experiments at relatively high freshwater flow rates with undiluted
seawater in the tank.

As predicted by theory, introducing a positive channel tilt increased the length
of the salt wedge intrusion (figure 9). However, these predicted wedge lengths are
generally longer than observed, with progressively larger over-estimations occurring at
steeper slopes. Here, we show the theoretical predictions for the limit where Ĉi = Ĉd

and C0 = 7/Re. As before, similar wedge lengths are obtained using the Ĉi = 0 and
Ĉd = 0 limits (not shown). For a channel tilt of 3.3◦, the theory predicts infinite
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FIGURE 9. Equilibrium wedge length as in figure 6(b), but including results from the
sloped channel experiments. Squares indicate experimental data while solid lines represent
theoretical predictions, assuming Ĉi= Ĉd and C0=7/Re. The line for θ =3.3◦ is not shown
since the theory predicts infinite saltwater intrusions for the chosen range of Fr0. Dashed
lines are like the solid lines but with C0 = 8.5/Re and C0 = 9/Re for the θ = 2.2◦ and
θ = 3.3◦ cases, respectively.

saltwater intrusions even though finite salt wedges were observed. These systematic
discrepancies indicate our theory neglects one or more key processes that tend to
reduce the extent of saltwater intrusions when the channel is tilted. More specifically,
it is likely that our wedge model is underestimating the magnitude of the drag
forces experienced by the wedge for positive channel slopes. One hypothesis is that
enhanced shear across the interface also leads to enhanced momentum dissipation.
This assertion is supported by observations of small amplitude interfacial waves,
which were most apparent when the salt wedge was relatively long (i.e. at relatively
large slopes and weak freshwater inflow). Even though there was no visible wave
breaking or entrainment, the presence of these waves strongly suggests that the
effective interfacial drag was larger than anticipated by our wedge model. For similar
reasons, enhanced wall drag within the salt layer, which is all-together neglected in
our simplified theory, may have contributed to this discrepancy. While the net volume
flux within the salt layer is zero, the flow within the layer is non-zero and thus
contributes to the velocity shear (circulation within the lower layer was confirmed by
inserting dye into the salt layer).

In summary, the drag coefficients that were obtained using data from the horizontal
channel experiments are likely not appropriate for the tilted channel experiments.
This hypothesis is supported by the dashed lines in figure 9, which show predicted
wedge lengths using slightly larger values for C0. By assuming C0 = 8.5/Re for the
θ = 2.2◦ case, we obtain much better agreement with the data. We achieve similar
improvement by using C0 = 9/Re for the θ = 3.3◦ case. However, at this angle, there
is still clear discrepancies between the theory and observations, especially at higher
Froude numbers. This may indicate that the flow was starting to transition to a regime
where the 1/Re dependence in the drag coefficients no longer holds.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.308


Subglacial salt wedge 895 A20-15

t = 0 s

t = 5 s

t = 10 s

t = 20 s

t = 30 s

t = 35 s

FIGURE 10. Rotated images showing the time evolution of interfacial waves inside
a ‘steeply’ sloped channel. For this experiment, the channel was tilted at approximately
8◦ and the freshwater flow rate was set to 28 cm3 s−1 (Fr≈ 0.86). In the top image, the
blue arrow indicates the direction of the freshwater flow. Yellow vertical lines are added
to highlight the evolution of the interface near the nose of the wedge.

Tilting the channel at even greater angles and subsequently increasing the freshwater
flow rate, led to larger amplitude interfacial waves. At sufficiently steep channel slopes
these waves began to overturn, which led to visible mixing between the two layers.
At the steepest slopes obtained within the tank (θ ≈ 8◦), the salt wedge interface
was unsteady and completely distorted (figure 10). In one experimental run, the
freshwater flow rate was held at 28 cm3 s−1 (Fr ≈ 0.86) for just over 12 min. For
the latter portion of this run, the nose of the salt wedge occupied roughly the same
position within the channel. During this period, the flow downstream of the salt
wedge displayed episodic bursts of interfacial mixing. Such strong mixing episodes
clearly violate the no-entrainment assumption used to formulate our theory. Whilst
not the primary focus here, these results highlight the need for further theoretical
development.

5. Discussion: seawater intrusions in a realistic subglacial channel
With these theoretical results, we now assess the likelihood of saltwater intrusions

in realistic subglacial channels. This exercise comes with the obvious caveat that our
theory has only been compared to laboratory experiments and neglects processes, such
as entrainment, that are likely to be more significant at the much larger Reynolds
numbers inherent to the geophysical scale (e.g. a discharge Q = 10 m3 s−1, and
channel width W = 10 m, gives an estimate of Re = 106). Nevertheless, we posit
that the dynamics that occur at these larger scales are similar to those observed in
our laboratory experiments and that the inclusion of processes such as entrainment
will refine rather than fundamentally alter our predictions. Although our experimental
results suggest that the drag coefficients are inversely proportional to Re in the
laminar regime, we do not expect this dependence to hold in the turbulent regime of
geophysical flows. We instead assume that these coefficients will asymptote towards
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FIGURE 11. Simulations of salt wedge properties for a range of realistic subglacial
channels and discharge rate: (a) freshwater Froude number Fr0 = Q/

√
g′H3W2 and

(b) predicted salt wedge lengths assuming Cd = 0.005 and Ci = 0.0001. For these
calculations, ambient ocean salinity is assumed to be 33 g kg−1 (g′ = 0.26 m s−2). The
channel is assumed to be horizontal with a square cross-section (H=W). Grey shading in
both plots represents regimes where the freshwater flow is super critical and prohibits the
intrusion of salt water. In (a), white contours represent lines of constant Reynolds number.

constant values with increasing Re, as they do in single-layer pipe flows (Moody
1944). For turbulent flows along relatively smooth ice, whether along the face of
glacier or floating sea ice, theoretical models and observational estimates suggest wall
drag coefficient values that range from 0.001–0.01 (e.g. Jenkins 2011; Lu et al. 2011;
Werder et al. 2013; Slater et al. 2016; Ezhova, Cenedese & Brandt 2018). Direct
estimates for Ci are sparse but values of the order of 10−4 are commonly used in the
estuarine literature (e.g. Geyer & Ralston 2011). We therefore expect Cd > Ci within
the subglacial channel, which means the length of the salt wedge should scale with
the magnitude of Cd.

Assuming a range of realistic subglacial flows (0<Q6 100 m3 s−1 and 0<H 6 20
m), our theory predicts that typical subglacial channels can support subcritical flow
(Fr0 < 1) for sufficiently large channels or low enough discharge, which permits the
intrusion of seawater (figure 11a). Taking Ci=0.0001 and Cd=0.005 as representative
values and integrating (2.8) over the previously stated range for Q and H, we find
that these intrusions can be several kilometres long. While this is a crude prediction
that neglects many complicating factors, this result suggests that the ocean has a
strong tendency to penetrate subglacial channels. Since this tendency is greater for
wider channels and weaker discharge, we would expect longer saltwater intrusions
in the winter, when the discharge is at a minimum, and possibly no intrusion in the
summer when the flow is potentially supercritical. Furthermore, since warm saline
water lies below the presumably colder freshwater layer, there is potential for these
channels to melt faster along their sides relative to their top. More importantly, such
melting will be self-reinforcing as larger channels promote greater intrusion of warm
seawater. We therefore hypothesize that the combination of this positive feedback
along with the strong reduction in discharge during winter will cause most subglacial
outlets to widen over time. This process may be responsible for the formation of line
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plumes, which are observed along some glaciers (e.g. Fried et al. 2015). Given that
we have neglected many external factors, we must acknowledge that salt intrusions on
the order of kilometres may not necessarily exist in reality. For example, variations
in the channel cross-section or slope could severely limit the intrusion of water. We
nevertheless maintain that such intrusions could occur and that they would have
far-reaching consequences.

6. Summary and conclusion
In this study, we investigated the dynamics of subglacial plume lift-off using

a combination of idealized models and laboratory experiments. We developed our
theoretical framework with the critical assumption that the flow system near the
outlet of a subglacial channel is fundamentally similar to that of a salt wedge estuary.
With this understanding, we formulated a theory that describes the steady-state
properties of a non-entraining salt wedge confined to a rectangular channel. This
theory predicts the shape and length of a salt wedge for a given freshwater volume
flux, wedge salinity, channel size and slope. The first three parameters are captured
by the non-dimensional freshwater or densimetric Froude number, Fr0=Q/

√
g′H3W2.

In parallel with this theoretical effort, a series of laboratory experiments were
conducted to observe the behaviour of a salt wedge in a rectangular channel. In
these experiments, freshwater was pumped through a narrow rectangular channel into
the bottom of a tank, filled with water of higher salinity. To simulate flow over
a wide range of Froude numbers, these experiments were conducted with various
freshwater flow rates and tank salinities. Additional experiments were carried out
with the channel tilted so that the freshwater flowed upward with the additional
assistance of its own buoyancy.

In general, we find good qualitative agreement between the theoretical predictions
and laboratory results. Consistent with theory, increasing the freshwater Froude
number, either by increasing the freshwater volume flux or reducing the salinity of
the salt wedge, led to shorter salt wedges while tilting the mouth of the channel
upwards led to longer intrusions. Appropriate values for the wall and interfacial
drag coefficients were determined by applying a least-squares fit to the experimental
data. For cases where the channel was horizontal and showed no signs of interfacial
mixing, assuming Cd = Ci ≈ 7/Re produces good agreement between theoretical
and observed wedge lengths (r2

≈ 0.97). Similar agreement can be attained by
considering the theoretical limits where Cd = 0 or Ci = 0. The theory is also
able to accurately reproduce the observed shape of the salt wedge interface when
the channel is horizontal. However, a careful comparison between the theory and
observations suggest that the drag coefficients may vary along the length of the salt
wedge. An interesting challenge for future work is determining and quantifying the
factors controlling the variation of the drag coefficients along the length of the flow.
Nevertheless, the good agreement between observed and predicted wedge lengths
suggests the present theory adequately approximates the key dynamics controlling salt
wedge lengths

Applying the parameterizations for the drag coefficients obtained from the horizontal
channel experiments to experiments with small positive channel slopes (θ . 3.5◦)
yielded relatively poor quantitative agreement with theoretical predictions. We suspect
that this discrepancy is in large part due to an underestimation of the drag forces
acting on the salt wedge when the channel slope is tilted. In support of this hypothesis,
we obtain better agreement with observations when we assume slightly larger values
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for the drag coefficients with sloping channels. For channel slopes as small as ∼2◦, we
observed small amplitude internal waves propagating along the salt wedge interface.
At progressively steeper slopes, these interfacial waves grew and eventually became
unstable, leading to episodic mixing between the two layers. These observations
demonstrate the need for a more general, time-dependent salt wedge model that
permits the exchange of mass and momentum across the wedge interface.

Given that the flow within realistic subglacial channels is fully turbulent, application
of our theory to this setting must be done with some caution. Specifically, there is still
considerable uncertainty regarding the magnitude of the drag coefficients at higher
Reynolds numbers, when entrainment is substantial. Nevertheless, much like the case
of a salt wedge in coastal estuaries, these highly turbulent subglacial flows should
still be governed by the fundamental dynamics described by our theory. Moreover,
we posit that the enhanced mixing and momentum transfer associated with interfacial
mixing can still be captured by an appropriate parameterization for the interfacial
drag. These drag coefficients are also not expected to share the same dependence
on Re as is the case for laminar flows. Assuming reasonable values for the drag
coefficients (Cd = 0.005 and Ci = 0.0001), the theoretical model predicts that typical
subglacial channels may permit salt wedge intrusions as long as several kilometres,
depending on the channel size and discharge rate. While necessarily crude, this result
suggests that the ocean has a strong tendency to penetrate and potentially widen
existing subglacial channels. This mechanism may be responsible for the line plumes
of subglacial discharge observed along tidewater glaciers in Greenland (Fried et al.
2015; Jackson et al. 2017).

A natural extension of our current work would be to develop a salt wedge
theory that explicitly accounts for entrainment. A good starting point would be
the model presented by Arita & Jirka (1987a), which accounts for entrainment and
momentum transfer between the two layers. This effort would ideally be done in
conjunction with laboratory experiments that generate fully turbulent flows. While
such experiments would almost certainly require a larger experimental set-up, doing
so would allow for proper determination of the drag and entrainment coefficients.
Another interesting extension would be to consider the additional mixing that may
arise due to nonlinearities in the equation of state. Given the temperature and salinity
ranges observed in glacial settings and the vertical configuration of cold, fresh
water over relatively warm, salty water, we might anticipate the potential for double
diffusive convective instability across the density interface, in addition to shear-driven
mixing.

Acknowledgements

We thank two anonymous reviewers who provided constructive feedback, which
led to substantial improvement of the manuscript. The laboratory experiments
described herein were conducted at the Woods Hole Oceanographic Institution
(WHOI), with financial support from the WHOI Geophysical Fluid Dynamics
summer program. We thank A. Jensen for his assistance in assembling our tank
experiments. E.W. gratefully acknowledges financial support from the National Science
Foundation under NSF award PLR-1425989 to the University of Washington. A.J.W.
acknowledges support through the research program of the European Union FP7
award PCIG13-GA-2013-618610 SEA-ICE-CFD. I.J.H. was supported by a Marie
Curie FP7 Career Integration Grant PCIG13-GA-2013-618007. C.C. was supported
by NSF OCE-1658079.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.308


Subglacial salt wedge 895 A20-19

Declaration of interests

The authors declare no conflicts of interest.

REFERENCES

ADAMS, E. E., SAHOO, D., LIRO, C. R. & ZHANG, X. 1994 Hydraulics of seawater purging in
tunneled wastewater outfall. J. Hydraul. Engng ASCE 120 (2), 209–226.

ALI, K. H. M., WOSE, A. E. & BURROWS, R. 1995 Characteristics of primary salt wedges in long
sea outfalls. Trans. Ecol. Environ. 7, 295–304.

ARITA, M. & JIRKA, G. H. 1987a TwoLayer model of saline wedge. I: entrainment and interfacial
friction. J. Hydraul. Engng ASCE 113 (10), 1229–1246.

ARITA, M. & JIRKA, G. H. 1987b TwoLayer model of saline wedge. II: prediction of mean properties.
J. Hydraul. Engng ASCE 113 (10), 1249–1263.

VAN DEN BROEKE, M., BAMBER, J., ETTEMA, J., RIGNOT, E., SCHRAMA, E., VAN DE BERG, W. J.,
VAN MEIJGAARD, E., VELICOGNA, I. & WOUTERS, B. 2009 Partitioning recent greenland
mass loss. Science 326 (5955), 984–986.

CARROLL, D., SUTHERLAND, D. A., HUDSON, B., MOON, T., CATANIA, G. A., SHROYER, E. L.,
NASH, J. D., BARTHOLOMAUS, T. C., FELIKSON, D., STEARNS, L. A. et al. 2016 The
impact of glacier geometry on meltwater plume structure and submarine melt in Greenland
fjords. Geophys. Res. Lett. 43 (18), 9739–9748.

CENEDESE, C. & GATTO, V. M. 2016 Impact of a localized source of subglacial discharge on the
heat flux and submarine melting of a tidewater glacier: a laboratory study. J. Phys. Oceanogr.
46 (10), 3155–3163.

CHEN, N. H. 1979 An explicit equation for friction factor in pipe. Ind. Engng Chem. Fundam. 18
(3), 296–297.

DERMISSIS, V. 1993 Seawater intrusion in submarine karst channel of rectangular cross-section. WIT
Trans. Ecol. Environ. 2, 1–8.

EZHOVA, E., CENEDESE, C. & BRANDT, L. 2018 Dynamics of three-dimensional turbulent wall
plumes and implications for estimates of submarine glacier melting. J. Phys. Oceanogr. 48
(9), 1941–1950.

FRIED, M. J., CATANIA, G. A., BARTHOLOMAUS, T. C., DUNCAN, D., DAVIS, M., STEARNS,
L. A., NASH, J., SHROYER, E. & SUTHERLAND, D. 2015 Distributed subglacial discharge
drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett. 42,
9328–9366.

GEYER, W. R. & FARMER, D. M. 1989 Tide-induced variation of the dynamics of a salt wedge
estuary. J. Phys. Oceanogr. 19 (8), 1060–1072.

GEYER, W. R. & RALSTON, D. K. 2011 The Dynamics of Strongly Stratified Estuaries, chap. 2, pp.
37–51. Elsevier.

HANSEN, D. V. & RATTRAY, M. 1966 New dimensions in estuary classification. Limnol. Oceanogr.
11 (3), 319–326.

JACKSON, R. H., SHROYER, E. L., NASH, J. D., SUTHERLAND, D. A., CARROLL, D., FRIED,
M. J., CATANIA, G. A., BARTHOLOMAUS, T. C. & STEARNS, L. A. 2017 Near-glacier
surveying of a subglacial discharge plume: Implications for plume parameterizations. Geophys.
Res. Lett. 44 (13), 6886–6894.

JACKSON, R. H., STRANEO, F. & SUTHERLAND, D. A. 2014 Externally forced fluctuations in ocean
temperature at Greenland glaciers in non-summer months. Nat. Geosci. 7 (7), 503–508.

JENKINS, A. 2011 Convection-driven melting near the grounding lines of ice shelves and tidewater
glaciers. J. Phys. Oceanogr. 41 (12), 2279–2294.

KIMURA, S., HOLLAND, P. R., JENKINS, A. & PIGGOTT, M. 2014 The effect of meltwater plumes
on the melting of a vertical glacier face. J. Phys. Oceanogr. 44 (12), 3099–3117.

LU, P., LI, Z., CHENG, B. & LEPPÄRANTA, M. 2011 A parameterization of the ice-ocean drag
coefficient. J. Geophys. Res. 116 (C7), C07019.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.308


895 A20-20 E. A. Wilson, A. J. Wells, I. J. Hewitt and C. Cenedese

MCCONNOCHIE, C. D. & KERR, R. C. 2017 Enhanced ablation of a vertical ice wall due to an
external freshwater plume. J. Fluid Mech. 810, 429–447.

MEIER, M. F., DYURGEROV, M. B., RICK, U. K., O’NEEL, S., PFEFFER, W. T., ANDERSON,
R. S., ANDERSON, S. P. & GLAZOVSKY, A. F. 2007 Glaciers dominate eustatic sea-level
rise in the 21st century. Science 317 (5841), 1064–1067.

MOODY, L. F. 1944 Friction factors for pipe flow. Trans. ASME 66, 671–684.
O’LEARY, M. & CHRISTOFFERSEN, P. 2013 Calving on tidewater glaciers amplified by submarine

frontal melting. Cryosphere 7 (1), 119–128.
PRITCHARD, H. D., LIGTENBERG, S. R. M., FRICKER, H. A., VAUGHAN, D. G.,

VAN DEN BROEKE, M. R. & PADMAN, L. 2012 Antarctic ice-sheet loss driven by basal
melting of ice shelves. Nature 484 (7395), 502–505.

RIGNOT, E., FENTY, I., XU, Y., CAI, C., VELICOGNA, I., COFAIGH, C. Ó., DOWDESWELL, J. A.,
WEINREBE, W., CATANIA, G. & DUNCAN, D. 2016 Bathymetry data reveal glaciers vulnerable
to iceocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland. Geophys.
Res. Lett. 43 (6), 2667–2674.

RIGNOT, E., KOPPES, M. & VELICOGNA, I. 2010 Rapid submarine melting of the calving faces of
West Greenland glaciers. Nat. Geosci. 3 (3), 187–191.

RIGNOT, E., VELICOGNA, I., VAN DEN BROEKE, M. R., MONAGHAN, A. & LENAERTS, J. T. M.
2011 Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level
rise. Geophys. Res. Lett. 38 (5), L05503.

RÖTHLISBERGER, H. 1972 Water pressure in intra- and subglacial channels. J. Glaciol. 11 (62),
177–203.

SARGENT, F. E. & JIRKA, G. H. 1987 Experiments on saline wedge. J. Hydraul. Engng ASCE 113
(10), 1307–1323.

SCHIJF, J. B. & SCHONFELD, J. C. 1953 Theoretical Considerations on the Motion of Salt and
Fresh Water, Proc. Minnesota International Hydraulics Convention, (Univ. of Minnesota), pp.
321–333.

SLATER, D. A., GOLDBERG, D. N., NIENOW, P. W. & COWTON, T. R. 2016 Scalings for submarine
melting at tidewater glaciers from buoyant plume theory. J. Phys. Oceanogr. 46 (6), 1839–1855.

SLATER, D. A., NIENOW, P. W., COWTON, T. R., GOLDBERG, D. N. & SOLE, A. J. 2015 Effect
of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophys. Res.
Lett. 42 (8), 2861–2868.

STRANEO, F. & CENEDESE, C. 2015 The dynamics of Greenland’s glacial fjords and their role in
climate. Annu. Rev. Mar. Sci. 7 (1), 89–112.

STRANEO, F., CURRY, R. G., SUTHERLAND, D. A., HAMILTON, G. S., CENEDESE, C., VÅGE,
K. & STEARNS, L. A. 2011 Impact of fjord dynamics and glacial runoff on the circulation
near Helheim Glacier. Nat. Geosci. 4 (5), 322–327.

WERDER, M. A., HEWITT, I. J., SCHOOF, C. G. & FLOWERS, G. E. 2013 Modeling channelized
and distributed subglacial drainage in two dimensions. J. Geophys. Res. Earth Surf. 118 (4),
2140–2158.

XU, Y., RIGNOT, E., MENEMENLIS, D. & KOPPES, M. 2012 Numerical experiments on subaqueous
melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial
discharge. Ann. Glaciol. 53 (60), 229–234.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.308

	The dynamics of a subglacial salt wedge
	Introduction
	A theoretical model for a subglacial salt wedge
	Laboratory experiments
	Experimental set-up
	Experimental procedure and data processing

	Experimental results
	Horizontal channel experiments
	Sloped channel experiments

	Discussion: seawater intrusions in a realistic subglacial channel
	Summary and conclusion
	Acknowledgements
	References


