Canad. Math. Bull. Vol. **57** (1), 2014 p. 209 http://dx.doi.org/10.4153/CMB-2012-045-5 © Canadian Mathematical Society 2012

Erratum to the Paper "A Lower Bound for the Length of Closed Geodesics on a Finsler Manifold"

Wei Zhao

Abstract. We correct two clerical errors made in the paper "A Lower Bound for the Length of Closed Geodesics on a Finsler Manifold".

There are two errors in the statements of Theorem 1.2 and Corollary 4.2, respectively in the paper [1]. The condition on the uniformity constant " $\Lambda_F \ge \Lambda$ " should be changed to " $\Lambda_F \le \Lambda$ " in both cases. We reformulate them here; the proofs are unchanged.

Theorem 1.2 Let (M, F) be a closed Finsler *m*-manifold with $\mathbf{K} \ge \delta$, $\mathbf{T} \le \varsigma$, $\Lambda_F \le \Lambda$ and diameter $\le d$. Then for any simple closed geodesic γ ,

$$L_F(\gamma) \geq \frac{\mu(M)}{c_{m-2}\Lambda^{\frac{3m}{2}} \left[\frac{\mathfrak{s}_{\delta}^{m-1}\left(\min\{d,\frac{\pi}{2\sqrt{\delta}}\}\right)}{m-1} + \max\{0,\varsigma\}\int_0^d \mathfrak{s}_{\delta}^{m-1}(t)dt\right]},$$

where $\mu(M)$ is either the Busemann–Hausdorff volume or the Holmes-Thompson volume of M, $L_F(\gamma)$ is the length of γ and $c_{m-2} := \text{Vol}(\mathbb{S}^{m-2})$.

Corollary 4.2 Let (M, F) be a closed reversible Finsler m-manifold with $|\mathbf{K}| \leq \delta$, $\mathbf{T} \leq \varsigma$, $\Lambda_F \leq \Lambda$, diameter $\leq d$ and $\mu(M) \geq V$, where $\mu(M)$ is either the Busemann–Hausdorff volume or the Holmes-Thompson volume of M. Then

$$\mathfrak{i}_{M} \geq \min\left\{\frac{\pi}{\sqrt{\delta}}, \frac{V}{2c_{m-2}\Lambda^{\frac{3m}{2}}\left[\frac{\mathfrak{s}^{m-1}(d)}{m-1} + \max\{0,\varsigma\}\int_{0}^{d}\mathfrak{s}_{-\delta}^{m-1}(t)dt\right]}\right\}$$

References

 W. Zhao, A lower bound for the length of closed geodesics on a Finsler manifold. Canad. Math. Bull. 57(2014) no. 1, pp. 194–208. http://dx.doi.org/10.4153/CMB-2012-035-8

Center of Mathematical Sciences, Zhejiang University, Hangzhou, China e-mail: zhaowei008@yahoo.cn

Received by the editors November 14, 2012.

Published electronically December 29, 2012.

AMS subject classification: 53B40, 53C22.

Keywords: Finsler manifold, closed geodesic, injective radius.