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QUOTIENT SPACES WITHOUT BASES IN NUCLEAR
FRECHET SPACES

ED DUBINSKY AND BORIS MITIAGIN

The first example of a nuclear Fréchet space without a basis was given hy
B. S. Mitiagin and N. M. Zobin [9; 10]. The question of existence of subspaces
without bases in nuclear Fréchet spaces was recently settled in papers by
P. Djakov and B. S. Mitiagin [2] and Ed Dubinsky [5]. In this paper we con-
sider the analogous question for quotient spaces. As in the case of subspaces
we obtain a complete solution to the problem.

THEOREM. Every nuclear Fréchel space not isomorphic lo » has a quotient space
which has no basts.

The proof is very similar to the argument in [5]. The specific techniques for
replacing subspace constructions with quotient space constructions were
worked out in [6]. The basic embedding in [2] is replaced with a method rela-
tive to quotients. Iinally, the fact that our quotient space has no basis is based
on the results in [2].

In addition we use a fact about common quotient spaces (sce proposition
below) which may be of independent interest.

With the results of this paper we now have a complete set of information
about subspaces and quotient spaces with or without bases in nuclear Fréchet
spaces. Specifically, every nuclear Fréchet space not isomorphic to w has:

a subspace with a basis,

a subspace without a basis,

a quotient space with a basis and a continuous norm,

a quotient space without a basis but with a continuous norm,

a quotient space without a basis and without a continuous norm, and
a quotient space isomorphic to w.

The proofs of these facts are contained in this paper and [1;5;7; 8]. We do not
have the exact reference for the third statement but it is an easy extension of
the proof of Theorem IV.1 in [7].

1. Notation and terminology. We take as known the elementary theory
of bases (including unconditional and absolute bases) in nuclear Fréchet
spaces. A Fréchet space admits a continuous norm if and only if its topology is
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determined by a sequence of norms. It is normable if this can be done in such
a way that each norm is dominated by an appropriate scalar multiple of one
of them.

Our field of scalars will be the real numbers R. We shall denote by N the
set of positive integers. By w we mean the nuclear Fréchet space consisting of
all sequences of real numbers with the usual Cartesian product topology.

By the term subspace we will always mean a closed subspace and quotient
space will mean a quotient by a closed subspace. F is a complemented subspace
in £ if it is a subspace and there is another subspace G such that E is iso-
morphic to the topological direct sum of F, G. We shall indicate this situation
by writing £ = F @ G.

Let (a,%),.r be an infinite matrix satisfying

0 < af < a1t foralln, B € N.

The Kithe space K determined by the matrix (a,*) is the Fréchet space of all
scalar sequences ¢ = (&,) such that

() = Zl |E]an” < 0o forallk € N,

with topology determined by the sequence of norms (p;). As is well known, K is
nuclear if and only if for each 2 € N there is j € N such that

k

a
2. P < 0.
n an

2. Known results. We shall make use of several previously established
results. For clarity we state them in full detail and give references for the proofs.

(2.1) Every Fréchet space with an unconditional basis and not isomorphic
to w has a complemented subspace which has a basis and a continuous norm.
This result is an immediate consequence of [3, Theorem 7].

(2.2) Let (a,*),» be an infinite matrix of positive numbers satisfying
k k+1
a i
(1) 25 < k€N
a ay

‘n

Given scalars ¢y, . . ., t, not all 0 and £ ¢ N we define
k k
: . .a
o“(ts, ..., t,) = min {p: min — = a—"} .
1<i<p lti| ltpl

It then follows that if 0 < p" < " ! < ... <p' < pand 0 =[] <; < ...
< I, are integers, we can choose {1, . .., {, such that ¢{; = 0 for j # p!, ...,
o™ tp # 0 but otherwise arbitrary and

143 li+1
Qpi’ |£,3 a,i't .
T,+1 z=l,...,m—1.

@) 7

pi+r'’ tpiet Api+1
3 [p I 3
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1298 I. DUBINSKY AND B. MITIAGIN

Moreover, if any such choice is made then
pk(tl,...,/p)=pi fOrli_1<k__<—li,i=1,‘..,mr.

This result is proved in [6, Lemma 1.2]. Note that the matrix (¢,*) need only
be defined for # < ptand & £ 1.

(2.3) Let E be a nuclear Fréchet space with a fundamental system of norms
(| [x) and a basis (x;). Let 0 = py < p,m1 < pu, # € N be integers and (¢;) a
sequence of scalaras such that for each n € N there exists 7 (n) with p,_1 < 7(n)
< pyand £y # 0. Set af = |x|, and, corresponding to this matrix, set p,* =
o (tpn_iity « « o, tp,). Finally let K be the Kothe space determined by the matrix

k
[ LLE :l n, k € N.
Vpnkl
Then K is isomorphic to a quotient space of E. This result is contained in
|6, Theorem 1.3].

(2.4) Every basis in a nuclear Fréchet space has a subsequence (x,) which
generates a complemented subspace F, which has a fundamental system of
norms (|| - ||z) such that

| [z || < Hnsn | [r1 forall #, 2 € N.
||xn||k ||ank+1

The proof of this fact is contained in [4, pp. 211-212].

3. Main results. Our first result is analogous to {4, Theorem 3] which deals
with subspaces and does not require the assumption of bases. It should he
noted that the present result is different from the standard fact that w is a
quotient space of every non-normable Fréchet space with a continuous norm

(8, § 31, 4(1)]).

ProrosiTiON. If E, IF are nuclear Fréchet spaces with bases and neither 1s
isomorphic to w, then there 1s « nuclear Fréchet space G with « basis and « con-
tinuous norm siuch that G is isomorphic to ¢ quotient space of I and also to «
quotient space of F.

Proof. In view of (2.1) and (2.4) we may assume without loss of generality
that F, F have bases (u;), (v;) respectively and fundamental sequences of

norms (|| - [|,), (| 1) such that (1) holds for each of the matrices (||u,||x),
(|2a]x) and
3) tim—Lalle _ iy il _ g
i sllpe i [vslo
For each n we will select finite subsets #,", . . ., u," of (#;) and #*, . .., v, of

(v;) keeping the original order and never using the same vector twice. We will
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also select scalars /%, ..., s, and 4%, ..., t,* such that
(s o 8" =0 ) =n—k4+1, R=1,...,n

where the first p* is defined as in (2.2) relative to the matrix (||u,||,) and the
second p* relative to the matrix (|o,],). Finally we shall make our selection
so that

71|

19541 |ny H”H—lnlin—j |2, [nm i1 |[“.7‘n|[n—.7‘+1 .
4) — =< =- . = j=1...,n—1

= n = n

n
Sjte y S

n

228}

The selection is made inductively. Set s," = 1, choose ", vi" arbitrarily and
set

t” _.»_lv_ln_{ll,

P ||”1n| n”

Suppose that s, ", ¢, v;* have been chosen. From (3) we can select 141"
different from all other choices such that

Hetsa" I 570 e
{7 TR i | 177 | MY

and then select s;.1" so that

w1 ey ””]’-Han—fl, n w1 g
max \{; ——% =, S N < S <S5 A -
LT P Hee " Haes Wt {1
This is possible because of the previous inequality and because in choosing
;41" so that uy", ..., 1t;4," remains in the original order we still have (1).

In a similar manner we choose v,,1" and then ¢,,;" so that

n
n l?lt}bﬁzjil

1aX  § iy it A T <t <t
max ISH-I j lv.z — I JH1 J |vj"|n-j+1

This completes the selection. We have

ot g1 s < Sit1 < ot 41" nmsin
n n n .
Hets" |- S 7] -

We also have (1) for the matrix (||« "|],—,);..—; since we did not change the
order. Hence, we may apply (2.2) to conclude that p/(s",...,s,") =n —j+1,
j=1, ..., n Similarly we conclude that p’(¢,", ..., ") = n — j+ 1,
j=1,..., n The first two inequalities in (4) can be read off of the above
relations and the last comes from replacing j + 1 with j.

From (2.3) we conclude that E has a quotient space isomorphic to the Kéthe
space determined by the matrix («,*) where

Eo_ Hun—k+1n[lk E=1
..

Uy LR
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and I' has a quotient space isomorphic to the Kéthe space determined by the
matrix (b,F) where

From the relations (4) we obtain
b Lat 20 L k=100 ,n—1
which implies that the two Kothe spaces are identical. This completes the proof.

We are now ready to give the proof of the theorem. Our construction is in
two parts. First, given a nuclear Fréchet space £ with a basis and not isomor-
phic to w we will construct a quotient space ¥ with a basis and continuous
norm such that certain technical inequalities hold. The argument here is dual
to that given in [5] for subspaces. The second part is to show that a space X of
type constructed in {2] so as to have no basis can be obtained as a quotient
space of V.

We Dbegin with the construction of V. By (2.1) we may write E as a direct
sum of three infinite dimensional subspaces none of which is isomorphic to w.
To these subspaces we apply the proposition twice along with (2.4) and then
put it all back together to obtain a quotient space Z of E with an increasing
fundamental sequence of norms (|| - ||,) and a basis (z7) which is the union of
three disjoint subsequences each of which may be subdivided into infinitely
many pairwise disjoint subsequences so that we have sequences (1?™"), (v/"),
(w? ") such that

=7,

HZ]'+1

1ERIS
’ < ;
i|p+1 2" [

») forall 7, p

(6) lim —ﬂz—jHﬂ— =0 forallp

Jm HZjHZH—l
@ N[}, =
Let A = {(p1, P2, P3) E N¥: py < po < p3} and let ¢ : N — A4 be an

infinity-to-one surjection.

For each fixed # ¢ N we will make a certain selection. As long as # remains
fixed there will be no ambiguity if we do not indicate it in our notation. Thus,
let (Plv P2 p3) = (1(%)

We will select three linear combinations of elements of (u/™);, (v/™");,
(w? ™) ; and write them as follows:

odin

)

o = Tle™[], forallp,j, n.

Y1y + Yollo —I— 73l
$101 + S22 + S3vs
hwy + taws + fws.

Thus, 14 1 = 1, 2, 3 are taken from (17""); without changing the order and 7,
are scalars. Similarly for the other two linear combinations.
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In view of (7) we can choose 1, v1, w; such that
||, = [lwill, = |lwil|, forall p ¢ N.
Choose 7; = t; = 1 and

S1 = 7’L"—I|‘v-1|‘|‘p_3_ .
|‘1H 2+1

In view of (6) we can choose v» such that

2], S
e < min
[l 711 e

ol 1_{ill. il flwallnl
N A T A R T [

It is then possible to choose s, so that

S foalln, Jlosll H Hm ool |
nax s -, T < se < MINYS1T T, T .
X oy " Tl : 1 o1 pers” o] pass

Again we apply (7) to select ws such that
llwoll, = [lo2|l, forallp € N
Choose 1> = s» and apply (6) to choose 2 such that

Ilue] o, S luallr. 1 Jjoellpiaat

- < min
T[atz! a1 Ul lpyir " 7 s

] fpy 1)

It is then possible to choose 7. such that

I e |7 atallp, L

1ite] L elley L < dttalirain
max lll JH y NSy NI << et lpas”
Again we apply (6) to select u; such that
Meealloy S Ml (el se el e _feelin L
Huta|fpy 41 Tzl lrrss ) Voallorss ) 72 Voellos ) 5o Haallpgsnf

It is then possible to select 73 such that

f Ik wallo, s ln, | s
max yre 7 So (< ry < min >——-
VTl ol S 1 2]

r'v,'g HIMHPH 1)

”1+1 I|7J “”Hl}
Again we apply (7) to select v3 such that
osllp = [lus|l, forall p € N

and we choose s; = 7.
Finally, we apply (6) to select w; such that

_[ws] 7, S lwallo, £ usfls |

1111
Mol =™ Wltwal 1" 75 [fee] oy
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and it is then possible to select #3 such that

(203|741
Hw2| |”1+1 .

max 'sz w3 |, nry Hw3|lml <ty <ty
V2 a7 ) § S

This completes the construction of three linear combinations.
We apply (2.2) to the matrix (||us||,):, and the scalars 7y, 75, 75. From the
above relations we have

ualloy _ 72 _ [Juo]|pors
= < — LN D N b
Noallp, =71 ™ [fualpygs
Huslle, _ 7 [luslloys
< 22 UZlul
Huello, = 72 ™ [fuafloysr

Hence, it follows that

» 3 ifp=p
P (7’1, ¥2, 7’3) = {9 ifpl <p §P2
1 if po < p.

Next we apply (2.3) to the complemented subspace of Z generated by (u/").
Of course, it must be recalled that the above selection is made for each =.
This gives us (p,) and (¢;) so we may conclude that the subspace generated by
(#7") has a quotient space isomorphic to the Kéthe space determined by the
matrix (a,”) where

anp:Mp_I_'ﬂ pEN

’
Yo

with the dependence on # understood and p? = p?(ry, 72, r3).

In a similar manner we construct matrices (b,”) and (¢,”) corresponding to
$11 F $2v2 4 svy and Hwy + tws + t3w; respectively.

Since the basic sequences (#7™), (27"), (w’/™) generate pairwise disjoint
complemented subspaces of Z it follows that Z and hence £ has a quotient
space Y isomorphic to a Kothe space determined by a matrix which consists
of three disjoint parts (), (b,2), (¢,?) given by

|ws|

=3
o
S
S

» _ Huslly

= (- — n < .
Uy 7s y bn Ss y Cn ls for P = Py
a,r = Hlmllp’ bl = HvZHp’ o = Hw2l|7) for p1 < p < po;
2} So lg
a, = H”luny b, = sl .ol = wo1] ], for pa < p.
71 S1 th

(Again some of the dependence on 7 is not explicit in the notation).

Thus, if we put these equalities together with the relations obtained in the
selection we have (and this is what will be used in the sequel) the following
facts:
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Each of the three matrices is monotone increasing in p.

? 1
& Laf =0 for1 = p=<pr and ¢, ' = ~ forn ¢ N

? 1 »,41
af £ =0"forpr < p =Py and «,’ = ~ Cn “liorn ¢ N

1 ,
¢ for ps < p and bl < _1;0"172“ forn € N.

a,

This completes the construction of the space ¥ and we turn now to construct
a space X which is a quotient of ¥ (and hence E) and has no basis.
For convenience of notation we write

a?lp = ((17111)2 Bﬂp = (bnp)2 ’Y?lp = (C”Z))Q'
Thus, we may consider that ¥ consists of all sequences (»,, 6,, 7,,), of triples

of scalars for which the following norms are finite

D]

D) L )/
](nm Bm Tn)lp = (Z (Cl’np<77n>~ + ﬁnp<9n)u + 'er (711)2)) [) € N.
For ¢ = (¢, &) € R? define 6,,(¢) as follows:

j&xnp + ﬁnp)'an 25 _J’_a_n,p (ﬁnp + 7np) B
a?l + )6711) + 'an ! anp + B 11+ 'an

anpﬁnp

6711’ (E) =

and define X to be the Fréchet space given by
X={xv=(),:&=(©E"E" € RPand

8,(x) = (20 (8,p(£")))?< 0 for all p € Ni.
Let

K= {(u0,7). € Yin =0,=r, foraln¢c Nj
which is clearly a closed subspace of V. We will show that X is isomorphic
to V/K.
First we can compute, for each p, the quotient norm ¢, corresponding to
|+ oo If Cauy 00y 72)0 € Y then

(‘Zp((’?m 071, Tn) + I<))2
= inf {Zn Cl,,,p(‘l],,, _]_ g‘")Z + :Bn,p(gn, + ?71)2 + 7711](771 + g‘n)Z}
where the inf is taken over all sequences ({,) of scalars such that (¢, {», ¢2) € Y.

IFor each #, we can compute (e.g. by calculus) the value ¢, which minimizes the
nth term in the summation. It is given by

o anﬂ"lnp"l_ ﬂnp 0, + 'Yn,an,
a,” + Bnp + "an

$n =
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One can check directly that (¢, &, &) € Y. 1t also follows from the fact
”ult |<77/L + g‘nv 8” + g‘ny Tn + g‘n)lp é |(777n 071) Tn)[l‘ [{Cncey we llaVC

(Qp((nm O,y Tn) + K))2

Z (anp + B -+ 'an) (anp (Bnp (7771 - 071) + 7np(7711 - Tn))2
+ Bn (an (0n - 7In) + v ( n Tn))2 + 'an(anp(Tn - 77n) + ﬁnp(Tn - Bn))‘l)

— —— 4 14 2
=2 oy an s @B ) ) 4 B @l ) (6)
+ 'an (b‘np + ﬁnp) (Tn) - zanpﬁnpnnen - 2anp’)'np77n7'n - 2Bnp7np0n7'n)-

Now for (9, 0,, 7). + K € Y/K we define

Q(("]m Oy, Tn)n + I<) = (on — Tpy Oy — 7771)11-
This clearly defines a linear, 1 — 1 map on ¥/K. We will show that it is an
isomorphism onto X.

Consider the norms on X given by d,(x) = (3 (d,,(£")))'/? where for & =
(&1, &) € R we have

p LAVUN J 9y Pa, P
dp(8) = ;%%n:%gn__:jfi & — ;;:T;:—agnnjﬂL 5 bibr + a; Ef"ﬁ +JZ" IS
It follows from the relations obtained in the construction of ¥ that d,,(¢) =
Sup(8) when p > pu. On the other hand, when p < ps, &2, 7.2 < 8,7 so, writing
D = a,” 4 6,7 4+ v,” we have,
Dd,, (&) z (&) + B2)viP e — afv,? (82 + &2) + o/ (B + v.") &°
= B2 6% + afB P’
z 3((@” + B2 vPe? + a8 + i )E?) = 5 D 8,p(£).
Finally, a similar argument shows that d,,(¢) < 26,,(¢§) when p < po. Thus,

we may conclude that (d,), is a fundamental system of norms for X.
We may then compute for (1, 0,, 7,), € ¥,

(dp(Q((nru Ors Tn) +K))>2 = (dp((en — Tny Oy 77n) ))
= ; (dnpOn — Ty O — )

Z 215 ((anp + Bnp)')’np(en - Tn)2 - 2anp7np(0n - Tn) (On - 7771)

N + Olnp(ﬁnp + 'an) (Gn - ﬂn)2)
= (Qp((ﬂm Ony Tn) + K))M
Hence, Q is an isomorphism into X. Since its range is clearly dense, it is an
isomorphism onto.

Finally, we will show that X has no basis (indeed, it is not a complemented
subspace of any space with a basis). First observe that the relations used to
define §,,(¥) are exactly the same as equations (1.4) of {2]. Therefore, it is only
necessary to verify relations (1.1*) and (1.5) of [2]. Now (1.1*) is used only
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to show that X is nuclear which we already know since X is a quotient of the
nuclear space 2. Thus, we need only verify the following three inequalities,
which will suffice in place of (1.5) in [2]:
(aﬂpl + Bﬂpl)’Y"lpl alll<6nl + ’Ylll)
aﬂpl + Bnpl _I— "/Ilp1 é anl + ﬁﬂl + ’ylll
anp2 (Bﬂ : + ’Yﬂpz) (aﬂﬂl+l + Bllp1+1)’y7lpl+l
a Bt T a8

P3nP3 Patlg Patl o Patl  Patl
ay, "B 1 o B + 2, Y

~ n

R l— =

o9, P oy =T o Pyrl Pyti
200, +8,°) T 2Qa T + 80
Applying the relation obtained in constructing ¥ we have

P Py P 5 1 151 1
(an ! -+ ,Bn 1)7/1 : Py 1 1 = anl(Bn + ’Ynl) < l Ay (671 +'le )

< — <
? 2P =Y = 20, = 2 0l = 1 1 1
293 ! + B ! + Yn ' " n" n Sﬁn n o ay + ,Bn + Yn '
» D, Dy . P41 P41y Pyl
Ay 2(671 + Yn ) Py _1_ Pi41 < i (an ! + 671 ! )’Yn !

<
7, D, r, =« = 27 = 3 o Pitl
a?L ' + B?l + ’Y?l " n " n 367l !
P41 D41 Di41
1 (O’n ! _l" ,Bn, ! )’Yn !

=7 D Dy41 Pi+1
n a?l, X+1 + 871 vt + 771 i

and finally,

Dy P P, Pyt1 Pyt1 Pot1
Ay aﬁn ? l())n ’ 1 Pyt1 1 a, ! (Bn * + 2(1,, )
9(9, " 7y = 9 = ,,2 n =2 9 (9, 2tl P24l
2Qa, ' 4+ 8, ") 2 2n n 2(2a, + 3,
Pat1, Potl Do+l Pyl
_Llats T 0q, 1ty S
= 7)1 Py+1
no 2@ 8
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