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Conjugate Radius and Sphere Theorem
Seong-Hun Paeng and Jong-Gug Yun

Abstract. Bessa [Be] proved that for given n and i0, there exists an ε(n, i0) > 0 depending on n, i0 such that
if M admits a metric g satisfying Ric(M,g) ≥ n − 1, inj(M,g) ≥ i0 > 0 and diam(M,g) ≥ π − ε, then M is
diffeomorphic to the standard sphere. In this note, we improve this result by replacing a lower bound on the
injectivity radius with a lower bound of the conjugate radius.

1 Introduction

Let (M, g) be an n-dimensional compact Riemannian manifold. Otsu [O] proved that for
given n, i0 > 0, and k ∈ R, there exists an ε(n, i0) > 0 depending on n, i0 such that if M
admits a metric g satisfying Ricci curvature Ric(M,g) ≥ n−1, sectional curvature K(M,g) ≥ k,
injectivity radius inj(M,g) ≥ i0 and diameter diam(M,g) ≥ π − ε, then M is diffeomorphic
to the standard sphere Sn. Bessa [Be] improved this result by removing the condition on
the sectional curvature. He used the Cα-compactness theorem [AC] as a basic tool and
remarked that a lower bound on the injectivity radius cannot be replaced by a lower bound
on the volume in the case of manifolds with dimension bigger than or equal to 4.

We consider the conjugate radius of M, conj(M,g) and investigate the case that a lower
bound on the injectivity radius is replaced by a lower bound on the conjugate radius. Recall
that the conjugate radius is defined to be the maximal radius r such that for every q ∈ M,
the exponential map expq has maximal rank in the open ball of radius r centered at the
origin of the tangent space TqM.

In general, inj(M,g) and conj(M,g) have significant differences in each geometric contents.
For example, consider the class of manifolds satisfying

Ric(M,g) ≥ n− 1, inj(M,g) ≥ i0 and diam(M,g) ≤ D,

then we know that the above class is Cα-compact [AC]. But if we replace the condition on
the inj(M,g) by the conj(M,g), then it is not Cα-compact any longer since a collapsing may
occur. Note also that if KM ≤ K, then conjM ≥

π√
K

.

The main purpose of this paper is to show the following theorem:

Theorem 1.1 Given an integer n and c0 > 0, there exists an ε = ε(n, c0) > 0 such that if M
admits a metric g satisfying

Ric(M,g) ≥ n− 1, conj(M,g) ≥ c0 and diam(M,g) ≥ π − ε,

then M is diffeomorphic to Sn.
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Theorem 1.2 Given an integer n and c0 > 0, there exists an ε = ε(n, c0) > 0 such that if M
admits a metric g satisfying

Ric(M,g) ≥ n− 1, conj(M,g) ≥ c0 and λ1(M,g) ≤ n + ε,

then M is diffeomorphic to Sn, where λ1(M,g) is the first eigenvalue of M.

Theorem 1.2 is an immediate consequence of Theorem 1.1 and the theorem due to
Croke [Cr]. The proof of it is just similar to that of [Be], so we omit it.

We can also prove the following volume/diameter sphere theorem.

Theorem 1.3 Given an integer n, there exists ε > 0 such that if M is an n-dimensional

Riemannian manifold with Ric(M,g) ≥ n − 1,
vol(M,g)

diam(M,g)
≥ ωn

π
− ε and e(M,g) < ε, then M is

diffeomorphic to Sn, where ωn is the volume of the standard sphere Sn and e(M,g) is the excess
of M.

The excess condition in Theorem 1.3 cannot be removed. This can be seen by using, for
example, M4 = CP2 with metric normalized so that RicM = 3.

We would like to express our gratitude to Professor Hong-Jong Kim for much kind and
helpful advice.

2 Preliminaries

We begin with the estimate of the Hessian of the distance function due to R. Brocks [Br].

Theorem 2.1 Let Mn be a complete Riemannian manifold with conjM ≥ c0 and RicM ≥
−(n − 1)k2 and c be a geodesic on Mn. Let A(t) be a Hessian of distance function along c(t)
from c(0). Let α(t) = k2t + 2k coth k(c0 − t)/2, γ(t) = 2

√
(n− 1)α(t)

√
t for 0 ≤ t ≤ c0.

Then ∫ t

0

∥∥∥A(τ )−
I

τ

∥∥∥ dτ ≤ 2γ(t)

for all t such that γ(t) ≤ 1/7.

Let M be a manifold as the above theorem and c : [0, l0]→ M be a geodesic on M, where
l0 ≤ c0/2. If J(t) be a Jacobi field along c(t) such that J(0) = 0 and 〈 J ′(0), c ′(0)〉 = 0, then
we know that A(t) can be written in normal coordinate as B(t) + I/t with B(t) smooth at
t = 0.

More importantly, by the standard arguments for the estimate of the norm of Jacobi
field (see [P1], [DSW], [DW]), we know that for 0 ≤ t ≤ l0,

e−
∫ l0

0 ‖B‖‖ J ′(0)‖t ≤ ‖ J(t)‖ ≤ e
∫ l0

0 ‖B‖‖ J ′(0)‖t.

Now let’s estimate
∫ l0

0 ‖B‖ in the case of RicM ≥ −(n − 1)ε2, conjM ≥ c0 := Cε−1,

where ε is a sufficiently small positive constant. To estimate
∫ l0

0 ‖B‖, it suffices to estimate
γ(t) in Theorem 2.1. For this purpose, first we estimate α(t) = ε2t + 2ε coth ε( c0−t

2 ) in
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Theorem 2.1. For 0 ≤ t ≤ c0/2, we have C
4 =

εc0
4 ≤

ε(c0−t)
2 ≤ εc0

2 =
C
2 and

2ε coth ε
(c0 − t)

2
=

2

c0 − t
2ε

c0 − t

2
coth ε

(c0 − t)

2

≤
8

c0
ε

(c0 − t)

2
coth ε

(c0 − t)

2

≤
H

c0
= HCε.

for some constant H > 0, since we know that f (x) = x coth x is bounded for any x with
C/4 ≤ x ≤ C/2. Now

γ(t) = 2
√

(n− 1)α(t)
√

t

= 2

√
(n− 1)

{
(εt)2 + 2

(
ε coth ε

(
(c0 − t)

2

))
· t

}

≤ 2
√

(n− 1)
(
(εt)2 + HCεt

)
for 0 ≤ t ≤ c0/2. So we have

γ(t) ≤ 2
√

(n− 1)
(
(εl0)2 + HCεl0

)
= τ (l0|ε)

for t ≤ l0 ≤ c0/2. Here, τ (l0|ε) is a positive number converging to zero as ε → 0 if we fix
l0.

To prove Theorem 1.1, one needs the following result of Calabi and Hartman [CH] on
the smoothness of isometries.

Theorem 2.2 Let (M, g) be a Cα-Riemannian manifold with respect to some coordinate.
Then its geodesics are C1,α with respect to the same coordinate. Moreover the C1,α-norm of the
geodesics can be bounded by the Cα-norm of the metric.

An immediate corollary of this result is the following lemma.

Lemma 2.3 If (Mi , gi, pi) converges to (M, g, p) in Cα-topology, then for any geodesics {γi}
in Bpi (r) ⊂ Mi for some r > 0, a subsequence of {γi} converges to a geodesic γ in M in

C1,α ′-topology, α ′ < α.

3 Proof of Theorem 1.1

Consider a sequence of Riemannian manifolds {(Mi , gi)} satisfying

Ric(Mi ,gi ) ≥ n− 1, conj(Mi ,gi )
≥ c0, and diam(Mi ,gi ) ≥ π − εi ,

where lim
i→∞
εi = 0. If M̃i is a universal covering of Mi , then we know that

Ric(M̃i ,g̃i ) ≥ n− 1, conj(M̃i ,g̃i )
≥ c0, and diam(M̃i ,g̃i ) ≥ π − εi ,
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where g̃i is the induced metric on M̃i from Mi .
From now on, we will show that M̃i converges to Sn with the standard metric in the Cα-

topology and it suffices to prove Theorem 1.1 since the only Riemannian manifold with
diameter close to π which has Sn (with the metric close to the standard metric of Sn in the
Cα-sense) as a Riemannian covering space is Sn itself.

Note that if injM̃i
is uniformly bounded below, then we have done by [Be]. So suppose

that injM̃i
converges to zero. (In this case, we will induce a contradiction.)

Theorem 3.1 ([P2]) Let M be an n-dimensional complete simply connected Riemannian
manifold. Given n,H, c0 > 0, there exists an i0(n,H, c0) > 0 depending on n,H, c0 such
that if RicM ≥ (n − 1)H2, conjM ≥ c0, then injectivity radius of M has a lower bound
i0(n,H, c0) > 0.

Proof Consider a sequence of simply connected manifolds {(Mi , gi)} satisfying

Ric(Mi ,gi ) ≥ (n− 1)H2, conj(Mi ,gi )
≥ c0 and inj(Mi ,gi )

→ 0.

Let γi be the shortest closed geodesic on M̃i and ri be the length of γi as above. Then we
know that γi are smooth and ri → 0 as i →∞.

We will show that there are no conjugate points on γi(t) for t ≤ π/H. Rescaling metrics
by multiplying by r−2

1 , we obtain

Ric(Mi ,g ′i ) ≥ (n− 1)H2r2
i → 0, conj(Mi ,g ′i ) ≥ c0/ri →∞

and inj(Mi ,g ′i ) ≥ i0, where g ′i are the rescaled metrics. From the compactness theorem

of [AC], we know that Mi → X for some smooth manifold X with Cα-metric. We also
know that expi : Tpi Mi → Mi is nonsingular for B(0, c0/ri) and ‖d expi ‖ is estimated in
previous sections. Let id be an identity map from Rn = Tpi Mi to Rn. From Section 2, we
get that for any fixed l0,

‖d expi ‖

‖ id∗ ‖
= e

∫ l0
0 ‖Bi‖ → 1

as εi → 0. So expi converges to id in Hölder sense for every compact set.
We know that exp is a covering map from TpM = Rn to M if conjM =∞ [BC]. By the

same reason, we know that expp = lim
i→∞

expi = id is a covering map so Rn is the universal

covering space of the limit space X. So X is a flat manifold.
We know that the homomorphism

i : π1

(
B(pi , ri)

)
→ π1

(
B(pi , c0/2)

)
are inclusions. Consider the universal covering space of B(pi , c0/2), ˜B(pi , c0/2). We know
that γi do not represent 0 in π1

(
B(pi , ri)

)
. So we define Ti as 〈γi〉-orbit of c0/2-ball centered

at a lifting of pi , p̃i in ˜B(pi , c0/2).

Let γ̄i = R be the lifting of γi . We also know that the injectivity radii of ˜B(pi, c0/2)
are bounded below [BK]. Then by compactness theorem, we know that (Ti , p̃i) converges
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to (X, p) in Cα-topology uniformly since π1

(
B(pi , c0/2)

)
act on ˜B(pi , c0/2) cocompactly.

Rescaling the metrics by multiplying r−2
i as above, we easily know that

∫ ri

0 ‖Bi‖

ri
→ 0.

(The above values are invariant under rescaling. For the rescaled metrics, we know that

ri = 1 and (Mi, g ′i ) converges to flat manifold so
∫ 1

0 ‖B
′
i ‖ → 0, where B ′i is the Bi for g ′i .)

We also know that the rotational parts of holonomy along γi depends only on
∫
‖Bi‖ since

Mi are simply connected and γi are smooth at t = 0. From Section 3, we obtain that the
rotational part of parallel translation along γ̄ := lim

i→∞
γ̄i = R ⊂ TpX from γ̄(0) to γ̄(r) is

lim
i→∞

li
∫ ri

0 ‖Bi‖, where liri = r and TpX has the pull-back metric by exp. Since

li
∫ ri

0 ‖Bi‖

liri
→ 0,

we know that the parallel translation along γ̄ is the same as that of TpX with Euclidean
metric. So we may consider X as R × F for some Cα-manifold, F in infinitesimal tubular
neighborhood of R. This means that there exist geodesics in Ti such that the distance from
pi to the first conjugate point converges to infinity as i → ∞. But RicM ≥ (n− 1)H2 > 0
implies that t0 ≤ π/H, which is a contradiction.

From this theorem, we know that M̃i have a lower bound on injectivity radius so we
completes the proof of Theorem 1.1.

Remark 3.2 We may wonder that the condition of RicM ≥ (n − 1)H2 can be replaced
by RicM ≥ −(n − 1)H2. But considering Berger’s spheres, we know that the positive
Ricci curvature condition is essential. This theorem can be considered as a Ricci curvature
version of Klingenberg’s theorem for the lower bound on injectivity radius [CE].

4 Proof of Theorem 1.3

Consider a sequence of manifolds {(Mi, gi)} such that Ric(Mi ,gi ) ≥ n−1, ωn
π
−εi ≤

vol(Mi ,gi )

diam(Mi ,gi )

and e(Mi ,gi ) < εi , where lim
i→∞
εi = 0, εi > 0.

Passing to a subsequence, if necessary, we assume that diam(Mi ,gi ) ≤ π/2 for all i or
diam(Mi ,gi ) > π/2 for all i.

Case 1

diam(Mi ,gi ) >
π
2 for all i:

Let pi , qi be the points satisfying maxx epi ,qi (x) = e(Mi ,gi ) and di be the distance between
pi and qi .

From diam(Mi ,gi ) ≤ e(Mi ,gi ) + di , it follows immediately that d := lim
i→∞

di =

lim
i→∞

diam(Mi ,gi ) ≥
π
2 . So we can choose αi , βi so that αi + βi = di and αi ↑ π/2,
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βi ↑ d− π/2. Using the volume comparison theorem, we have

vol(Mi ,gi )

diam(Mi ,gi )
≤

1

di

{
vol

(
Bpi

(
αi +

εi
2

))
+ vol

(
Bqi

(
βi +

εi
2

))}

≤
1

di

{
ωn−1

∫ αi +
εi
2

0
sinn−1 t dt + ωn−1

∫ βi +
εi
2

0
sinn−1 t dt

}

=
ωn−1

di

{∫ αi

0
sinn−1 t dt +

∫ βi

0
sinn−1 t dt

}
+ δi

≤
ωn−1

di

{
αi

π

∫ π
0

sinn−1 t dt +
βi

π

∫ π
0

sinn−1 t dt

}
+ δi

=
ωn

π
+ δi ,

where δi → 0 as i → ∞. Since
vol(Mi ,gi )

diam(Mi ,gi )
≥ ωn

π
− εi , we obtain by letting i → ∞, that

1
d−π/2

∫ d−π/2
0 sinn−1 t dt = 1

π

∫ π
0 sinn−1 t dt .

Now since f (x) =
∫ x

0 sinn−1 r dr
x is strictly increasing function of x(≤ π

2 ), we have d −
π/2 = π/2 or d = π. So vol(Mi ,gi ) → ωn and the result follows from the Appendix 1
of [CCo2] (cf. [CCo1]).

Case 2

diam(Mi ,gi ) ≤
π
2 for all i:

Note that there exists a space M such that Mi → M in the Gromov-Hausdorff topology.
Let l = diamM then diam(Mi ,gi ) =: li → l ≤ π

2 and we have

vol(Mi ,gi )

ωn
≤

∫ li
0 sinn−1 r dr∫ π
0 sinn−1 r dr

≤
li
π
→

l

π
.

Thus by the limit argument, we obtain∫ l
0 sinn−1 r dr

l
=

∫ π
0 sinn−1 r dr

π
.

Now as in the case 1, we have l = π
2 . So, we observed that diam(Mi ,gi ) →

π
2 . Under the same

setting as in Case 1, choose αi , βi so that αi ↑ π/3, βi ↑ π/6. Then we have

vol(Mi ,gi )

diam(Mi ,gi )
≤
ωn−1

di

{∫ αi

0
sinn−1 t dt +

∫ βi

0
sinn−1 t dt

}
+ δi

≤
ωn−1

di

{
αi

π

∫ π
0

sinn−1 t dt +
βi

π

∫ π
0

sinn−1 t dt

}
+ δi

=
ωn

π
+ δi.

By letting i → ∞, we know that the above inequalities are equalities. Consequently, we

have a contradiction to the strict increasing property of f (x) =
∫ x

0 sinn−1 r dr
x (0 ≤ x ≤ π

2 ).
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