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POSITIVE SOLUTIONS AND EIGENVALUES OF CONJUGATE
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We consider the following boundary value problem

(_i)-<y> + W(t, y) = XK(t, y), n > 2, t e (0,1)
yo(O) = 0, 0 < i < p - 1
y°(l) = 0, 0 < i < n - p - l

where X > 0 and 1 < p < n — 1 is fixed. The values of A are characterized so that the boundary value problem
has a positive solution. Further, for the case A = 1 we offer criteria for the existence of two positive solutions
of the boundary value problem. Upper and lower bounds for these positive solutions are also established
for special cases. Several examples are included to dwell upon the importance of the results obtained.

1991 Mathematics subject classification: 34B15.

1. Introduction

In this paper we shall consider the following nth order differential equation together
with conjugate boundary conditions

(E)| ( i r V

I y(0(0) = 0, 0 < i < p - 1; y°(l) = 0, 0 < i < n - p - 1

where n > 2, A > 0 and p is a fixed integer satisfying 1 < p < n — 1. Throughout
we assume that there exist continuous functions / : [0, oo) -*• (0, oo) and
k, ku h, n, : (0, 1) - • K such that

(Al) / is nondecreasing;

(A2) for x e [0, oo),

* The author is grateful to Alexander von Humboldt Foundation for awarding him a Feodor Lynen Research
Fellowship to support this work.
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(A3) fc(t) — /i,(t) is nonnegative and is not identically zero on any nondegenerate
subinterval of (0,1);

(A4) /o'[t(l - t)]r[fc,(0 - h(t)]dt < oo, where r - min{p, n - p}.

By a positive solution y of (E), we mean y e &n)(0, 1) satisfying (E), and y is
nonnegative and is not identically zero on [0, 1]. If, for a particular A the boundary
value problem (E) has a positive solution y, then k is called an eigenvalue and y a
corresponding eigenfunction of (E). We let

E — {A > 0 | (E) has a positive solution}

be the set of eigenvalues of the boundary value problem (E). Further, we introduce
the notations

First, we shall characterize the values of A for which the boundary value problem
(E) has a positive solution. To be specific, we shall show that the set E is an interval
and establish conditions under which £ is a bounded or an unbounded interval.
Further, on relaxing the monotonicity condition (Al), explicit eigenvalue intervals are
obtained in terms of f0 and fx.

Next, for X = 1 we shall investigate the existence of two positive solutions of (E).
In addition to the existence criteria developed, we shall consider the following special
cases of (E) (n = 2, p = 1)

(E,) / + a(t) ( / + / ) = 0, t 6 (0,1); ,(0) = y(l) = 0

and

(E2) / + a(t)e" = 0, t € (0, 1); y(0) = y(l) = 0.

It is assumed that 0 < a < 1 < /J, < J > 0 , and a(t) e C[0,1] is nonnegative and is not
identically zero on any nondegenerate subinterval of (0,1). Other than providing
conditions under which (E,) and (E2) have double positive solutions, we also establish
upper and lower bounds for these positive solutions. It is noted that the importance of (E,)
and of the discrete version of its particular cases have been well illustrated in [22] and [5]
respectively. With a(i) being a constant function, the boundary value problem (Ej) actually
arises in applications involving the diffusion of heat generated by positive temperature-
dependent sources [1]. For instance, if a = 1 the boundary value problem occurs in the
analysis of Joule losses in electrically conducting solids as well as in frictional heating.

The motivation for the present work stems from many recent investigations. In fact,
when n = 2 the boundary value problem (E) models a wide spectrum of nonlinear
phenomena such as gas diffusion through porous media, nonlinear diffusion generated
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by nonlinear sources, thermal selfignition of a chemically active mixture of gases in a
vessel, catalysis theory, chemically reacting systems, adiabatic tubular reactor
processes, as well as concentration in chemical or biological problems, where only
positive solutions are meaningful, e.g., see [4, 8, 10, 11, 18, 21, 32]. For the special case
k = 1, (E) and its particular and related cases have been the subject matter of many
recent publications on singular boundary value problems, for this we refer to [2, 3, 9,
20, 25, 26, 31, 37]. Further, in the case of second order boundary value problems, (E)
occurs in applications involving nonlinear elliptic problems in annular regions, e.g., see
[6, 7, 19, 34]. Once again in all these applications, it is frequent that only solutions that
are positive are useful.

Recently, several eigenvalue characterizations for particular cases of (E) have been
carried out. To cite a few examples, Fink, Gatica and Hernandez [17] have dealt with
the boundary value problem

= 0, t € (0,1); j<0) = XI) = 0.

Another problem, namely,

/ ° + 9(0/(y) = 0, t € (0, 1); y»(0) = y(l) = 0, 0 < i < n - 2

has been tackled in [12]. Further, Eloe and Henderson [13] have established some
eigenvalue intervals for a special case of (E) which are improved in the present paper.
As for twin positive solutions, several studies on boundary value problems different
from (E) can be found in [5, 14, 28, 29, 30]. Our results not only generalize and extend
the known theorems for all the above eigenvalue problems, but also complement the
work of many authors [3, 15, 16, 24, 33, 35, 36, 38, 39, 40, 41, 42], as well as include
several other known criteria offered in [1].

The outline of the paper is as follows. In Section 2 we shall state a fixed point
theorem due to Krasnosel'skii [27], and present some properties of certain Green's
function which are needed later. By defining an appropriate Banach space and cone, in
Section 3 we shall characterize the set E. Explicit eigenvalue intervals in terms of f0

and fx are established in Section 4. The investigation of the existence of double
positive solutions is carried out in Section 5. Finally, the boundary value problems (E,)
and (Ej) are treated, respectively, in Sections 6 and 7.

2. Preliminaries

Theorem 2.1 ([27]). Let B be a Banach space, and let C(c B) be a cone. Assume
fi,, Cl2

 are °Pen subsets of B with 0 e Clu fi, c Q^ and let

S: Cn(Q2\n,)->- C

be a completely continuous operator such that, either
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(a) ||Sy|| < \\y\\,ys Cn 3Q,, and\\Sy\\> \\y\\,y e Cn3Q2, or

(b) ||Sy|| > \\y\\,y eCn 30,, and \\Sy\\ < \\y\\, yeCnXl2.

Then, S has a fixed point in C D (fi2\n,).

To obtain a solution for (E), we require a mapping whose kernel G(t, s) is the
Green's function of the boundary value problem

/"> = 0; y(0(0) = 0, 0 < i < p - l ; /°( l ) = 0, 0 < i < n -p - 1

where 1 < p < n — 1 is fixed. The Green's function G(t, s) can be explicitly expressed
as [23]

G(r, s) =
j\(n - ; - l ) !

(1 - t)n~p, 0 < s < t < 1

Further, it is known that [1]

r, s) > 0, (t, 5) e (0, 1) x (0, 1).

For each s € [0,1], we shall denote

||G(,s)|| = sup |G(t,s)| = sup(-ir'G(r,s).
IE[0,l] tEfO.l]

(2.1)

(2.2)

(2.3)

Lemma 2.1 [43]. For any S € (0,1/2) and t e [5, 1 - 5], we

where 0 < 9 < 1 is a constant given by

9 = min \b{p) • min{c(p), c(n — p - 1)},

' the functions b and c are defined as

^ - (» - D""

- 1) • min{c(p - 1), c(n - p)}},

x«(n _ x _ i ) - - '
and
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Lemma 2.2. Let q = max{p, n- p} and r = min{p, n - p}. For (t, s) e [0,1] x [0,1],
we have

[s(\ - s)}r =
- l)!(n - q)\

Proof. For (t, s) e [0,1] x [0,1], it is clear from (2.1) and (2.2) that

' J\M«-1-IY-

= [s(l - s)]r • max

We shall need the following notations later: Let

v(t) = fc,(t) - h(t) and u(t) =

For a nonnegative y on [0, 1], we denote

| 2— , 2— 1 =,
l ( p — l)!(n — p)\ p\(n — p— 1)!J

m,= / <Ks)v(s)f(M)ds and m, = /" |[G(-,S)|Ks)/0<s))<fc.
Jo yo
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In view of (2.3), Lemma 2.2, (A2) and (A3), it is clear that ml > n^ > 0. Further, we
define the constant y e (0,1) by

3. Eigenvalue characterization

Let the Banach space

B = {y | y e C[0,1]}

be equipped with norm ||y|| = sup,e[0I] \y(t)\. For a given S e (0, i), let

C{ = | y e B

I Jis nonnegative on [0,11; min y(t) > y||y||

We note that Ca is a cone in B. Further, let

Cs(M) = {yeCs\\\y\\<M}.

We define the operator S : C5 ->• B by

, y) - H{s, y))ds, t e [0,1].

To obtain a positive solution of (E), we shall seek a fixed point of the operator AS in
the cone Cs. It is clear from (A2) that

Uy(.t)<Sy(t)<Vy(t),te [0,1], (3.1)

where

Uy{t) = f (-iy~PG(t, s)u(s)f{y(s))ds
Jo

and

Vy{t) = f\-iy-"Git,s)v(s)f(yis))ds.
Jo

We shall now show that the operator S is compact on the cone Ct. Let us consider
the case when u(t) is unbounded in a deleted right neighbourhood of 0 and also in a
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deleted left neighbourhood of 1. Clearly, v(t) is also unbounded near 0 and 1. For
m € {1,2, 3, • • •}, define um, vm : [0,1] -+ R by

"JO = "(0. < t < ^ vm(t) =

and the operators l/m, Kn: Ct -*• B by

It is standard that for each m, both l/m and Ĵ , are compact operators on Cb. Let
M > 0 and y 6 Q(M). Then, in view of (Al) and Lemma 2.2, we find

Wmy(t) - Vy{t)\ < f (-\r>G(t, s)\vm(s) - v(s)\f(y(s))ds
Jo

The integrability of (f>(t)v(t) (condition (A4)) implies that Vm converges uniformly to V
on Ci(M). Hence, V is compact on C6. Similarly, we can verify that Um converges
uniformly to U on Q(M) and therefore U is compact on Ct. It follows from inequality
(3.1) that the operator S is compact on Ct.

Theorem 3.1. There exists c> 0 such that the interval (0, c] c E.

Proof. Let M > 0 be given. Define

M
c =KM)

(3.2)

Let A € (0, c]. We shall prove that (AS)(Q(M)) c Q(M). For this, let y € CS(M) and
we shall first show that XSy e Cs. From (3.1) and (A3),

(ASy)(0 > X f (-l)"-'G(t. s)u(s)f(y(s))ds >0,t€ [0,1]. (3.3)
Jo

Further, it follows from (3.1) and Lemma 2.2 that for t e [0,1]
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Sy(t) < f (-l)"-pG(t, s)v(s)f(y(s))ds < f <f>{s)v(s)f(y(S))ds = m,.
Jo Jo

Thus,

\\Sy\\ < m,. (3.4)

Now, on using (3.1), Lemma 2.1, (3.4) and (2.4), we find for t e [5,1 - S],

(XSy)(t) > A / 9\\G(; s)\\u(s)f(y(s))ds = Wm2
J

Therefore,

m,

min (AS>>)(0 > yUSy\\. (3.5)
t€[0,1 — O\

Inequalities (3.3) and (3.5) lead to XSy € Ct.
Next, we shall show that \USy\\ <M. For this, on using (3.1), Lemma 2.2, (Al)

and (3.2) successively, we get for t e [0, 1]

(XSy)(t) <c f (l)(s)v(s)f(M)ds = M,
Jo

which implies USy\\ < M. Hence, (AS)(Q(M)) c Q(M). Also, the standard arguments
yield that AS is completely continuous. By Schauder fixed point theorem, AS has a fixed
point in Q(M). Clearly, this fixed point is a positive solution of (E) and therefore X
is an eigenvalue of (E). Since A e (0, c] is arbitrary, it follows immediately that the
interval (0, c] c E.

The next theorem makes use of the monotonicity and compactness of the operator
S on the cone Ct. We refer to [17, Theorem 3.2] for its proof.

Theorem 3.2 [17]. If X^ e E, then (0, Ao] c E. So E is an interval.

We shall establish conditions under which E is a bounded or unbounded interval.
For this, we need the following results.

Theorem 3.3. Let A be an eigenvalue of (E) and y e Q be a corresponding
eigenfunction. Further, let d = ||y||. Then,
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(3.6)

(3.7)

Proof. First, for proving (3.6), we let t0 e [0, 1] be such that d = \\y\\ = y(t0). Then,
applying (3.1), Lemma 2.2 and (Al) we find

d = y(t0) = (XSy)(t0) < x f { - \ T ' G ( t a , s)v(s)Ms))ds
Jo

<kf <Ks)v(s)f(y(s))ds < Xf(d) f <f>(s)v(s)ds
Jo Jo

from which (3.6) follows. Next, using (3.1) and mint6[41_fl y(t) > yd, we get

d > y Q > X j \ - \ r P

which gives (3.7) readily.

Theorem 3.4. Let

-zr— is bounded for x e [0, oo) \,
J\x)

F0=\f and lim

(a) / / / e FB, then E = (0, c) or (0, c]for some c e (0, oo).

(b) Iffe Fo, then E = (0, c]for some c e (0, oo).

(c) / / / 6 Fx, then E = (0, oo).

Proof. First, (a) is immediate from (3.7). Next, we prove (b). Since Fo c FB, it
follows from Case (a) that E = (0, c) or (0, c] for some c € (0, oo). In particular,
c = sup E. Let {Am}JJJL, be a monotonically increasing sequence in E which converges
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to c, and let {ym}^! in Ct be a corresponding sequence of eigenfunctions. Further,
let dm = ||ym||. Then, (3.7) implies that no subsequence of {dm)™=l can diverge to
infinity. Thus, there exists M > 0 such that dm < M for all m. So ym is uniformly
bounded. Hence, there is a subsequence of {ym}™=l, relabelled as the original
sequence, which converges uniformly to some y e Cs. Noting that XmSym = ym, we
have

cSym = f > V (3.8)

Since {cSy^^ is relatively compact, ym converges to y and Xm converges to c, letting
m -> oo in (3.8) gives cSy — y, i.e., c e E. This completes the proof for Case (b).
Finally, (c) follows from Theorem 3.2 and (3.6).

Example 3.1. Let A > 0, a > 0, and consider the boundary value problem

i 0 1 . . £ e (0,1); y(0) = y'(0) = y(l) = y(l) = 0.
- £) + 8J

Here, n = 4, p = 2, and we let /(y) = (y + 8)J, X(t, y) = ^/_%f, H(t, y) = 0. Hence,
we may take k(i) = fc,(t) = ^ and h(t) = /i,(t) = 0. All the hypotheses (A1)-(A4) are
satisfied.

Case 1: 0 < a < 1. Since / e F^, by Theorem 3.4(c) the set £ = (0, oo). For instance,
when X = 24, the boundary value problem has a positive solution given by
y(t) = t2(l - t)2.

Case 2: a = 1. Since / e FB, by Theorem 3.4(a) the set E is an open or a half-closed
interval. Further, from Case 1 and Theorem 3.2 we note that E contains the interval
(0,24].

Case 3: a > 1. Since / e Fo, by Theorem 3.4(b) the set £ is a half-closed interval.
Again, as in Case 2 it is noted that (0, 24] c E.

4. Eigenvalue intervals

For the rest of the paper, we shall not require conditions (Al) and (A4). However,
we need the functions k,kx,h and hx to be continuous on the closed interval [0,1].

The number t* e [0,1] is defined by

(-\)"-'G{t\ s)u(s)ds = sup / (-l)""pG(t, s)u(s)ds.
ie[0,ll Ji

Theorem 4.1. Suppose that (A2) and (A3) hold. Let 5 e (0,1/2). Then,

https://doi.org/10.1017/S0013091500020307 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020307


CONJUGATE BOUNDARY VALUE PROBLEMS 359

/0/0' <Ks)v(s)dS)

Proof. Assume {fx9 f^s(-l)-''G(t',s)u(s)ds}-1 < k < {/0/0' cf>(s)v(s)ds}-1. Noting
that y < 0, we let e > 0 be such that

l \ - \r"G(?, s)u(s)ds (J0 + e) /J 0 ( s M s ) < / s ( )

Next, we choose w > 0 so that

f(x)<(fo + £)x, 0<x<w. (4.2)

Let yeCs be such that \\y\\ = w. Then, applying (3.1), Lemma 2.2, (4.2) and (4.1)
successively, we find for t e [0, 1],

/ <Ks)v(s)f(y(s))ds < x f <j>(s)v(s)(f0 + e)y(s)ds < | | y | | .
o Jo

Hence,

Il-Wyll < llyll- (4-3)

If we set fi, = {y e B | ||y|| < w}, then (4.3) holds for y e Q n 9fi,.
Further, let T > 0 be such that

fix) > (/^ - e)x, x>T. (4.4)

Let y e C, be such that ||y|| = T = max {2w,^}. Then, for t e [5,1 - (5], we have
K 0 > y\\y\\ > y • f = T, which in view of (4.4) leads to

/ W O ) > (/=o - «)3<0. te[5,l- 5]. (4.5)

Using (3.1), (4.5) and (4.1), we find

') > X f \-\rPG(t*,s)u(s)f(y(s))ds
h

> k f (-l)-"G(f, sMs)^ - e)y(s)ds
Js

>kf ( - i r
Jt
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Therefore,

\\y\\. (4.6)

If we set n2 = {y e B | ||y|| < T'}, then (4.6) holds for yeC6n 9Q2.
Now that we have obtained (4.3) and (4.6), it follows from Theorem 2.1 that AS

has a fixed point y e C3n (n2\^i) such that w < \\y\\ < T. Obviously, this y is a
positive solution of (E).

Theorem 4.2. Suppose that (A2) and (A3) hold. Let d e (0,1/2). Then,

i-5 , j 1 c E.
foO fl'\- VT'Gif, s)u(s)ds fx /0' <KsMs)ds)

Proof. Assume {fo0 f^i-iy-'Git^s^^ds}-1 < A <{/oo/0' <t>(s)v(s)ds}-i. Again, in
view of the inequality y < 6, let e > 0 be such that

(/o - 0? fs i~ W-pG(t\ s)u(s)ds (/„ + e) / ; <Ks)v(s)ds

Let w > 0 be such that

fix) > (/o - e)x, 0 < x < w. (4.8)

Further, let y € Q be such that ||j>|| = w. Then, on using (3.1), (4.8) and (4.7)
successively, we get

> X f (-\)n-'G(t\ s)u(s)(/0 - e)y(s)ds > \\y\\
h

so that (4.6) follows. If we set fi, = {y e B \ \\y\\ < w], then (4.6) holds for
y e Cb n 3Q,.

Next, we may choose T > 0 such that

f(x)<(fx + e)x, x>T. (4.9)

There are two cases to consider, namely, / is bounded and / is unbounded.
First, suppose that / is bounded, i.e., there exists some M > 0 such that

/(x)<M,xe[0,oo). (4.10)

We define
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T, = m a x | 2 w , XM j <j>(s)v(s)ds\.
[ Jo J

Let y e Cs be such that ||)>|| = T,. For t e [0, 1], from (3.1), Lemma 2.2 and (4.10) we
find

(ASyXt) < A / cKsWs)Ms))ds < Tx = \\y\\.
Jo

Hence, (4.3) holds.
Next, suppose that / is unbounded. Then, there exists T, > max{2vv, T] such that

fix) </(r , ) , 0 < x < T,. (4.11)

Let y e Cs be such that ||y|| = T,. Then, applying (3.1), Lemma 2.2, (4.11), (4.9) and
(4.7) successively gives for t e [0,1]

< A f <KsMs)/(T,)ds < A f 0(sM
Jo Jo

from which (4.3) follows immediately.
In both cases, if we set Q2 = {yeB\ \\y\\ < T,}, then (4.3) holds for y e Q n 3fi2.
Now that we have obtained (4.6) and (4.3), it follows from Theorem 2.1 that AS

has a fixed point y e Q n ( Q 2 \ f i , ) such that w < ||y|| < T,. It is clear that this y is a
positive solution of (E).

Remark 4.1. If / is superlinear (i.e., f0 — 0 and fx — co) or sublinear (i.e., f0 — oo
and /M = 0), then we conclude from Theorems 4.1 and 4.2 that E — (0, oo), i.e., the
boundary value problem (E) has a positive solution for any A > 0.

Also, note that Theorems 4.1 and 4.2 have improved the results in [13]. The
improvement is due to the best possible bound obtained in Lemma 2.1.

Example 4.1. Let A > 0, a < 1, and consider the boundary value problem

Here, n = 3, p = 2. Choosing f{y) = (3y + 6)°, we may take fc(r) = fe,(t) =
[3^(1 - 0 + 6]"° and h(t) = /i,(t) = 0. The hypotheses (A2) and (A3) are satisfied.

Case 1: a < 1. It is clear that / is sublinear. Hence, in view of Remark 4.1, for any
A > 0 the boundary value problem has a positive solution. In fact, we note that when
A = 6, one such solution is given by y(t) = ^(1 — 0-

Case 2: a=\. Here, / , = oo and f^ — 3. Further, we find 4>(s) = 2s(l - s) and
subsequently f* cf)(s)v(s)ds = 0.0529. Hence, it follows from Theorem 4.2 that

https://doi.org/10.1017/S0013091500020307 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020307


362 RAVI P. AGARWAL, MARTIN BOHNER AND PATRICIA J. Y. WONG

(0, 6.30) c E. As an example, when X = 6 e (0,6.30), the corresponding eigenfunction
is given by y(t) — r2(l - t).

Example 4.2. Consider the boundary value problem

yw = Xt(2y + 1 - ty - t), t e (0, 1); y(0) = y'(0) = J<1) = y'(l) = 0.

Here, n = 4, p = 2, and we let H(t, y) = t2(y + 1) and K(t, y) = t(2y + 1). With /(y) =
y+l, h(t) = ft,(0 = t2, k(t) - t, fc,(t) = 2t, all the hypotheses (Al)-(A4) are satisfied.
Also, /0 = oo and fx = \. We have ^(s) = ^(1 - sf and /„' <f>(s)v(s)ds = i Hence it
follows from Theorem 4.2 that (0, 42) c £.

5. Two positive solutions

Throughout this section, we let X — 1 in the differential equation in (E).

Theorem 5.1. Let w > 0 be given. Suppose that f satisfies

0 < f(x) <w\ f cf>(s)v(s)ds 1 , 0 < x < w. (5.1)

(a) If f0 — oo, //ie/2 (E) /las a positive solution y, w/7/i 0 < ||y,|| < w;

(b) if fx = CXD, /Aen (E) has a positive solution y2 with \\y2\\ > w;

(c) if f0 = fx = oo, then (E) /toy two positive solutions y, andy2 with

Proof. Of course, (c) follows from (a) and (b). To prove (a), we let

Since f0 — oo, there exists 0 < r < w such that

f(x) >Ax, 0 < x < r. (5.2)

Let y e C\ be such that \\y\\ — r. On using (3.1) and (5.2) successively, we get
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This immediately implies that

llSyll > ||y||. (5.3)

If we set Q, = {y e B | ||y|| < r), then (5.3) holds for y e Cj n 3fi,. Next, let y e Cj be
such that ||y|| = w. Then, in view of (3.1), Lemma 2.2 and (5.1) we find

Sy(t) < f 4>(s)v(s)f(y(s))ds < w = ||y||, t e [0,1].
Jo

Hence,

HSyll < llyll- (5.4)

If we set Q2 = {y e B \ \\y\\ < w], then (5.4) holds for yeC^n 3fi2. Having obtained
(5.3) and (5.4), it follows from Theorem 2.1 that S has a fixed point y, e C^n(Q2\Q,)
such that r < ||y, || < w. Clearly, this y, is a positive solution of (E).

Finally, we shall prove (c). As before, the condition (5.1) gives rise to (5.4). Hence,
if we set Q, = {y G B \ \\y\\ < w], then (5.4) holds for y € q n 3fi,. Next, let

M = I

Since fx = oo, we may choose T > w such that

f(x) > Mx, x > T. (5.5)

Let y e Cj satisfy ||y|| = y. Then y(t) > y||y || = y • ^ = T for t e [±, | ] , which in view of
(5.5) leads to

/(y(0)>My(t), t e [ J , | (5.6)

Using (3.1) and (5.6), we find

Sy(^\ >MJ (-i

Therefore, (5.3) holds. If we set fi2 = {y e B \ \\y\\ < ^ } , then (5.3) holds for
y e Cj n aQj. Now that we have obtained (5.4) and (5.3), it follows from Theorem 2.1
that S has a fixed point y2 6 Cj n (n2\fi,) such that w < ||y2|| < ^. It is clear that this y2

is a positive solution of (E).

https://doi.org/10.1017/S0013091500020307 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020307


364 RAVI P. AGARWAL, MARTIN BOHNER AND PATRICIA J. Y. WONG

Example 5.1. Let M > 0 and consider the boundary value problem

^(1 — t)4 + M

Here, n = 3, p = 1. Taking f(y) = y2 + M, we may choose k(t) = k,(t) — , 6
t and

r{\— 0 +M

/j(t) = /i,(t) = 0. It is obvious that /0 =/M = oo. We aim to find some w > 0 such that
condition (5.1) is fulfilled. For this, it is noted that

/"' _ r1 12s(l - s) /"' 12s(l - s) _ 2

which implies

[Io

Since /(x) < ŵ  + M for 0 < x < w, in view of (5.7) the condition (5.1) is fulfilled
provided

/(x) < w2 + M < w y < wl" /" <Ks)t>(s)<fsl , 0 < X < W

which reduces to 2w2 - wM + 2M < 0. This inequality holds for some w > 0 if and only
if M > 16.

As an example, take M = 16. Then, in order that (5.1) is satisfied, we set

f fl 1 " '
/ (x) < w2 4-16 < w I </>(s)v(s)ds = 8.01w, 0 < x < w.

Uo J
This leads to

3.85<w<4.15. (5.8)

Hence, (5.1) holds for any w e [3.85,4.15]. By Theorem 5.1(c), there exist two positive
solutions yx and y2 with 0 < ||y,|| < w < ||y2||. In view of (5.8), it is clear that
0 < llyjl < 3.85 and ||y2ll > 4.15. In fact, one positive solution is given by
y(t) = t(l — t)2, and we note that ||_y|| = y 0 = 0.148 is within the range given above.

6. Two positive solutions of (E,)

Theorem 6.1. Let w > 0 be given. Suppose that
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Jo w +

Then, (E,) has two positive solutions y, and y2 such that

f s(\-s)a(s)ds<-^-1. (6.1)
Jo +

Proof. Let f(x) = x" + xf. Then, /0 = fM = oo. Further, we may take k(t) = fc,(t) =
a(t) and h(t) — fi,(0 = 0. Clearly, f(x) < w* + v/ for 0 < x < w. So, to ensure that (5.1)
is satisfied, we impose

w" + w" <il
Here, n = 2, p = 1, so that $(s) = s(l — s). Therefore, the above inequality is exactly
(6.1). The conclusion follows from Theorem 5.1(c).

Remark 6.1. In [42] we have also discussed (E^. The condition corresponding to
(6.1) is obtained as [42] / 0 ( l — s)a(s)ds < -^-j- This is a stronger condition than (6.1),
and hence (6.1) is an improvement.

Example 6.1. Consider (E,), and let w = 1. Then, (6.1) reduces to

f s(l-s)a(s)ds<1-. (6.2)
Jo *•

By Theorem 6.1, for those a(t) which fulfill (6.2), (E,) has double positive solutions y,
and y2 such that 0 < ||yil| < 1 < ||y2||. Some examples of such a{t) are 3, t + 2,
sin\t + 1).

Now, we shall establish upper and lower bounds for the two positive solutions of
(E,).

Theorem 6.2. We define

where

a'(5)= inf a(t). (6.3)
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Let

wi = [Q(a)]& and w2 =

Let w •> 0 be given. Suppose that (6.1) holds. Then, (E,) has twin positive solutions yx

and y2 such that

(a) ifw < min{w,, w2), then 0 < ||y,|| < w < ||y2|| < min{w,, w2};

(b) //min{w,, w2}<w<max{w,, w2}, then
min{vv1,vv2}<||y,||<w<||y2||<max{vvI,w2};

(c) ifw > max{w,, w2}, then maxfw,, w2} < ||y,|| < w < ||y2||.

Proof. Since (6.1) is satisfied, it follows from Theorem 6.1 that (E,) has double
positive solutions y3 and y4 such that

0< | |y 3 | |<w<| |y 4 | | . (6.4)

To establish upper and lower bounds for the two positive solutions, for an arbitrary
5 e (0, | ) , we let C be a cone in B defined by

C—\yeB y(t) is nonnegative on [0, 1]; min y(t) > d\\y\\ \. (6.5)
[ telt.l-S] J

Define the operator S : C -> B by

Sy(t) = f -G{(t, s)a(sMsT + ytfWs, t e [0,1]

where Gt(t, s) = G(f, s)\^2.p=\- To obtain a positive solution of (E|), we shall seek a fixed
point of S in the cone C. With the aid of Lemma 2.1 (note that there 6 = 8 in our
present case), it is easy to show that S maps C into itself. Also, the standard arguments
yield that S is completely continuous.

Let y e C be such that ||y|| = w. Then, in view of Lemma 2.2 (here #(s) = s(l — s))
and (6.1), we find for t e [0,1]

< / s(l -
Jo

s)a(s)(w" + w^d5 <w= \\y\\.

Therefore, if we set Q = {y e B \ \\y\\ < w}, then (5.4) holds for y e C n 9Q.
Now, let y € C It follows that
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\\Sy\\ > / - (
Jo

rl-l

> f -0,(3, s)a'(6)[5x\\y\\" + 5"\\yf]ds.

From (2.1), we have

-0,(5, s) = (1 - s)5, s e [5,1] (6.6)

which we substitute into the above inequality, simplify and then take supremum over
<5 to obtain

\\Sy\\ > Q W I I J T + Q(P)\\yf- (6.7)

Let y e C be such that ||y|| = w,. Then, (6.7) provides

> 6(a)lly||" = e to l ly i r 1 llyll = llyll- (6-8)

If we set fi, = {y e B \ \\y\\ < w,}, then (6.8) holds for y e C n 3Q,. Now that we have
obtained (5.4) and (6.8), it follows from Theorem 2.1 that S has a fixed point y5 such that

min{w,, w} < ||ys|| < max{w,, w}. (6.9)

Likewise, if we let y € C be such that ||y|| = w2> then from (6.7) we get

= Qm\yf'l\\y\\ = llyll- (6.10)

By setting fij = {y e B | ||y|| < w2}, we see that (6.10) holds for y e Cfl 9Q2. Having
obtained (5.4) and (6.10), by Theorem 2.1 we conclude that S has a fixed point y6 such that

min{w2> w} < ||y6|| < max{w2, w}. (6.11)

Now, a combination of (6.4), (6.9) and (6.11) yields our result. To be more precise, in
Case (a) we may pick

y,=y, and ^

In Case (b), it is clear that

< w2

W!ZW2 and y , = ly 6 > W' ' ^
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Finally, in Case (c) we shall take

J>6. w, < w2-I: ^ and
> w2

Remark 6.2. In [42] by a different approach we also obtain similar upper and lower
bounds for twin positive solutions of (E,). However, it has been noted in Remark 6.1
that the condition (6.1) in the present paper is an improvement.

Example 6.2. Consider the boundary value problem

* + V " + u ) 0t (01)

Here, a = 0.2, /? = 1.2 and a(t) = w ' »u. Condition (6.1) is equivalent to

V^-n> f 2
2
0
5
2
(1"5)

 2 l 2 A = 0 . 3 9 1
w0 2 + w1-2 - J o (s - s2)0 2 + (s - s2)1 2

which is satisfied for any w € [0.525,103]. Further, we find that a*(5) = a(£) and
subsequently

Thus,

w, = [6(0.2)]^ = 0.0569 and w2 = [Q(1.2)Y& = 3.23 x 107.

Since w e (whw2), by Theorem 6.2(b) the problem has two positive solutions y, and
y2 such that 0.0569 < ||y,|| < w < \\y2\\ < 3.23 x 107. Noting the range of w, this
inequality leads to

0.0569 < ||y,|| < 0.525 and 103 < ||y2|| < 3.23 x 107. (6.12)

Indeed, a positive solution is given by y{t) = t(l — t) and we note that
||_y|| = y(l) = 0.25 is within the range obtained in (6.12).

7. Two positive solutions of (E2)

Theorem 7.1. Let w > 0 be given. Suppose that

f s(l-s)a(s)ds<we-aw. (7.1)
./o
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Then, (Ej) has two positive solutions y, and y2 such that

Proof. Let /(x) = e". Then, fo = fx = oo. Further, we may take fc(t) = fc,(t) = a(t)
and h(t) = fc,(t) = 0. It is clear that /(x) < eaw holds for 0 < x < w. Therefore, (5.1) is
satisfied provided that

< w\ f 0(s)u(s)ds 1 = w\ f s(l - s)a(

i.e., condition (7.1) holds. The conclusion is immediate from Theorem 5.1(c).

Remark 7.1. In [42] we have also discussed (Ej). The condition corresponding to
(7.1) is obtained as [42] f*(l - s)a(s)ds < we"m. Clearly, this is a stronger condition
than (7.1). Hence, (7.1) is an improvement.

Example 7.1. Consider the boundary value problem

f + a(ty = 0, t e (0 ,1) ; y(0) = y(l) = 0.

Let w = \ be given. Then, condition (7.1) reduces to

d s < l . (7.2)

By Theorem 7.1, for those a(t) which fulfill (7.2), (E2) has two positive solutions y,
and y2 such that 0 < ||y,|| < ^ < ||y2||. Some examples of such a(t) are 1, cos2(t + l),
i

Once again, we shall establish upper and lower bounds for the two positive solutions
of(E2).

Theorem 7.2. Let i /_/ be given integers in the set {0, 2, 3, • • •}. We define

where a'(5) is given in (6.3), and let

and w2 =
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Let w > 0 be given. Suppose that (7.1) holds. Then, (Ej) has twin positive solutions y,
and y2 such that conclusions (a)-(c) of Theorem 6.2 hold.

Proof. Since (7.1) is fulfilled, it follows from Theorem 7.1 that (E2) has double
positive solutions y3 and y4 such that (6.4) holds.

To establish further upper and lower bounds for the two positive solutions, let
8 e (0,±) and C be a cone in B defined by (6.5). Further, we define the operator
S : C -»• B by

Sy(t) = f -G.tuMsK^rfs, t € [0, 1]
Jo

where G,(t, s) = G(t, s)|n=2p=1. To obtain a positive solution of (E2), we shall seek a fixed
point of S in the cone C. As in the proof of Theorem 6.2, it can be verified that
S(C) c C and S is completely continuous.

Let y e C be such that ||y|| = w. Using Lemma 2.2 (here </>(s) = s(l - s)) and (7.1),
we get for t e [0, 1]

< f s(l - s)a(s)effy(5)ds < f s(l - sMsJe"^ < w = ||y||.Sy{t)

Hence, if we set Q = {y e B I ||y|| < w}, then (5.4) holds for y e C D 3fi.
Next, let y € C. We find that

> / -Gl(5,s)a(s)e'"i')ds
Jo
pl-S MS

> / -Gtf.sWSyMds?: / -G,(5,s)a*
Js Js

where in the last inequality we have used the relation ex >4 + j for x > 0. On
substituting the expression (6.6), we simplify and then take supremum over 8 to get

\\Sy\\>RU)\\y\\i + R<S)\\y\t (7.3)

Following a similar technique as in the proof of Theorem 6.2, from (7.3) we obtain
(5.3) for y G C n 3fi, as well as for y e C n dCl2, where

n, = {yeB | | | y | |<w,} and fi2 = {y e B \ \\y\\ < w2}.

Now that we have obtained (5.3) and (5.4), by Theorem 2.1 S has a fixed point y5
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satisfying

min{W|, w} < ||y5|| < max{w,, w}, (7.4)

and also a fixed point y6 such that

min{w2> w) < \\y6\\ < max{w2, w}. (7.5)

As in the proof of Theorem 6.2, a combination of (6.4), (7.4) and (7.5) yields
conclusions (a)-(c) immediately.

Remark 7.2. By a different approach, similar upper and lower bounds are also
obtained in [42] for twin positive solutions of (E2). However, we have noted in Remark
7.1 that the condition (7.1) in the present paper is an improvement.

Example 7.2. Consider the boundary value problem

/ 4- ae"" = 0, t e (0,1); y(0) = y(l) = 0

where a, a > 0. This problem has been well studied [1] and its solutions are

y£t) = -\ {log[cosh(| (t - ^ j - log(cosh^) J (7.6)

where c, are solutions of the equation c = V2ao-coshj.
Case 1: a — 1, a = \, j — 0, i = 9. It can be checked that condition (7.1) is satisfied

provided that

0.183 < w < 7.65 (7.7)

Further, we find that w, =0.0625 and w2 = 42.6. Since we(w,,w2), it follows from
Theorem 7.2(b) that the boundary value problem has two positive solutions y, and y2

with 0.0625 < ||y, || < w < \\y2\\ < 42.6. In view of (7.7), we further have

0.0625 < ||y,|| < 0.183 and 7.65 < ||y2|| < 42.6. (7.8)

In fact, it is computed directly from (7.6) that ||y,|| = 0.132 and ||y2|| = 10.3.
In [42] the inequalities corresponding to (7.8) are found to be 0.0625 < ||y,|| < 0.715

and 4.31 < ||y21| < 42.6. Clearly, (7.8) gives sharper bounds. This is due to the
improvement of condition (7.1).

Case 2: a-1 x 10"4, a = 3, j = 0,i- 16. By computation, condition (7.1) is fulfilled
if

1.17 x 10"4 < w < 3.42. (7.9)
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Further, we find that w, = 4.38 x 10~5 and w2 = 11.5. Since w e (wuw2), by Theorem
7.2(b) the boundary value problem has double positive solutions y, and y2 with
4.38 x 10~5 < \\yt\\ < w < \\y2\\ < 11.5. Once again in view of (7.9), it follows that

4.38 x 10"5 < ||y,|| < 1.17 x 1(T4 and 3.42 < ||y2|| < 11.5. (7.10)

In fact, it is computed from (7.6) that ||y,|| = 8.75 x 10~5 and ||y2|| = 4.02.
Corresponding to (7.10), in [42] we obtain 4.38 x 10"5 < ||y,|| < 3.50 x 10"4 and

3.02 < \\y21| < 11.5 which are not as sharp as (7.10). Again, this illustrates the
improvement of condition (7.1).
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