
H. Brenner
Nagoya Math. J.
Vol. 177 (2005), 31–45

TIGHT CLOSURE AND PLUS CLOSURE FOR CONES

OVER ELLIPTIC CURVES

HOLGER BRENNER

Abstract. We characterize the tight closure of a homogeneous primary ideal
in a normal homogeneous coordinate ring over an elliptic curve by a numerical
condition and we show that it is in positive characteristic the same as the plus
closure.

Introduction

Let a = (f1, . . . , fn) ⊆ R denote an ideal in a Noetherian domain over

a field of positive characteristic p. Hochster and Huneke introduced the

notion of the tight closure of the ideal a, which is given by

a
∗ = {f ∈ R | ∃c 6= 0 such that cf q ∈ (f q

1 , . . . , f q
n) for all powers q = pe}.

One of the basic open questions in tight closure theory is the problem

whether the tight closure of an ideal a in a domain R of positive character-

istic is just the contraction R ∩ aR+ from the absolute integral closure R+

of R. Hochster calls this a tantalizing question. A positive answer would

imply that tight closure commutes with localization. The best result so far

is given by the theorem of Smith [16], [8, Theorem 7.1] which states that

for parameter ideals the tight closure and the plus closure are the same.

The general question is open even in the case of a two-dimensional

normal graded domain (in a regular ring every ideal is tightly closed, so there

is no problem). The domain R = K[x, y, z]/(F ) for the Fermat polynomial

F = x3 +y3 +z3 is a standard example in tight closure theory and has been

intensively studied ([10], [15]), but even in this simple looking example

neither the answer to the question is known nor is it clear how to compute

the tight closure of a given ideal.

In this paper we study the normal homogeneous coordinate ring R of

an elliptic curve Y over an algebraically closed field K. That is R is a
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32 H. BRENNER

normal standard-graded two-dimensional K-algebra such that Y = ProjR

is an elliptic curve. This contains in particular the case R = K[x, y, z]/(F ),

where F is a homogeneous polynomial of degree 3 such that SpecR is non-

singular outside the origin. Our main result is that for an R+-primary

homogeneous ideal a ⊆ R the tight closure and the plus closure are the

same in positive characteristic. This follows from a numerical criterion

which holds for both closure operations.

We obtain these results by applying the geometric method which we

developed in [3]. For tight closure data consisting of homogeneous gener-

ators f1, . . . , fn of an R+-primary ideal in a graded ring R and another

homogeneous element f0 we construct a projective bundle together with a

projective subbundle of codimension one over Y = ProjR. The questions

whether f0 ∈ (f1, . . . , fn)∗ and f0 ∈ (f1, . . . , fn)+ translates then to ques-

tions about the complement of the subbundle: whether it is non-affine and

whether it contains projective curves (for dimR = 2). Therefore we can

work in a projective geometric setting. We recall the construction and the

necessary facts in Section 1.

Since we are concerned with homogeneous coordinate rings over elliptic

curves, we are in a very favorable situation: The vector bundles on an el-

liptic curve have been completely classified by Atiyah [1], leading to further

results on the ampleness and on the behavior of cohomology classes, which

we recollect and extend in Section 2 for our needs.

In Section 3 we give for an extension 0 → R → R′ → OY → 0 of locally

free sheaves a numerical criterion for the affineness of P(R
′∨) − P(R∨) in

terms of the cohomology class ∈ H1(Y,R) of the extension and the degrees

of the indecomposable components of R (Theorem 3.2). In positive charac-

teristic we obtain the same numerical condition for the property that every

projective curve meets the projective subbundle P(R∨) (Theorem 3.3).

In Section 4 we derive from these geometric results the corresponding

statements for tight closure and plus closure for primary homogeneous ideals

in a homogeneous coordinate ring over an elliptic curve.

§1. Projective bundles corresponding to tight closure problems

In this section we recall how graded tight closure problems in a graded

ring R translate to problems on projective bundles and subbundles over

ProjR. Let’s fix our notations. By a vector bundle V on a scheme Y

we mean a geometric vector bundle. We denote the locally free sheaf of

sections in V by R and its dual, the sheaf of linear forms, by F . Hence V =
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TIGHT CLOSURE AND ELLIPTIC CURVES 33

Spec
⊕

n≥0 Sn(F), and P(V ) = P(F) = Proj
⊕

n≥0 Sn(F). For a number k

we denote by AY (k) the (geometric) line bundle Spec
⊕

n≥0 OY (nk) with

sheaf of sections OY (−k). We consider sometimes the geometric realization

AY (k) = D+(R+) ⊂ ProjR[T ], where deg T = −k.

Let K denote an algebraically closed field and let R be a standard N-

graded K-algebra, that is R0 = K and R is generated by finitely many

elements of degree one. Set Y = ProjR. Let fi be homogeneous primary

elements of R of degrees di, that is the D+(fi) cover Y . Fix a number m ∈ Z.

Let A = R[T1, . . . , Tn]/(f1T1 + · · · + fnTn) be graded by deg Ti = m − di

(maybe negative). Then the open subset SpecA ⊃ D(R+A) is a vector

bundle over D(R+) ⊂ SpecR.

Proposition 1.1. Let R be a standard-graded K-algebra and let

f1, . . . , fn be homogeneous primary elements. Let di = deg fi and let m ∈ Z.

Then the following hold.

(i)

ProjR[T1, . . . , Tn]/

( n
∑

i=1

fiTi

)

⊃ D+(R+) −→ ProjR

is a vector bundle of rank n− 1 over Y = ProjR, which we denote by

V (−m).

(ii) There exists an exact sequence of vector bundles

0 −→ V (−m) −→ AY (d1−m)×Y · · ·×Y AY (dn−m)
P

fi

−→ AY (−m) −→ 0.

(iii) We have Det V (−m) ∼= AY

(
∑n

i=1 di − (n − 1)m
)

, and deg V (−m) =
(
∑n

i=1 di − (n − 1)m
)

deg AY (1).

(iv) We have V (−m′) = V (−m) ⊗ AY (m − m′), and P(V (−m)) does not

depend on the degree m.

Proof. See [3, Proposition 3.1].

Proposition 1.2. Let R be a standard-graded K-algebra, let f1, . . . , fn

be homogeneous primary elements and let f0 ∈ R be also homogeneous. Let

di = deg fi, m ∈ Z and set deg Ti = m − di. Let

V (−m) = D+(R+) ⊂ ProjR[T1, . . . , Tn]/

( n
∑

i=1

fiTi

)

and

V ′(−m) = D+(R+) ⊂ ProjR[T0, . . . , Tn]/

( n
∑

i=0

fiTi

)
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34 H. BRENNER

be the vector bundles on Y = ProjR due to 1.1. Then the following hold.

(i) There is an exact sequence of vector bundles on Y ,

0 −→ V (−m) −→ V ′(−m)
T0−→ AY (d0 − m) −→ 0 .

(ii) The embedding P(V (−m)) ↪→ P(V ′(−m)) does not depend on m.

(iii) Let E be the hyperplane section on P(V ′) corresponding to the relative

very ample invertible sheaf OP(V ′)(1) (depending of the degree). Then

we have the linear equivalence of divisors P(V ) ∼ E + (m − d0)π
∗H,

where H is the hyperplane section of Y . If m = d0, then P(V ) is a

hyperplane section.

Proof. See [3, Proposition 3.4].

Remark 1.3. We call the sequence in 1.2 (i) the forcing sequence. We
often skip the number m (the total degree) and denote the situation P(V ) ↪→
P(V ′) by P(f1, . . . , fn; f0). P(V ) = P(f1, . . . , fn) is called the forcing divisor
or forcing subbundle. The complement P(V ′) − P(V ) plays a crucial role
in our method, since it is isomorphic to the Proj of the so called forcing
algebra R[T1, . . . , Tn]/(f1T1 + · · · + fnTn + f0) (suitable graded).

We denote the sheaves of sections in V (−m) (and V ′(−m)) by R(m)
(and R′(m)). This is the sheaf of syzygies (or relations) for the elements
f1, . . . , fn of total degree m. We denote the corresponding sheaves of linear
forms by F(−m) = R(m)∨ and F ′(−m). Note that for m = d0 the forcing
sequence 0 → R(m) → R′(m) → OY → 0 corresponds to a cohomology
element c ∈ H1(Y,R(m)).

The containment of a homogeneous element in the ideal, in the tight

closure and in the plus closure of the ideal is expressed in terms of the

projective bundles in the following way. In the case of characteristic zero,

the notion of plus closure does not make much sense and we work rather

with solid closure than with tight closure, see [6].

Lemma 1.4. In the situation of 1.2 the following are equivalent.

(i) f0 ∈ (f1, . . . , fn).

(ii) There is a section Y → P(V ′) disjoined to P(V ) ⊂ P(V ′).

(iii) The forcing sequence 0 → V (−m) → V ′(−m) → AY (d0 − m) → 0
splits.
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TIGHT CLOSURE AND ELLIPTIC CURVES 35

(iv) Suppose m = d0. The corresponding cohomology class in H1(Y,R(m))
vanishes.

Proof. See [3, Lemma 3.7].

Proposition 1.5. Let R be a normal standard-graded K-algebra of

dimension 2, let f1, . . . , fn ∈ R be primary homogeneous elements and let

f0 be another homogeneous element. Let V and V ′ be as in 1.2. Then

f0 ∈ (f1, . . . , fn)∗ if and only if P(V ′) − P(V ) is not affine.

Furthermore, if the characteristic of K is positive, the following are

equivalent.

(i) f0 ∈ (f1, . . . , fn)+gr, i.e. there exists a finite graded extension R ⊆ R′

such that f0 ∈ (f1, . . . , fn)R′.

(ii) There exists a smooth projective curve X and a finite surjective mor-

phism g : X → Y such that the pull back g∗P(V ′) has a section not

meeting g∗P(V ).

(iii) There exists a curve X ⊂ P(V ′) which does not intersect P(V ).

Proof. See [3, Lemmata 3.9 and 3.10].

§2. Vector bundles over elliptic curves

We gather together some results on vector bundles over elliptic curves.

Recall that a locally free sheaf F on a scheme Y is called ample if the

invertible sheaf OP(F)(1) on the projective bundle P(F) is ample. If F ′

is ample and 0 → OY → F ′ → F → 0 is a short exact sequence, then

P(F) ⊂ P(F ′) is an ample divisor, hence its complement is affine. The

following theorem of Gieseker-Hartshorne gives a numerical criterion for

ample bundles over an elliptic curve.

Theorem 2.1. Let Y denote an elliptic curve over an algebraically

closed field K and let F denote a locally free sheaf. Then F is ample if and

only if the degree of every indecomposable summand of F is positive.

Proof. See [5, Prop. 1.2 and Theorem 1.3] or [4, Theorem 2.3].

The following theorem is a generalization of a theorem of Oda.
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36 H. BRENNER

Theorem 2.2. Let Y denote an elliptic curve over an algebraically

closed field K and let R denote an indecomposable locally free sheaf of neg-

ative degree. Let g : X → Y be a finite dominant map, where X is another

smooth projective curve. Then H1(Y,R) → H1(X, g∗R) is injective.

Proof. Let 0 6= c ∈ H1(Y,R) be a non zero class and consider the
corresponding extension

0 −→ R −→ R′ −→ OY −→ 0 .

Let F and F ′ denote the dual sheaves and let P(F) ↪→ P(F ′) be the cor-
responding projective subbundle. The indecomposable sheaf F is of pos-
itive degree, hence ample due to 2.1. Then also F ′ is ample due to [4,
Proposition 2.2] and 2.1. Hence P(F) is an ample divisor on P(F ′) and its
complement is affine. This property is preserved under the finite mapping
X → Y , therefore the complement of P(g∗(F)) ⊂ P(g∗(F ′)) is affine and
there cannot be projective curves in the complement. Hence the pulled
back sequence does not split and g∗(c) 6= 0.

Remark 2.3. Oda proved this statement only for the Frobenius mor-
phism in positive characteristic, see [13, Theorem 2.17], and Hartshorne
used this theorem to prove the numerical criterion for ampleness. The proof
of this criterion by Gieseker in [4] however is independent of the theorem
of Oda.

A kind of reverse to 2.2 is given by the following lemma.

Lemma 2.4. Let K be an algebraically closed field of positive charac-

teristic p and let Y be an elliptic curve. Let G be an indecomposable locally

free sheaf on Y of degree ≥ 0. and let c ∈ H1(Y,G) be a cohomology class.

Then there exists a finite curve g : X → Y such that g∗(c) ∈ H1(X, g∗(G))
is zero.

Proof. In fact we will show that the multiplication mappings [pe] : Y →
Y have the stated property. If deg G > 0, then H1(Y,G) ∼= H0(Y,G∨) = 0
due to [5, Lemma 1.2] and there is nothing to prove. The same is true for
an invertible sheaf 6= OY of degree 0. For G = OY , the multiplication map
[p] : Y → Y induces the zero map on H1(Y,OY ), this follows for example
from [14, Corollary 5.3] and [12, Section 13 Corollary 3].

Now we do induction on the rank, and suppose that r = rankG ≥ 2 and
degG = 0. Due to the classification of Atiyah (see [1, Theorem 5]) we may
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write G = Fr ⊗L, where L is an invertible sheaf of degree 0 and where Fr

is the unique sheaf of rank r and degree zero with Γ(Y,Fr) 6= 0. In fact, for
these sheaves we know that H0(Y,Fr) and H1(Y,Fr) are one-dimensional
and that there exists a non-splitting short exact sequence

0 −→ OY −→ Fr −→ Fr−1 −→ 0 .

This gives the sequence 0 → L → G → Fr−1 ⊗ L → 0. Let c ∈ H1(Y,G).
Then the image of this class in H1(Y,Fr−1 ⊗ L) is zero after applying [pe]
and comes then from an element in H1(Y,L), which itself is zero after
applying [p] once more.

§3. A numerical criterion for subbundles to have affine comple-

ment

In this section we investigate subbundles P(F) ⊂ P(F ′) of codimension

one over an elliptic curve with respect to the properties which are interesting

from the tight closure and plus closure point of view: Is the complement

affine? Does it contain projective curves?

Lemma 3.1. Let Y denote a scheme and let R and S be locally free

sheaves on Y and let ϕ : R → S be a morphism. Let c ∈ H 1(Y,R) with

corresponding extension 0 → R → R′ → OY → 0 and let d ∈ H1(Y,S) be

its image with corresponding extension 0 → S → S ′ → OY → 0. Let V and

W denote the corresponding vector bundles (V = SpecS(R∨) etc.) If then

P(W ′) − P(W ) is affine, then also P(V ′) − P(V ) is affine.

Proof. First note that we have a mapping ϕ′ : V ′ → W ′ compatible
with the extensions and with ϕ, see [9, Ch. 3 Lemma 1.4]. The induced
rational mapping P(V ′) → P(W ′) is defined outside the kernel of ϕ′. Locally
these mappings on the vector bundles look like

A
r −−−−→ A

r × A

ϕ





y





y

ϕ×id

A
s −−−−→ A

s × A .

The line on P(V ′) corresponding to the point v = (v, t) does not lie on the
subbundle P(V ) for t 6= 0. For these points the rational mapping is defined
and the image point (ϕ(v), t) does not lie on the subbundle P(W ). Hence
we have an affine morphism

P(V ′) − P(V ) −→ P(W ′) − P(W )
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and if P(W ′) − P(W ) is affine, then P(V ′) − P(V ) is affine as well.

Our first main result is the following numerical characterization for the

complement of a projective subbundle to be affine.

Theorem 3.2. Let K be an algebraically closed field and let Y denote

an elliptic curve. Let R be a locally free sheaf on Y of rank r and let R =
R1⊕· · ·⊕Rs be the decomposition into indecomposable locally free sheaves.

Let c ∈ H1(Y,R) and let 0 → R → R′ → OY → 0 be the corresponding

extension and let P(F) ⊂ P(F ′) be the corresponding projective bundles.

Then the following are equivalent.

(i) There exists 1 ≤ j ≤ s such that degRj < 0 and cj 6= 0, where cj

denotes the component of c in H1(Y,Rj).

(ii) The complement P(F ′) − P(F) is affine.

Proof. (i) ⇒ (ii). Suppose that j fulfills the statement in the numerical
criterion. Consider the projection pj : R → Rj , where the corresponding
cohomological map sends c to cj . Now Fj = R∨

j is indecomposable of
positive degree, hence ample due to 2.1. Since F ′

j is a non-trivial extension
of Fj , it is also ample on the elliptic curve Y , see [4, Proposition 2.2 and
Theorem 2.3] (this is true for every curve in characteristic zero, see [4,
Theorem 2.2]). But then the complement of the (hypersection) divisor
P(Fj) ⊂ P(F ′

j) is affine, hence P(F ′) − P(F) is affine due to 3.1.

(ii) ⇒ (i). Suppose to the contrary that degRj ≥ 0 or cj = 0 holds
for every j. Since H1(Y,Rj) = H0(Y,R∨

j ) = 0 for degRj > 0 due to [5,
Lemma 1.1], we may assume that degRj = 0 or cj = 0 holds for every j.
Due to 3.1 we may forget the components with cj = 0 and hence assume
that degRj = 0 for every component.

We claim that P(F) is a numerically effective divisor on P(F ′). Since
indecomposable sheaves on elliptic curves are semistable and since all the
components of F have degree 0 it follows that F is semistable. Therefore
degL ≥ 0 for every quotient invertible sheaf L of F .

A semistable sheaf on an elliptic curve stays semistable after applying a
finite dominant morphism X → Y , see [11, Proposition 5.1], hence also the
degree of a quotient invertible sheaf is non-negative on every curve X → Y .
It then follows that also the degree of an invertible quotient sheaf of F ′ is
nonnegative on every curve, and this means that the intersection of P(F)
with any curve is nonnegative.
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Since the degree of our numerically effective divisor is zero, it follows
by the Kodaira Lemma [2, Lemma 2.5.7] that it is not big. Therefore its
complement cannot be affine.

We shall show now that the same numerical criterion holds in positive

characteristic for the (non-)existence of projective curves inside P(F ′) −

P(F).

Theorem 3.3. Let K be an algebraically closed field of positive char-

acteristic and let Y denote an elliptic curve. Let R be a locally free sheaf on

Y of rank r and let R = R1 ⊕· · ·⊕Rs be the decomposition in indecompos-

able locally free sheaves. Let c ∈ H1(Y,R) and let 0 → R → R′ → OY → 0
be the corresponding extension and let P(F) ⊂ P(F ′) be the corresponding

projective bundles. Then the following are equivalent.

(i) There exists 1 ≤ j ≤ s such that degRj < 0 and cj 6= 0, where cj

denotes the component of c in H1(Y,Rj).

(ii) The sequence 0 → R → R′ → OY → 0 does not split after a finite

dominant morphism X → Y , where X is another projective curve.

(iii) The subbundle P(F) ⊂ P(F ′) intersects every curve in P(F ′) posi-

tively.

Proof. (i) ⇒ (ii). Suppose that the sequence splits under the finite
morphism g : X → Y . Then g∗(cj) = 0 on X and from 2.2 we see that
degRj ≥ 0 or cj = 0

(ii) ⇒ (iii). If there exists a curve C on P(F ′) not meeting P(F), then
it dominates the base. Let X be the normalization of C and let g : X → Y
the finite dominant mapping. Then g∗P(F ′) → X has a section not meeting
g∗P(F) and then the sequence splits on X.

(iii) ⇒ (i). Suppose to the contrary that for all the indecomposable
components of R with negative degree cj = 0 holds. For every component
Rj with deg Rj ≥ 0 there exists due to 2.4 a finite curve gj : Xj → Y such
that g∗j (cj) ∈ H1(Xj , g

∗
jRj) is zero. Putting these curves together we find

a curve g : X → Y such that g∗(c) = 0. Thus the sequence splits on X and
this gives a projective curve in P(F ′) − P(F).

Corollary 3.4. Let K be an algebraically closed field of positive char-

acteristic and let Y denote an elliptic curve. Let R be a locally free sheaf on

Y , let c ∈ H1(Y,R) and let 0 → R → R′ → OY → 0 be the corresponding
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extension. Let P(F) ⊂ P(F ′) be the corresponding projective bundles. Then

P(F ′) − P(F) is affine if and only if it contains no projective curve.

Proof. This follows from 3.2 and 3.3, since for both properties the same
numerical criterion holds.

Remark 3.5. The corollary does not hold in characteristic zero. The
sequence 0 → OY → F2 → OY → 0 yields a section in a ruled surface whose
complement is not affine, but Stein (over C), hence it does not contain
projective curves.

Question 3.6. We will derive from the corollary in the next section
that the tight closure of a primary homogeneous ideal is the same as its plus
closure in the normal homogeneous coordinate ring over an elliptic curve.
A natural generalization of the question whether a

∗ = a
+ is the following

question.

Let 0 → R → R′ → OY → 0 be an exact sequence of locally free sheaves
on a (smooth) projective variety of dimension d over an (algebraically
closed) field of positive characteristic (!). Let P(F) ⊂ P(F ′) be the corre-
sponding projective bundles and suppose that P(F) meets every subvariety
of dimension d. Is then the cohomological dimension cd(P(F ′)−P(F)) < d ?
If the sequence is a forcing sequence and if rankR = d, then this is true
due to the parameter theorem of Smith.

Tight closure theory yields a lot of further questions concerning vector

bundles on projective varieties. Let me just mention the following.

Question 3.7. Let 0 → R → R′ → OY → 0 be an exact sequence of
locally free sheaves on P

d (any characteristic), P(F) ⊂ P(F ′). Suppose that
the mapping Hd(Pd,OPd(k)) → Hd(P(F ′)−P(F), π∗OPd(k)) is injective for
k ≤ 0 (then of course for all k).

Does the sequence split? This is true for forcing sequences.

§4. Numerical criteria for tight closure and plus closure

We are now in the position to draw the consequences to tight closure

(solid closure in characteristic 0) and plus closure in a normal homogeneous

coordinate ring of an elliptic curve, that is R is a two-dimensional normal

standard-graded domain such that ProjR is an elliptic curve.
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Corollary 4.1. Let K be an algebraically closed field and let R be

a normal homogeneous coordinate ring over the elliptic curve Y = ProjR.

Let f1, . . . , fn be homogeneous generators of an R+-primary homogeneous

ideal in R and let m ∈ N be a number. Let R(m) be the corresponding

locally free sheaf of syzygies of total degree m on Y of rank n − 1 and let

R(m) = R1 ⊕ · · · ⊕ Rs be the decomposition into indecomposable locally

free sheaves. Let f0 ∈ R be another homogeneous element of degree m and

let c ∈ H1(Y,R(m)) be the corresponding class. Then the following are

equivalent.

(i) There exists 1 ≤ j ≤ s such that degRj < 0 and cj 6= 0, where cj

denotes the component of c in H1(Y,Rj).

(ii) The complement of the forcing divisor is affine.

(iii) f0 6∈ (f1, . . . , fn)∗.

Proof. The equivalence (ii) ⇔ (iii) was stated in 1.5, and (i) ⇔ (ii) is
3.2.

Corollary 4.2. Let K be an algebraically closed field of positive char-

acteristic and let R be a normal homogeneous coordinate ring over the el-

liptic curve Y = ProjR. Let f1, . . . , fn be homogeneous generators of an

R+-primary homogeneous ideal in R and let m ∈ N be a number. Let R(m)
be the corresponding locally free sheaf on Y and let R(m) = R1 ⊕ · · · ⊕ Rs

be the decomposition into indecomposable locally free sheaves. Let f0 ∈ R
be another homogeneous element of degree m and let c ∈ H 1(Y,R(m)) be

the corresponding class. Then the following are equivalent.

(i) There exists 1 ≤ j ≤ s such that degRj < 0 and cj 6= 0, where cj

denotes the component of c in H1(Y,Rj).

(ii) The forcing divisor intersects every curve.

(iii) The complement of the forcing divisor is affine.

(iv) f0 6∈ (f1, . . . , fn)∗.

(v) f0 6∈ (f1, . . . , fn)gr+.

Proof. This follows directly from 3.3, 4.1 and 1.5.

Our main theorem is now easy to deduce.
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Theorem 4.3. Let K be an algebraically closed field of positive char-

acteristic and let R denote a normal homogeneous coordinate ring over an

elliptic curve. Let a be an R+-primary homogeneous ideal in R. Then

a
gr+ = a

+ = a
∗.

This holds in particular for R = K[x, y, z]/(F ), where F is homoge-

neous of degree 3 and R is normal.

Proof. The inclusions ⊆ are clear. It is known that the tight closure
of a homogeneous ideal is again homogeneous, see [7, Theorem 4.2]. Hence
the statement follows from 4.2.

Remark 4.4. If the p-rank (= Hasse invariant) of the elliptic curve Y is
0, then the plus closure (= tight closure) of a primary homogeneous ideal is
the same as its Frobenius closure. This follows from the proof of Lemma 2.4
and the proof of (iii) ⇒ (i) of Theorem 3.3.

The tight closure of a primary homogeneous ideal is easy to describe by

a numerical condition, if (there exists a system of homogeneous generators

such that) the corresponding vector bundle is indecomposable.

Corollary 4.5. Let K be an algebraically closed field and let R be

a normal homogeneous coordinate ring over the elliptic curve Y = ProjR.

Let f1, . . . , fn be homogeneous generators of an R+-primary homogeneous

ideal in R with deg fi = di and let m ∈ N be a number. Suppose that the

corresponding locally free sheaf R(m) on Y is indecomposable. Let f0 ∈ R
be a homogeneous element of degree m, defining the cohomology class c ∈
H1(Y,R(m)). Then the following are equivalent.

(i) d1 + · · · + dn − (n − 1)m > 0 and f0 6∈ (f1, . . . , fn).

(ii) degR < 0 and the cohomology class is c 6= 0.

(iii) The sheaf F(−m) = R(m)∨ is ample and c 6= 0.

(iv) The sheaf F ′(−m) is ample.

(v) The complement of the forcing divisor is affine.

(vi) f0 6∈ (f1, . . . , fn)∗ (= (f1, . . . , fn)+ in positive characteristic).

Proof. The degree of R(m) is degR(m) = −3(d1 + · · ·+dn−(n−1)m)
due to 1.1, hence (i) ⇔ (ii) is clear. (ii) ⇔ (iii) follows from 2.1, (iii) ⇒ (iv)
follows from [4, Proposition 2.2] and 2.1, (iv) ⇒ (v) is clear and (v) ⇒ (ii)
is 4.1 for indecomposable R(m).
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Corollary 4.6. Let K be an algebraically closed field and let R be

a normal homogeneous coordinate ring over the elliptic curve Y = ProjR.

Let f1, . . . , fn be homogeneous generators of an R+-primary homogeneous

ideal in R with deg fi = di and suppose that the corresponding locally free

sheaf R(m) on Y is indecomposable. Set k = d1+···+dn

n−1 . Then

(f1, . . . , fn)∗ = (f1, . . . , fn) + R≥k.

Proof. Let f0 ∈ R be homogeneous of degree m. Suppose first that
m ≥ k. Then (n − 1)m ≥ d1 + · · · + dn and hence the numerical condition
in 4.5 is not fulfilled, thus f0 ∈ (f1, . . . , fn)∗.

Suppose now that f ∈ (f1, . . . , fn)∗. Then from 4.5 we see that d1 +
· · · + dn − (n − 1)m ≤ 0 or f0 ∈ (f1, . . . , fn), which gives the result.

Example 4.7. Let the elliptic curve Y be given by the equation x3 +
y3 + z3 = 0. Then the ideal (x2, y2, z2) defines an indecomposable sheaf of
syzygies. Look at the total degree m = 3. Then R(3) has degree 0 and
its determinant is trivial. The syzygy (x, y, z) gives a global section (up
to multiples the only section) of R(3). The cokernel of 0 → OY → R(3)
is again invertible (check locally), hence isomorphic to OY . Furthermore
the sequence does not split, hence R(3) is indecomposable. In particular it
follows that xyz ∈ (x2, y2, z2)∗.

Example 4.8. The statements in 4.5 and 4.6 do not hold without the
condition that R(m) is indecomposable. The easiest way to obtain decom-
posable sheaves of syzygies is to look at redundant systems of generators.
Consider again the elliptic curve Y given by x3 + y3 + z3 = 0.

Look at the elements x2, y2, x2. Then the corresponding sheaf is of
course decomposable. For m = 3, the sheaf R(3) ⊂ OY (1)⊕OY (1)⊕OY (1)
is given by (g1, g2, g3) such that g1x

2 + g2y
2 + g3x

2 = 0 and it is easy
to see that R(3) ∼= OY (1) ⊕ OY (−1). Let f0 = xyz. Then the number
d1 + · · · + dn − (n − 1)m is zero, but xyz 6∈ (x2, y2, x2)? = (x2, y2)?. The
complement of the forcing divisor in P(x2, y2, x2, xyz) is affine, but it is
not ample, since its degree is zero (or since OY (−1) is a quotient invertible
sheaf of F ′(−3) of negative degree).

Consider now x, y, z3 and f0 = z2. Then z2 ∈ (x, y, z3)∗ = (x, y)∗, but
z2 6∈ (x, y) and the number in 4.5 (i) is 1 + 1 + 3 − 2 · 2 = 1 > 0. The sheaf
of syzygies decomposes R(3) = OY ⊕OY (1).

The ideal (x2, y2, xy) provides an example where no generator is super-
fluous, but the corresponding sheaf of syzygies is anyway decomposable.
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Recall that for a locally free sheaf the slope is defined by µ(F) =

degF/ rankF . Furthermore µmin(F) = min{µ(G) : F → G → 0} and

µmax(F) = max{µ(S) : 0 → S → F}. In the case of an elliptic curve it is

easy to see that µmin(F) = minj µ(Fj) and µmax(F) = maxj µ(Fj), where

F = F1 ⊕ · · · ⊕ Fs is the decomposition in indecomposable sheaves.

Corollary 4.9. Let K be an algebraically closed field and let R =
K[x, y, z]/(F ), where F is a homogeneous polynomial of degree 3 defining

the elliptic curve Y = ProjR. Let f1, . . . , fn be homogeneous generators of

a primary graded ideal in R, di = deg fi. Let R(0) be the corresponding

locally free sheaf of syzygies on Y of total degree 0 and let F(0) be its dual

sheaf. Let f0 denote another homogeneous element of degree m. Then the

following hold.

(i) If m ≥ 1
3µmax(F(0)), then f0 ∈ (f1, . . . , fn)∗.

(ii) If m < 1
3µmin(F(0)), then f0 ∈ (f1, . . . , fn)∗ if and only if f0 ∈

(f1, . . . , fn).

(iii) If F(0) is semistable, then (f1, . . . , fn)∗ = (f1, . . . , fn) + R≥k, where

k = d1+···+dn

n−1 .

Proof. Let R(0) = R1 ⊕ · · · ⊕ Rs be the decomposition into inde-
composable locally free sheaves. The homogeneous element f0 of degree m
defines a cohomology class c ∈ H1(Y,R⊗OY (m)).

(i). The condition is that 3m ≥ µ(Fj) = −µ(Rj) holds for every j.
This means that

deg(Rj ⊗OY (m)) = deg(Rj) + 3m rank(Rj)

≥ deg(Rj) − µ(Rj) rank(Rj) = 0 .

Hence the numerical condition in 4.1 is not fulfilled and f0 ∈ (f1, . . . , fn)∗.

(ii). In this case we have 3m < µ(Fj) = −µ(Rj) for all j, hence
deg(Rj ⊗OY (m)) < 0, and the numerical criterion in 4.1 is true if and only
if the cohomological class is c 6= 0. This gives the result.

(iii). The sheaf F(0) is semistable if and only if µmax(F(0)) =
µmin(F(0)). This number equals then the slope µ(F(0)) = 3(d1 + · · · +
dn)/(n − 1), so the result follows from (i) and (ii).
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