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Abstract

On the boundary of a Galton–Watson tree we can define the visibility measure by splitting
mass equally between the children of each vertex, and the branching measure by splitting
unit mass equally between all vertices in the nth generation and then letting n go to
infinity. The multifractal structure of each of these measures is well studied. In this paper
we address the question of a joint multifractal spectrum, i.e. we ask for the Hausdorff
dimension of the boundary points which simultaneously have an unusual local dimension
for both these measures. The resulting two-parameter spectrum exhibits a number of
surprising new features, among them the emergence of a swallowtail-shaped spectrum
for the visibility measure in the presence of a nontrivial condition on the branching
measure.
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1. Motivation

Multifractal analysis provides a way of encapsulating complex information about the fractal
nature of an object in a single curve, the multifractal spectrum. In this paper we show how a
multifractal analysis can also offer deep insight into the relationship between two fractal objects
in the form of a two-parameter multifractal spectrum. In particular, we shall see that when one
of the analysed measures fails to obey the ‘multifractal formalism’, such an analysis can lead to
the discovery of new phenomena which are deeply rooted in the geometry of these measures.

Our test case is the boundary of a Galton–Watson tree with nonzero offspring at every vertex.
This set is, on the one hand, a familiar and well-studied object in probability and, on the other
hand, it represents the symbolic dynamics of a class of self-similar random fractals and as
such it is representative of the behaviour of a wider range of fractal objects with statistical
self-similarity. Two natural measures can be defined on the boundary of a Galton–Watson tree,
the visibility measure and the branching measure. Both have been studied separately from a
multifractal point of view.

The visibility measure is easily defined, by starting at the root of the tree with a unit mass and,
recursively, at each vertex splitting it equally among the children. If the offspring distribution
of the Galton–Watson tree is nondegenerate and satisfies some mild moment conditions, the
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Multifractal analysis of the branching and visibility measure 227

visibility measure is multifractal and the multifractal formalism (see, e.g. [11]) applies; see [16]
for details. The branching measure represents the uniform measure on the boundary. It can
be defined by taking the uniform distribution on the vertices in the nth generation and taking a
limit as n → ∞. This measure is not multifractal if the offspring variable has zero probability
of taking the value 1, and it is only multifractal in a weaker sense otherwise. Only unusually
large values of the upper local dimension are possible, and can be represented in a spectrum of
hyperbolic shape; see [28] and [37]. In this situation the multifractal formalism does not apply
as it always leads to a concave spectrum.

Liu and Rouault [20] proved that the visibility and the branching measure are mutually
singular as soon as the offspring random variable is nondegenerate. The aim of our analysis is
to further clarify the relationship of the two measures and express the results in terms of a two-
parameter multifractal spectrum, which gives the Hausdorff dimension of the set of points in the
boundary, for which the local dimensions of the two measures are given by the two parameters.
This ‘simultaneous’ multifractal analysis of the branching and visibility measures will unlock
some surprising new features of the two measures and the way they interact. Our proofs involve
a combination of the multifractal formalism and percolation techniques to establish the tricky
lower bounds for the Hausdorff dimension.

2. Background and main results

2.1. Background on multifractal analysis

Multifractal spectra appeared first in the physics literature in papers by Mandelbrot [24],
Benzi et al. [5], Frisch and Parisi [13], and Halsey et al. [14], who studied multifractal models
that occur naturally in the world, in particular in the area of turbulence. For more examples of
the use of multifractal spectra in these contexts, see the introduction to [18]. They have appeared
in the mathematics literature with increasing regularity over the last 20 years. Examples appear
in the analysis literature in the work of Rand [36], Brown et al. [8], Cawley and Mauldin [9],
and Olsen [29] in the early 1990s, and more recently in the probability literature in the work of
Arbeiter and Patzschke [2] in the case of random self-similar fractals, Perkins and Taylor [35]
in the case of super Brownian motion, Mannersalo et al. [25] and Anh et al. [1] for products
of stochastic processes, Berestycki [6] in the case of fragmentation processes, and Klenke and
Mörters [17] in the case of intersection local time of Brownian motion. For some further
examples of how multifractal spectra can improve our understanding about certain stochastic
processes, see [26].

Recently, simultaneous, or ‘mixed’, multifractal spectra for several measures were discussed
in the context of dynamical systems by Barreira et al. [3], [4] and, independently, in the
context of geometric measure theory by Olsen [31]. Olsen introduced a general framework [32]
and Olsen and Winter in [30] and [33] gave a complete analysis of deterministic self-similar
measures satisfying the open set condition. These papers sought to generalize the ‘multifractal
formalism’, established in the physics literature and verified in various mathematical setups,
to a simultaneous multifractal analysis. The authors did not investigate the situation when the
‘multifractal formalism’ is violated by one of the involved measures. This situation however
occurs frequently for random measures and in the context of measures defined in terms of
stochastic processes, and is therefore of particular interest to us in the present paper.

We define multifractal spectra associated with the local dimensions (or Hölder exponents)
of a fractal measure. To this end, let µ be a locally finite measure on a metric space X. We
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228 A. L. KINNISON AND P. MÖRTERS

define the local dimension of the measure µ at a point x ∈ X as

dimµ(x) := lim
r↓0

log µ(B(x, r))

log r
,

whenever the limit exists, where B(x, r) is the closed ball of radius r centred at the point x ∈ X.
We also define the upper and lower local dimensions of µ at x to be

dimµ(x) := lim sup
r↓0

log µ(B(x, r))

log r
and dimµ(x) := lim inf

r↓0

log µ(B(x, r))

log r
,

respectively. The local dimension indicates the rate at which the µ-measure of the balls, centred
at the point x, decay as the radii of the balls shrink to 0. The rate of decay of the measure of
the balls goes like the radius to the power of the local dimension. It follows that the larger
the local dimension, the faster the measure of the balls decays. The local dimension may vary
considerably between different points in the metric space. A measure µ is called monofractal
if there exists a constant η such that dimµ(x) = η for all x ∈ suppµ. Otherwise, the measure
is often called multifractal.

If the measure µ is multifractal then its multifractal spectrum is the function

f (θ) = dim{x ∈ X : dimµ(x) = θ},
where dim normally denotes the Hausdorff dimension and θ ranges over all possible values
of the local dimension. We are equally interested in the variants of this function arising when
replacing the local dimension by upper or lower local dimensions, or when the equality inside
the set is replaced by an appropriate inequality.

2.2. Background on Galton–Watson trees

Galton–Watson trees are characterised by a single parameter, the law of the offspring random
variable N . Throughout this paper, we assume that N is nondegenerate and takes values in the
natural numbers, in particular it does not take the value 0. We allow N to be unbounded, but
always assume that

γ (β) := − log E[Nβ+1] > −∞ for all β ∈ R.

We abbreviate m := E[N ] > 1 and a := log E[N ] > 0.
The Galton–Watson tree T is defined recursively. Start with the root ρ which constitutes

the 0th generation. Given the tree up to the nth generation, sample an independent family
(N(v) : |v| = n) of offspring variables indexed by the vertices in the nth generation of the tree,
and attach precisely N(v) children to vertex v. The union of these vertices then represent the
(n + 1)th generation, and we define an infinite tree by proceeding ad infinitum.

Given a vertex v in the nth generation, there exists a unique path ρ = v0, v1, . . . , vn = v from
the root to this vertex, such that vi is a child of vi−1 for all 1 ≤ i ≤ n. We sometimes identify
v with its ancestral line (v0, . . . , vn). A ray is an infinite sequence of vertices v0, v1, . . . such
that v0 = ρ and (v0, . . . , vn) is the ancestral line of vn for each n ∈ N. By ∂T we denote the
boundary of the tree, consisting of all rays. We equip the boundary of the tree with the metric
d given by d(u, v) = e−n, where n is the generation of the last common vertex of u, v ∈ ∂T .
For ξ = (v0, v1, . . . ) ∈ ∂T , let B(ξ, e−n) = B(vn) be the closed ball with centre ξ and radius
e−n, which coincides with set of all rays containing the vertex vn.
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For every vertex v ∈ T , we let T (v) be the subtree consisting of all successors of v, and note
that, conditional on v ∈ T , the tree T (v) is again a Galton–Watson tree with the same offspring
distribution. We denote by Zn(v) the number of vertices in the nth generation of (and relative
to) T (v), and abbreviate Zn := Zn(ρ).

The visibility measure ν on ∂T is the probability measure defined by

ν(B(v)) =
n−1∏
j=0

N(vj )
−1,

where (v0, . . . , vn) is the ancestral line of the vertex v. Alternatively, ν is the law of the ray
obtained as the path of a random walk starting at the root and moving at every step to a randomly
chosen child of the current vertex. In [16] it was shown that, under our assumptions on the
Galton–Watson tree, for every

sup
β<0

−γ (β)

β
< η < inf

β>0

−γ (β)

β
,

we have, almost surely,

dim{ξ ∈ ∂T : dimν(ξ) = η} = inf
β

{−ηβ − γ (β)}.
This spectrum is concave with a unique maximiser at

ηtyp := E[N log N ]
E[N ] .

The proof of this result also shows that, forη ≤ ηtyp, the same spectrum holds when dimν(ξ) = η

is replaced by dimν(ξ) ≤ η, while, for η ≥ ηtyp, we may replace it by dimν(ξ) ≥ η.
To define the branching measure µ on ∂T we need a limiting operation. We define

µ(B(v)) = lim
k→∞

Zk(v)

Zk+n

,

whenever v ∈ T is in generation n. Martingale arguments, which are detailed in Section 3.2,
show that this limit exists almost surely and µ(B(v)) is nonzero for every vertex v ∈ T . The
µ such defined is a probability measure on ∂T and is called the branching measure or limit
uniform measure in the terminology of [23] and [22]. Liu [19] showed in this setting that,
almost surely,

dimµ(ξ) = a for all ξ ∈ ∂T ,

so that only for the upper local dimension we may see a nontrivial spectrum. To ensure this,
we assume that the Galton–Watson tree is of Schröder type, i.e. P(N = 1) > 0. Under this
condition, it was shown by Shieh and Taylor [37] and Mörters and Shieh [28] that, with

τ := − log P(N = 1)

a

for all a ≤ θ ≤ a(1 + 1/τ), almost surely,

dim{ξ ∈ ∂T : dimµ(ξ) = θ} = a

(
a

θ
(1 + τ) − τ

)
.

Again, we get the same result when we replace the condition dimµ(ξ) = θ on the left-hand
side by dimµ(ξ) ≥ θ . If θ > a(1 + 1/τ), almost surely, the set on the left-hand side is empty;
however, if θ = a(1 + 1/τ), it is almost surely nonempty.
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2.3. Statement of the main results

In the light of the previous results it is natural to ask for the Hausdorff dimension of the
intersections of the exceptional sets for the visibility and branching measures, i.e. for

dim{ξ ∈ ∂T : dimν(ξ) = η, dimµ(ξ) = θ}
when a < θ ≤ a(1 + 1/τ). This set, however, is empty for any value of η. Indeed, for rays
with untypically large upper local dimension of the branching measure, the local dimension of
the visibility measure cannot exist. This is stated more precisely in our first theorem.

Theorem 2.1. Let θ > a. Then, almost surely, for all ξ ∈ ∂T , we have

dimµ(ξ) ≥ θ implies that dimν(ξ) ≥ θ

a
dimν(ξ),

and, therefore, dimν(ξ) does not exist.

Therefore, in order to obtain an interesting spectrum, we have to look at the upper and
lower local dimensions with respect to the visibility measure separately. As our condition
on the upper local dimension of the branching measure involves only unusual behaviour at
exceptional scales, in order to enforce a nontrivial interaction of the local behaviour of the
two measures, we have to look at conditions on the local behaviour of the visibility measure
involving unusual behaviour at all scales. We therefore look at the sets

G(θ, η) = {ξ ∈ ∂T : dimµ(ξ) ≥ θ, dimν(ξ) ≤ η}
and

G(θ, η) = {ξ ∈ ∂T : dimµ(ξ) ≥ θ, dimν(ξ) ≥ η}.
Our main result gives the Hausdorff dimension of these sets. For its formulation, define

η−
typ := a

θ
ηtyp.

Theorem 2.2. For a ≤ θ ≤ a(1 + 1/τ) and η ≥ 0, the following statements hold almost
surely.

(a) If η ≤ ηtyp then

dimG(θ, η) = −aτ

(
1 − a

θ

)
+ a

θ

(
inf
β

{−βη − γ (β)}
)

if the right-hand side is nonnegative.

(b) If η ≥ η−
typ then

dimG(θ, η) = −aτ

(
1 − a

θ

)
+ a

θ

(
inf
β

{
−βη

θ

a
− γ (β)

})

if the right-hand side is nonnegative.

Remark 2.1. The simultaneous multifractal spectrum produces a swallowtail-shaped spectrum
for the visibility measure in the presence of a nontrivial condition on the branching measure.
This can be seen in Figure 1. If we consider values of θ > a, it follows that η−

typ < ηtyp and the
left and right branches of the spectrum overlap.
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Figure 1: Multifractal spectrum of the visibility measure on a Galton–Watson tree with geometric
offspring random variable with p = 0.5. The top curve provides the multifractal spectrum when θ = a,
while the bottom curves provide the multifractal spectrum when θ = 4

3 a. Here the left branch corresponds
to dimG(θ, η), while the right branch corresponds to dim G(θ, η). The two branches overlap at the point

(η−
typ, ηtyp) ≈ (0.67, 0.89).

Remark 2.2. Considering values of the local dimension of the branching measure equal to
the typical local dimension (i.e. taking θ = a) in Theorem 2.2(a) and (b) leads to a variant of
the multifractal spectrum for the upper and lower local dimensions of the visibility measure,
respectively. Similarly, setting η = ηtyp in Theorem 2.2(a) and η = η−

typ in Theorem 2.2(b)
yields a variant of the spectrum for the branching measure. We conjecture that in the definitions
of G(θ, η) and G(θ, η) all inequality signs can be replaced by equalities without impairing the
statement of Theorem 2.2. However, our proof techniques are not strong enough to verify this.

The remainder of the paper is devoted to the proofs of our two main results, given in Sections 3
and 4. Each section starts with a heuristic explanation of the result and a sketch of the main
tools of the proof.

3. Proof of Theorem 2.1

3.1. Heuristics

If, for some λ > 1, the ray ξ contains a substring ξn, . . . , ξλn consisting of vertices with
only one offspring, the balls B(ξn) and B(ξλn) are equal. Hence, the ratio log µB(ξ, r)/ log r

at r = e−n is, by a factor λ, larger than at r = e−nλ. Therefore, a ray with infinitely many such
substrings typically has dimµ(ξ) ≥ aλ.

Conversely, a ray ξ with dimµ(ξ) ≥ θ typically has infinitely many substrings ξn, . . . , ξ(θ/a)n

consisting of vertices with predominantly only one offspring. In this case, the visibility measure
of the balls B(ξ, e−n) and B(ξ, e−nθ/a) is nearly equal, so that the ratio log νB(ξ, r)/ log r drops
by a factor of a/θ when r moves down from e−n to e−nθ/a. Therefore, if dimν(ξ) = η, following
the radii rn = e−nθ/a produces a sequence of radii with lim log νB(ξ, rn)/ log rn ≤ ηa/θ .
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The proof follows these heuristics closely. Lemma 3.3, below, shows that if a vertex v in
the nth generation has very little offspring for the next (θ/a − 1)n generations, this implies a
lower bound for νB(w) for each of these offspring vertices w. In Lemma 3.4, below, which
will also be crucial in the proof of the upper bound in Theorem 2.2, we show that a ray ξ

with dimµ(ξ) ≥ θ has infinitely many vertices ξn which have very little offspring for the
next (θ/a − 1)n generations. Combining these two ingredients completes the proof.

3.2. Proof of Theorem 2.1

We start with two very elementary lemmas.

Lemma 3.1. Let {an}∞n=1 and {bn}∞n=1 be real sequences, and let ϑ > 0. Then

lim sup
n→∞

an < ϑ lim inf
n→∞ bn

implies that, for all ε > 0, there exists an n0 ∈ N such that, for all n ≥ n0, we have
an < (ϑ + ε)bn.

Proof. Suppose that there exists a ε > 0 and a sequence nk ↑ ∞ such that ank
≥ (ϑ +ε)bnk

.
Then

lim sup
n→∞

an ≥ lim sup
k→∞

ank
≥ (ϑ + ε) lim sup

k→∞
bnk

≥ (ϑ + ε) lim inf
k→∞ bnk

≥ (ϑ + ε) lim inf
n→∞ bn,

which is a contradiction.

Lemma 3.2. For all 0 ≤ j ≤ k − 1, suppose that nj ∈ N. Then, for every n ∈ N,

k−1∑
j=0

(nj − 1) ≤ n implies that
k−1∏
j=0

nj ≤ en.

Proof. From the fact that log x ≤ x − 1 for all x > 0 we have

n ≥
k−1∑
j=0

(nj − 1) ≥
k−1∑
j=0

log nj = log
k−1∏
j=0

nj .

Hence the result follows by taking the exponent of both sides.

The next lemma makes precise the intuition that in a tree with little offspring after k

generations, the visibility measure of any vertex in generation k must not be small.

Lemma 3.3. If k ∈ N and Zk ≤ n, then, for all w ∈ T with |w| = k, we have ν(B(w)) ≥ e−n.

Proof. Suppose thatZk ≤ n, and letw = (w0, . . . , wk) ∈ T be a vertex in the kth generation.
As every vertex has always at least one offspring in any later generation, we observe that

k−1∑
j=0

(N(wj ) − 1) ≤ Zk ≤ n,

and so by Lemma 3.2 we have
∏k−1

j=0 N(wj ) ≤ en. Hence ν(B(w)) = ∏k−1
j=0 N(wj )

−1 ≥ e−n.
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We now recall the relationship of the branching measure µ and martingales. Given a
vertex v ∈ T , the process (Zk(v)/mk : k ∈ N) is a martingale, which, by the Kesten–Stigum
theorem, is uniformly integrable if and only if E N log N < ∞. This condition is satisfied
under our moment assumptions and, therefore, there exist random variables (W(v) : v ∈ T )

such that

lim
k→∞

Zk(v)

mk
= W(v) almost surely, and EW(v) = 1.

Abbreviating W := W(ρ) we get, from the definition of the branching measure,

µ(B(v)) = lim
k→∞

Zk(v)

Zk+n

= W(v)

Wmn
for all v ∈ T , |v| = n, (3.1)

and, moreover, for every k ∈ N, we obtain the decomposition

W(v) = 1

mk

∑
w∈T
|w|=k

W(w), (3.2)

where the (W(w) : |w| = k) are independent with the same distribution as W . From this
formula and the fact that W > 0 with positive probability, it is easy to see that W > 0 almost
surely.

Our final lemma makes precise the intuition that a ray ξ with dimµ(ξ) ≥ θ has infinitely
many vertices ξn with very little offspring for the next (θ/a − 1)n generations. A weaker form
of this lemma appears in Lemma 5.3 of [37].

Lemma 3.4. Let θ ≥ a and ε > 0. Then, almost surely, there exist only finitely many vertices
v ∈ T such that

log µ(B(v))

−|v| ≥ θ − ε and Zk(v) > ε|v|,
where k = k(|v|, ε) is defined by

k(n, ε) =
⌊
n

(
θ

a
− 1 − ε

a

)
− A(ε)

⌋
(3.3)

for a suitable constant A(ε).

Proof. Since W > 0 almost surely, we can choose A(ε) > 0 such that

P(W < m−A(ε)) ≤ e−2a/ε.

Using (3.1), it suffices to show that

P

(
log W(v)

−|v| ≥ θ − a − ε and Zk(v) > ε|v|
)

(3.4)

is summable over the vertices of the tree, in order to use the Borel–Cantelli lemma. As the
event that v ∈ T is itself a random event, we have to embed the tree T into the space

⋃∞
n=0 N

n

using the canonical address of every vertex, so that the set of all vertices in the nth generation
is a subset of N

n. It follows that the sum of probabilities in (3.4) is equal to

∞∑
n=1

∑
v∈Nn

P(W(v) ≤ e−n(θ−a−ε), Zk(v) > εn)P(v ∈ T ).
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We can estimate

P(W ≤ e−n(θ−a−ε), Zk > εn) = P

(
m−k

∑
w∈T
|w|=k

W(w) ≤ m−n(θ/a−1−ε/a), Zk > εn

)

≤ P

(
εn�∑
j=1

Wj ≤ m−A(ε), Zk > εn

)
,

where W1, W2, . . . are independent copies of W . Using this independence,

P

(
εn�∑
j=1

Wj ≤ m−A(ε), Zk > εn

)
≤ P(W ≤ m−A(ε))
εn� ≤ e−2na,

where the last inequality holds by the definition of A(ε). Hence, we have

∞∑
n=1

∑
v∈Nn

P(W(v) ≤ e−n(θ−a−ε), Zk(v) > εn)P(v ∈ T )

≤
∞∑

n=1

e−2na
∑
v∈Nn

P(v ∈ T )

︸ ︷︷ ︸
=EZn

=
∞∑

n=1

e−na < ∞,

and the result follows from the Borel–Cantelli lemma.

Proof of Theorem 2.1. It suffices to show that, for a fixed 0 < ϑ < θ/a and 0 < δ < 1,

A := {ξ ∈ ∂T : dimµ(ξ) ≥ θ, dimν(ξ) < ϑdimν(ξ), dimν(ξ) > δ} = ∅.

Let 1 > ε1 = θ/a − ϑ > 0 and ε2 < (ε1a) ∧ δ2ϑ/4(2 + ϑ + 1/a). There exists an N2 ∈ N

such that, for all n ≥ N2,

n

n + k(n, ε2)
>

(
θ

a
− ε2

a

)−1

− 1

2
δ. (3.5)

Now let ξ ∈ A. By Lemma 3.4 we see that Zk(ξn) ≤ ε2n infinitely often. Since dimν(ξ) > δ,
there exists an N3 ∈ N such that, for all n ≥ N3, we have

log ν(B(ξn))

−n
>

1

2
δ. (3.6)

Finally, by Lemma 3.1, there exists an N4 ∈ N such that, for all n ≥ N4, we have

log ν(B(ξn))

−n
< (ϑ + ε3)

log ν(B(ξn+k))

−(n + k)
(3.7)

for ε3 = ε1 − ε2/a > 0. Let N1 = max{N2, N3, N4}. For n ≥ N1, we thus have, by (3.5) and
(3.7),

ν(B(ξn)) > exp
{(

(ϑ + ε3)
−1 − 1

2δ
)
(ϑ + ε3) log ν(B(ξn+k))

}
.
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For v ∈ T , we denote by νv the visibility measure on the tree T (v). Hence

ν(B(ξn)) > ν(B(ξn+k))
1−δ(ϑ+ε3)/2 = (ν(B(ξn))νξn(B(ξk)))

1−δ(ϑ+ε3)/2.

It follows that
ν(B(ξn))

δ(ϑ+ε3)/2 > νξn(B(ξkn))
1−δ(ϑ+ε3)/2. (3.8)

From (3.6) we have
ν(B(ξn))

δ(ϑ+ε3)/2 ≤ e−nδ2(ϑ+ε3)/4, (3.9)

and from Lemma 3.3 we have, for infinitely many n,

νξn(B(ξk))
1−δ(ϑ+ε3)/2 ≥ e−n(ε2+ε2δ(ϑ+ε3)/2). (3.10)

Combining (3.8) with (3.9) and (3.10) we have 1
4δ2(ϑ + ε3) < ε2 + 1

2ε2δ(ϑ + ε3), and a small
calculation shows that this is in contradiction with the conditions on ε2. Hence, A = ∅ and the
proof is complete.

4. Proof of Theorem 2.2

4.1. Heuristics

Recall that to satisfy dimµ(ξ) ≥ θ the ray ξ typically has infinitely many substrings
ξn, . . . , ξθn/a in which each vertex has exactly one offspring. The probability that a fixed
vertex v is the first one in such a string is

P(N = 1)(θ/a−1)n = exp{−τ(θ − a)n}.
Looking at generation n, for large n, by the dimension spectrum for the visibility measure, there
are about

exp
{
n inf

β
{−ηβ − γ (β)}

}

vertices v which satisfy ν(B(vi)) ≈ e−iη for all 1 ≤ i ≤ n. By the law of large numbers we
therefore expect that in a large generation n we have about

exp
{
n
(
−τ(θ − a) + inf

β
{−ηβ − γ (β)}

)}

vertices v satisfying these two constraints.
Now look at G(θ, η) for η ≥ ηtyp. If a vertex v satisfies the two constraints above then its

single descendants vi in generations i = n + 1, . . . , θn/a all satisfy the required lower bound
ν(B(vi)) ≥ e−iη. Therefore, in generation θn/a we expect about

exp
{
n
(
−τ(θ − a) + inf

β
{−ηβ − γ (β)}

)}

vertices satisfying the constraint on the branching measure for the radius e−n and the constraint
on the visibility measure for all radii 1 ≥ r ≥ e−nθ/a. This procedure can now be applied
independently to all the subtrees descending from these vertices, so that we expect the Hausdorff
dimension of G(θ, η) to be

a

θ

(
−τ(θ − a) + inf

β
{−ηβ − γ (β)}

)
.
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Next look at G(θ, η) for η ≤ η−
typ. If a vertex v satisfies the two constraints above then its

only descendant w in generation θn/a has ν(B(w)) ≈ e−nη, which violates the condition on
the visibility measure if θ > a. We therefore require that the vertex v satisfies ν(B(vi)) ≈ e−iη̃

for 1 ≤ i ≤ n and η̃ = θη/a, to ensure that all descendants vi in generations i = n +
1, . . . , θn/a satisfy the required lower bound ν(B(vi)) ≥ e−iη. In generation θn/a there
are now exp{n(−τ(θ − a) + infβ{−η̃β − γ (β)})} vertices w satisfying the constraint on the
branching measure for the radius e−n and the constraint on the visibility measure for all radii
1 ≥ r ≥ e−nθ/a. Applying the same procedure independently to all the subtrees descending
from these vertices, we now expect the Hausdorff dimension of G(θ, η) to be

a

θ

(
−τ(θ − a) + inf

β

{
−θ

a
ηβ − γ (β)

})
.

On a more technical level, we need to treat upper and lower bounds for the Hausdorff
dimension separately. For the upper bounds, given in Section 4.2, we use natural coverings of
the sets G(θ, η) and G(θ, η). The sets are covered by balls B(ξθn/a), where ξn, . . . , ξθn/a are
strings of vertices with (mostly) one offspring, and

• in the first case we require that νB(ξn) ≥ e−nη,

• in the second case we require that νB(ξθn/a) ≤ e−nηθ/a.

For the lower bounds, proved in Section 4.3, we use the percolation technique suggested in [21]
and used in [28] to study the branching measure. For a given retention parameter p ∈ [0, 1], we
remove any edge from the tree independently with probability 1−p and consider the connected
component of the root. If this connected component has a positive probability of being infinite,
we obtain a lower bound on the Hausdorff dimension of the boundary of the tree, given in terms
of p. In our case we need to establish a positive probability for the existence of a ray, which
survives percolation and satisfies the constraints on the visibility measure for balls of every
radius, and the constraints on the branching measure for infinitely many radii. The technical
construction of this ray is based on the idea given in the heuristics above and a density argument,
which uses the Baire category theorem in a carefully constructed regular subset of ∂T .

4.2. The upper bounds

Given δ > 0 and η ≤ ηtyp, we cover G(θ, η) with balls of radii less than or equal to δ. To
do this, take n0 = 
− log δ�, let ε > 0, and let k be as defined in (3.3). By Lemma 3.4 we have
a cover for G(θ, η) given by

G(θ, η) ⊆
⋃

n≥n0

⋃
v∈T|v|=n

log(ν(B(v)))/(−n)≤η+ε
Zk(v)≤εn

⋃
w∈T (v)
|w|=k

B(w). (4.1)

Similarly, if η ≥ η−
typ, we have a cover for G(θ, η) given by

G(θ, η) ⊆
⋃

n≥n0

⋃
v∈T|v|=n

Zk(v)≤εn

⋃
w∈T (v)
|w|=k

log ν(B(w))/(−(n+k))≥η−ε

B(w). (4.2)

Note that, in line with the heuristics, in (4.1) the condition on the visibility measure is tested
for the vertices in generation n, whereas in (4.2) it is tested for the vertices in generation n + k.
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Verification that the covers above give good upper bounds is very similar, and, therefore, we
focus on (4.2).

We require the following lemma, which is a combination of two results from the literature.

Lemma 4.1. If nk/m
k → 0 as k → ∞ then P(Zk ≤ nk) = exp{−kaτ + o(k)}.

Proof. By Theorem 4 of [12] we have

P(Zk ≤ nk) = P(W < m−knk)(1 + o(1)),

and a well-known result of [10], see also [7] and [27], states that there exist constants c, C > 0
such that, for 0 < ε < 1, we have

cετ ≤ P(W < ε) ≤ Cετ .

Hence, P(Zk ≤ nk) ≤ C(1 + o(1))(m−knk)
τ = exp{−kaτ + o(k)}, and analogously for the

lower bound.

We need to bound the sum of diameters, raised to the power s, taken over all the covering
balls, i.e. ∑

n≥n0

∑
v∈T
|v|=n

1{Zk(v) ≤ εn}
∑

w∈T (v)
|w|=k

1{ν(B(w)) ≤ e−(n+k)(η−ε)}|B(w)|s .

To determine when this quantity is finite, we take its expectation, which equals

∑
n≥n0

e−(n+k)s
E

[ ∑
w∈T

|w|=n+k

1{Zk(wn) ≤ εn}1{ν(B(w)) ≤ e−(n+k)(η−ε)}
]
. (4.3)

Now note that, for any vertex w ∈ T with |w| = n + k, we have
∑n+k−1

j=n (N(wj ) − 1) ≤
Zk(wn), and, hence, by Lemma 3.2, Zk(wn) ≤ εn implies that

n+k−1∏
j=n

N(wj ) ≤ eεn.

Now, for β > 0, it follows that the expectation of interest is equal to

∑
n≥n0

e−(n+k)s
E

[ ∑
w∈T

|w|=n+k

1
{
Zk(wn) ≤ εn,

n+k−1∏
j=n

N(wj ) ≤ eεn, ν(B(w)) ≤ e−(n+k)(η−ε)

}]

=
∑
n≥n0

e−(n+k)s
E

[ ∑
w∈T

|w|=n+k

1
{
Zk(wn) ≤ εn,

n+k−1∏
j=n

N(wj )
β ≤ eβεn,

n+k−1∏
j=0

N(wj )
β ≥ eβ(n+k)(η−ε)

}]

≤
∑
n≥n0

e−(n+k)s
E

[ ∑
w∈T

|w|=n+k

1
{
Zk(wn) ≤ εn,

n−1∏
j=0

N(wj )
β ≥ eβ(n+k)(η−ε)−βεn

}]
.
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Expressing the sum over the vertices in generation n+k as a sum over the vertices in generation
n, we see that this is equal to

∑
n≥n0

e−(n+k)s
E

[
Zk(v)

∑
v∈T
|v|=n

1
{
Zk(v) ≤ εn,

n−1∏
j=0

N(vj )
β ≥ eβ(n+k)(η−ε)−βεn

}]

≤
∑
n≥n0

e−(n+k)selog εne−β(n+k)(η−ε)+βεn
E

[∑
v∈T
|v|=n

n−1∏
j=0

N(vj )
β1{Zk(v) ≤ εn}

]
.

The expectation on the right-hand side is equal to, using Lemma 4.1,

E

[∑
v∈T
|v|=n

n−1∏
j=0

N(vj )
β1{Zk(v) ≤ εn}

]
= E

[∑
v∈T
|v|=n

n−1∏
j=0

N(vj )
β

]
P{Zk(v) ≤ εn}

= e−nγ (β)−kaτ+o(n).

Summarising, the expectation in (4.3) is finite if

−β

(
θ

a
− ε

a

)
(η − ε) + βε − τ(θ − a − ε) − γ (β) < s

(
θ

a
− ε

a

)
.

Solving for s and noting that ε > 0 was arbitrary, we get

dimG(θ, η) ≤ −aτ

(
1 − a

θ

)
+ a

θ
inf
β>0

{
−βθη

a
− γ (β)

}
. (4.4)

It remains to show that the infimum can be extended to nonpositive values of β.

Lemma 4.2. If η > η−
typ then

inf
β>0

{
−βθη

a
− γ (β)

}
= inf

β

{
−βθη

a
− γ (β)

}
.

Proof. Differentiating the variational problem with respect to β we see that

d

dβ

{
−βθη

a
− γ (β)

}
= −θη

a
+ d

dβ
log ENβ+1 = −θη

a
+ ENβ+1 log N

ENβ+1 ,

and so the minimizer β0 satisfies

a

θ

ENβ0+1 log N

ENβ0+1 = η.

The assumption η > η−
typ implies that β0 > 0.

Finally, when η = η−
typ, then the minimiser in infβ{−βθη/a − γ (β)} is β = 0. Combining

this with Lemma 4.2 and (4.4) completes the proof of the upper bound.
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4.3. The lower bounds

For the proof of the lower bound, we will again focus on the proof of part (b), as the proof
of part (a) is similar but conceptually slightly easier. We use percolation on the tree in order to
find a lower bound for the dimension, and first provide a reminder of the notation and important
facts.

Given an arbitrary, infinite tree T and a retention parameter p ∈ [0, 1], we define a family of
independent {0,1}-valued random variables X(v), indexed by the vertices, such that P(X(v) =
1) = p. The percolated tree T ∗ is then comprised of the connected component of the root in
the graph consisting of all the vertices v ∈ T with X(v) = 1 and the edges between them. We
use the following lemma.

Lemma 4.3. ([21].) Let T be an arbitrary, infinite tree. Then the following statements
hold.

(a) If p < e− dim ∂T then ∂T ∗ = ∅ almost surely.

(b) If p > e− dim ∂T then ∂T ∗ �= ∅ with positive probability.

Remark 4.1. With the help of the Choquet capacitability theorem, we can infer the following
useful consequence of Lemma 4.3. If an analytic set E ⊂ ∂T satisfies E ∩ ∂T ∗ �= ∅ with
positive probability, then dim E ≥ − log p. This is the form in which we shall use Lemma 4.3.

For the visibility measure ν on a tree T , we define, for any η > 0,

F(η) := {ξ ∈ ∂T : dimν(ξ) ≥ η},
and a compact set A(η) ⊂ F(η) by

A(η) := {ξ ∈ ∂T : ν(B(ξi)) ≤ e−iη for all i ∈ N}.
The next result is due to Hawkes [15] in a general setup, and proved in the context of trees in
the final paragraph of [21].

Lemma 4.4. For any E ⊂ ∂T and ε > 0, we have

dim(E ∩ ∂T ∗) ≥ log p + dim E − ε with positive probability.

We now focus our attention on Galton–Watson trees. Recall the Galton–Watson 0–1 law as
described in [34]. A property A of trees is called inherited if all finite trees have property A

and, whenever T has property A, all its descendent subtrees T (v) for v ∈ T have property A.
For a Galton–Watson tree, any inherited property A satisfies P(A | ∂T �= ∅) ∈ {0, 1}.

The next lemma combines the multifractal spectrum for the visibility measure of Galton–
Watson trees, as given in [16], with Lemma 4.4. From now on, P and the notion of probability
refer to the joint law of the Galton–Watson tree and the percolation variables indexed by this
tree. Observe that, if T is a Galton–Watson tree then so is any percolated tree T ∗ derived from
it.

Lemma 4.5. Let

sup
β<0

{−γ (β)

β

}
< η < inf

β>0

{−γ (β)

β

}
.

For every p ≥ exp(− infβ{−βη − γ (β)}) and ε > 0, we have

dimA(η) ∩ ∂T ∗ > log p + inf
β

{−βη − γ (β)} − ε with positive probability.
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Proof. Recall from [16] that dim F(η) = infβ{−βη − γ (β)} almost surely. This easily
implies that dim A(η) > infβ{−βη − γ (β)} − ε with positive probability, and the result
follows from Lemma 4.4.

We now formulate the key lemma for the proof. We define, for 0 < x < 1,

Ax(η) := {ξ ∈ ∂T : e(log x/a)ην(B(ξi)) ≤ e−iη for all i ∈ N}.
Lemma 4.6. Fix θ ≥ a,

inf
β>0

{−γ (β)

β

}
> η̃ ≥ η ≥ η−

typ,

and a retention parameter

p > exp

{
aτ

(
1 − a

θ

)
− a

θ
inf
β

{−βη̃ − γ (β)}
}
.

Then there exist C, κ, ε0 > 0 such that, for all 0 < x < 1 and 0 < ε < ε0, we have

P

(
W < κx, dim(Ax(η) ∩ F(η̃ + ε) ∩ ∂T ∗) ≥

(
1 − a

θ

)(
inf
β

{−βη̃ − γ (β)} + aτ
)

+ 2ε

)

≥ Cxτ−log p/a.

Proof. Let

k := k(x) :=
⌈
− log x

a

⌉
and d :=

(
1 − a

θ

)(
inf
β

{−βη̃ − γ (β)} + aτ
)
.

We have, for any κ ≥ 1 and ε > 0,

P(W < κx and dim(Ax(η) ∩ F(η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε)

≥ P(W < κx and dim(Ax(η) ∩ F(η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε | Zk = 1)P(Zk = 1). (4.5)

Recall that P(Zk = 1) = P(N = 1)k . For a lower bound on the first probability in (4.5),
use (3.2) to observe that

P(W < κx and dim(Ax(η) ∩ F(η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε | Zk = 1)

≥ P

(
m−k

∑
w∈T
|w|=k

W(w) < m−kκ and dim(Ax(η) ∩ F(η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε

∣∣∣∣ Zk = 1

)

= P(W(w) < κ and dim(Ax(η) ∩ F(η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε | Zk = 1),

where w is the unique vertex in the kth generation. Note that kη ≥ −(log x/a)η and, hence,
for 0 ≤ i ≤ k,

e(log x/a)ην(B(wi)) ≤ e−kην(B(wi)) = e−kη ≤ e−iη.

As Zk = 1, we have ∂T ∗ �= ∅ only if X(wi) = 1 for i = 0, . . . , k, an event which has
probability pk . Hence, we see that

P(W(w) < κ and dim(Ax(η) ∩ F(η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε | Zk = 1)

≥ P(W < κ and dim(A(η) ∩ F(η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε)pk. (4.6)
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As in Lemma 4.5, by the choice of p, there exist c0, ε0 > 0 such that

P(dim(A(η) ∩ F(η̃ + ε0) ∩ ∂T ∗) ≥ d + 2ε0) ≥ c0.

Since W is finite, we have

P(dim(A(η) ∩ F(η̃ + ε0) ∩ ∂T ∗) ≥ d + 2ε0)

= lim
κ→∞ P(W < κ and dim(A(η) ∩ F(η̃ + ε0) ∩ ∂T ∗) ≥ d + 2ε0). (4.7)

It follows that, for a large enough choice of κ > 1, we can bound this probability from below
by a positive constant c1 > 0. Putting this together with (4.6) we have, for all 0 < ε ≤ ε0,

P(W < κx and dim(Ax(η) ∩ F(η̃ + ε) ∩ ∂T ∗) ≥ d + 2ε) ≥ c1p
k P(N = 1)k

≥ Cxτ−log p/a

for a suitable constant C > 0.

We now proceed with the proof of the lower bound. We fix θ ≥ a, η ≥ η−
typ = (a/θ)ηtyp,

and let η̃ := θη/a. We also fix a retention parameter

p > pcrit := exp

{
aτ

(
1 − a

θ

)
− a

θ
inf
β

{
−θ

a
βη − γ (β)

}}
,

and denote the percolated tree by T ∗. We define a compact set

A∗(η) := A(η) ∩ ∂T ∗ = {ξ ∈ ∂T ∗ : ν(B(ξn)) ≤ e−nη for all n ∈ N}
and, for 0 < ε < ε0 as in Lemma 4.6, its regularization

A◦(η) := A∗(η) \ ∪
{
B(v) : dim(B(v) ∩ A∗(η) ∩ F(η̃ + ε))

<

(
1 − a

θ

)(
inf
β

{
−θ

a
βη − γ (β)

}
+ aτ

)
+ ε

}
.

Lemma 4.7. For a suitably small ε > 0, we have A◦(η) �= ∅ with positive probability.

Proof. It obviously suffices to show that there exists ε > 0 such that, with positive proba-
bility,

dim(A∗(η) ∩ F(η̃ + ε)) ≥
(

1 − a

θ

)(
inf
β

{
−θ

a
βη − γ (β)

}
+ aτ

)
+ 2ε.

By Lemma 4.5 we have, with positive probability,

dim(A∗(η̃ + ε)) ≥ log p + inf
β

{−β(η̃ + ε) − γ (β)} − ε.

As p > pcrit , we find a ε > 0 such that

log p + inf
β

{−β(η̃ + ε) − γ (β)} − ε ≥ log pcrit + inf
β

{−βη̃ − γ (β)} + 2ε

=
(

1 − a

θ

)(
inf
β

{
−θ

a
βη − γ (β)

}
+ aτ

)
+ 2ε.

It remains to note that η̃ ≥ η and, hence, A∗(η) ∩ F(η̃ + ε) ⊇ A∗(η̃ + ε).
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We may now consider 0 < ε < ε0 fixed to satisfy Lemma 4.7. For each N ∈ N, let

U(N) :=
{
ξ ∈ A◦(η) : there exists n ≥ N with − log µ(B(ξn)) > nθ + log

W

κ

}
.

The following lemma is key to proving the lower bound for G(θ, η).

Lemma 4.8. Almost surely, for all N ∈ N, U(N) is dense in A◦(η).

Proof. We need to show that, for any v ∈ T with B(v) ∩ A◦(η) �= ∅, we find a ray
ξ ∈ B(v) ∩ A◦(η) and n ≥ N with − log µ(B(ξn)) > nθ + log(W/κ). For this purpose,
fix v ∈ T and abbreviate m = |v|. Recall that T (v) is the tree consisting of the offspring
of v and use the notation |w|v to indicate the generation of w in T (v). Let G(n) be the
σ -algebra generated by the event {v ∈ T ∗}, the random variable ν(B(v)), and the tree T (v) up
to generation n including the random variables {X(w) : w ∈ T (v), |w|v ≤ n}.

Let Kn be the collection of vertices w = (w0, . . . , wn+m) with wm = v such that

ν(B(w)) ≤ e−(m+n)η̃ and ν(B(wi)) ≤ e−iη for all i ∈ {m, . . . , m + n}.
Let Kn be the cardinality of Kn, which is a G(n)-measurable random variable. We define a
sequence of G(n) stopping times N0, N1, . . . by N0 = N and

Nk = min

{
n > Nk−1 : Kn ≥ exp

{
n

((
1 − a

θ

)(
inf
β

{
−θ

a
βη − γ (β)

}
+ aτ

)
+ ε

2

)}}
.

If v ∈ T satisfies B(v) ∩ A◦(η) �= ∅ then these stopping times are finite, because the contrary
would imply an upper bound of (1−a/θ)(infβ{−θβη/a−γ (β)}+aτ)+ε/2 for the Hausdorff
dimension of B(v) ∩ A∗(η) ∩ F(η̃ + ε), contradicting the assumption that B(v) ∩ A◦(η) �= ∅.

For every vertex w ∈ KNj
, define the sets Ax

w(η) and Fw(η) in the same way as Ax(η) and
F(η), but with reference to the tree T (w). Abbreviate

d :=
(

1 − a

θ

)(
inf
β

{
−θ

a
βη − γ (β)

}
+ aτ

)
+ 2ε and x := e(Nj +m)(a−θ).

Define the event

E(w) :=
{
− log µ(B(w)) > (Nj + m)θ + log

W

κ

and dim(Ax
w(η) ∩ Fw(η̃ + ε) ∩ ∂T (w)∗) ≥ d

}

= {W(w) < κx and dim(Ax
w(η) ∩ Fw(η̃ + ε) ∩ ∂T (w)∗) ≥ d},

where the second equality follows from (3.1). Given G(Nj ), the events E(w) for w ∈ KNj
are

independent. Moreover, E(w) implies that there exists a ray

(w1, . . . , wm+Nj
, ξ1, ξ2, . . . ) ∈ B(v) ∩ A◦(η)

such that − log µ(B(w)) > (Nj + m)θ + log(W/κ), which are the required properties.
It remains to show that, given a vertex v ∈ T , |v| = m, such that N0, N1, . . . is a sequence

of finite stopping times, almost surely, there exist j ≥ 1 and w ∈ KNj
such that E(w) holds.
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By Lemma 4.6, the probability P(E(w) | G(Nj )) given w ∈ KNj
is bounded from below by a

constant multiple of

exp

{
(Nj + m)(a − θ)

(
τ − log p

a

)}

≥ exp

{
−(Nj + m)

(
1 − a

θ

)(
inf
β

{
−βη

θ

a
− γ (β)

}
+ aτ

)}

=: h(Nj ).

Recall that

KNj
≥ exp

(
Nj

((
1 − a

θ

)(
inf
β

{
−βη

θ

a
− γ (β)

}
+ aτ

)
+ ε

2

))
.

Hence,
P(E(w) fails for all w ∈ KNj

| G(Nj )) ≤ (1 − C exp{h(Nj )})KNj ,

and the result follows as limj→∞(1 − C exp{h(Nj )})KNj = 0.

We now use Lemma 4.8 and the Baire (category) theorem to prove the following lemma,
which will eventually lead to a lower bound for G(θ, η). Define

A∗(θ, η) :=
{
ξ ∈ ∂T ∗ : ν(B(ξn)) ≤ e−nη for all n ∈ N

and µ(B(ξn)) ≤ κ

W
e−nθ for infinitely many n ∈ N

}
.

Lemma 4.9. With positive probability, we have A∗(θ, η) �= ∅.

Proof. Note that
⋂∞

N=1 U(N) ⊆ A∗(θ, η). Observe that U(N) is relatively open in A◦(η),
which is compact, and, hence, a complete metric space. Now Lemma 4.8 says that, almost
surely, for every N ∈ N, U(N) is dense in A◦(η). Therefore, by the Baire theorem,

∞⋂
N=1

U(N) is dense in A◦(η)

and, hence, A∗(θ, η) is nonempty if A◦(η) �= ∅, which, by Lemma 4.7, is an event of positive
probability.

We now complete the proof of Theorem 2.2(b). By Lemma 4.9, if p > pcrit , with positive
probability,

G(θ, η) ∩ ∂T ∗ ⊇ A∗(θ, η) �= ∅.

Hence, we obtain from the remark following Lemma 4.3 that dim G(θ, η) ≥ − log p with
positive probability. Finally, we observe that dim G(θ, η) < − log p is an inherited property
of the Galton–Watson tree and as a result either has probability 0 or 1 by the Galton–Watson
0–1 law. Since the complementary event has positive probability, it must have probability 0.
Letting p ↓ pcrit completes the proof.
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