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A GEOMETRIC CHARACTERIZATION OF

Cn AND OPEN BALLS

KIYOSHI SHIGA

Introduction

The purpose of this paper is to give a result concerning the problem
of geometric characterizations of the Euclidean λi-space Cn and bounded
domains. It is well known that a simply connected Riemann surface is
biholomorphic to one of the Riemann sphere, the complex plane and the
unit disc. And there are several results concerning the geometric
characterization of these spaces. To show that some simply connected
open Riemann surface is biholomorphic to the complex plane or the unit
disc, it is sufficient to see that there exist non constant bounded sub-
harmonic functions or not. But in the higher dimensional case, there is
no uniformization theorem. By this reason to show that some complex
manifold is biholomorphic to Cn or an open ball, we must construct a
biholomorphic mapping directly.

The following problems are given by R. E. Greene and H. Wu in [1].

PROBLEM 1. If a complete Kahler manifold M is diίfeomorphic to
R2n and its sectional curvature is non positive and larger than — Ajr2+e

outside a compact set, then is M biholomorphic to CnΊ Here r is the
distance function from a fixed point of M and ε, A are some positive
constants.

PROBLEM 2. If a complete Kahler manifold M is diffeomorphic to R2n

and its sectional curvature is non positive and smaller than — Ajr2 out-
side a compact set, then is M biholomorphic to a bounded domain?

In this paper we consider the above problems under very restrictive
conditions, using a theorem of J. Milnor [4].
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1. A theorem of J. Milnor

In this section we recall a theorem of J. Milnor and his construction

of a holomorphic mapping for the later use. Let M be a simply connected

open Riemann surface with a complete hermitian metric g and o be a

point of M. Let exp: Mo -> M be the exponential mapping with respect

to g, where Mo is the tangent space at o. We assume exp is a diffeo-

morphism and g is rotationally symmetric at o, i.e., every rotation of Mo

is induced by an isometry of M. In the geodesic polar coordinate system

{r, θ}, g takes the form g = dr2 + f(r)2dθ2. The Gauss curvature depends

only on r and we denote it by K(r). The function / satisfies the follow-

ing Jacobi equation,

/"(r) = -K(r)f(r), with initial conditions /(0) = 0 and /'(0) = 1.

Introduce a new coordinate ρ(r) in place of r by setting p(r)

——. Then the metric takes the form
f(s)

g=dr2 + f(r)2dθ2 = f(r)\dp2 + dθ2) .

Hence p + iθ is a holomorphic coordinate on M ~ {o}. We define a

holomorphic mapping Φ: M — {o}-> Mo by Φ(p + £0) = e'+<*. We can

easily show that o is a removable singularity of Φ and Φ is a biholo-

morphic mapping from M into Mo. If = oo, M is biholomorphic
Ji f(s)

to C and if I — — < oo, M is biholomorphic to an open disc.
Ji f(s)

THEOREM (J. Milnor [4]). Let M be a simply connected open Riemann

surface with a complete hermitian metric. We assume the metric is

rotationally symmetric at a point o of M. We denote by r the distance

from o and by K{r) the Gauss curvature.

1. If K{r) ^ — l/r 2logr, for large r, then M is biholomorphic to C.

2. If K(r) <̂  — (1 + ε)/r2 log r for large r and if f(r) is not bounded,

then M is biholomorphic to an open disc. Here ε is some positive constant.

Greene and Wu [2] generalized this theorem to the case when the

metric is not necessarily rotationally symmetric.

2. Theorem and its proof

Let M be an jz-dimensional complete Kahler manifold and o be a
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point of M. We assume the exponential mapping exp: Mo-+ M is a

diffeomorphism. We call these manifolds Kάhler manifolds with a pole

(Greene and Wu [2]). We consider the hermitian inner product on Mo

induced from the Kahler metric on M. We denote by U(M0) the unitary

transformation group of Mo with respect to this inner product.

DEFINITION. A Kahler manifold with a pole (M, o) is a Kdhlerian

model iff every φ e U(M0) is realized as the differential of an isometry Φ

of M9 i.e., Φ(o) = o and Φ*o = φ.

LEMMA 1. Let (M, o) be a Kdhlerian model and Πo be a complex

linear subspace of Mo. Then Π = exp Πo is a totally geodesic complex

submanifold of M.

Proof. There exists φ e U(M0) such that Πo = {ue M0\φ(u) = u). Let

Φ be the isometry of M such that Φ(ό) = o and Φ*o = φ. Then Π is just

the fixed point set of Φ. Since Π is the fixed point set of an isometry,

Π is a totally geodesic submanifold (c. f. S. Kobayashi [3]). Let p be a

point of Π and γ be the geodesic joining o to p. We denote by Πp the

tangent space of Π at p. Let XeΠp and X be the parallel translation

of X along γ. Since Π is totally geodesic, Xo e Πo. Since the complex

structure J is parallel, JX is parallel along γ. On the other hand

JXQ e Πo and Π is totally geodesic, and so X and JX are tangent to Π.

This means JXeΠp. Thus Πp is invariant under J for every point of

pe Π. Consequently Π is a complex submanifold of M.

Let (M,ό) be a Kahlerian model. For a point pe M — {o}, there

exists a unique geodesic γ: [0, b] -> M with arc length parameter such

that ^(0) = o and f(ί?) = p. We define a vector field d on M — {o} by

9(p) = ΐΦ), and we call this vector field the radial vector field. And we

consider the holomorphic sectional curvature in the direction 3, i.e., the

sectional curvature of the tangent plane spanned by d and Jd, and we

call it the holomorphic radial curvature. Since (M, o) is a Kahlerian

model, the holomorphic radial curvature depends only on r where r is

the distance from the point o (Lemma 1), and we denote it by K(r).

Now, we shall prove

THEOREM. Let (M, o) be a Kdhlerian model and K(r) be the holomorphic

radial curvature. Then
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(1). If K(r) ^ — 1/r2 log r for large r, then M is biholomorphic to the

Euclidean n-space Cn.

(2). // K(r) is non positive and K(r) <I —(1 + ε)/r2logr for large r,

where ε is some positive constant, then M is biholomorphic to an open

ball in Cn.

Proof Let Πo be a 1-dimensional complex subspace of Mo. Then

77 = exp 77O is a totally geodesic complex submanifold of M (Lemma 1).

The curvature with respect to the induced metric is equal to the curvature

with respect to the metric of M. In the geodesic polar coordinate {r, θ]

on 77, the induced metric takes the form dr2 + f(r)2dθ2, since the induced

metric is rotationally symmetric at o. Put p(r) = —— and μ (r) = epir\

Ji f(s)

Let {f, θ} be the polar coordinate system of Mo and {r, θ} be the

corresponding geodesic polar coordinate system of M, where & and Θ are

spherical coordinates. They are related by f = r ° exp. and Θ = Θ o exp.

Now we define a mapping Φ: M — {o}-+ Mo by

f = μ(r) and Θ = Θ .

LEMMA 2. TΛe mapping Φ is holomorphic.

Proof. First we consider the case of n = 2. Let J and J o be the

complex structure on M and Mo respectively. We shall prove Φ*(JX) =

J0Φ*(X) for all XeMp and peM—{o}. Take an orthonormal linear

coordinate system {zu z2} on Mo. Put zt — xt + iyu then {#!, ylf x2) 2̂} is a

real linear orthonormal coordinate system on Mo. We consider {xu yl9 x2, y2}

also as a coordinate system of M via the exponential mapping, the

normal coordinate system of M at 0. Let p be a point of M — {0} and

i70 be the 1-dimensional subspace of M such that 77 = exp 77O contains p.

We assume 77O is the subspace {z2 = 0} of Mo without loss of generality.

77 is a totally geodesic complex submanifold of M and Φ\π: 77 — {o}—>77O,

the restriction of Φ to 77 — {0} is the same with the mapping constructed

by Milnor. Then Φ\π is holomorphic and Φ*(JX) = J0Φ*{X) for any

vector XeΠp. Next we consider the case XeΠ^ where 77̂ - is the

orthogonal complement of Πp with respect to the Kahler metric on M.

It is clear that Πp is spanned by (d/dx^p, {djdyϊ)p. First we see that 77̂ - is

spanned by (dldx2)p, (d/dy2)p. Obviously 77̂ - is spanned by (djdx2)O9 (djdy2)0.

Let γ be the geodesic joining o to p9 then γ is contained in 77. If we

consider a unitary transformation φθ of the form
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1 0

. ! 0

Φθ ~=1

r\ cos θ — sin θ
COS0.

Π^ is invariant under φθ. There is an isometry of Φθ of M such that

Φθ(ό) = o,Φθ*o = φθ by the assumption of the theorem. φθ and Φθ operate

in the same manner on Mo and M through the exponential mapping.

Πj; is obtained by the parallel translation of Π^ along γ. If X is a

parallel vector field along γ then ΦΘ*X is also parallel along γ. Hence

Π% is invariant under Φθ*. On the other hand the invariant subspace

under Φθ* complemental to Πp is spanned by (d/dx2)p, (9/9j>2)p. This means

that Πp1 is spanned by (d/dx2)p,(d/dy2)p.

The restriction of the complex structure J to 77̂ - is φπ/2. Let Xellw-

and X be the parallel vector field along γ such that Xo = X. Since JX

and Φπ/2*X are parallel along γ with the same value at o, we have

JX = Φ ^ X More explicitly J(3/dx2)p = (a/3^2)p and J(d/dy2)p = ~(d/dx2)p.

Let Sδ be the geodesic sphere of radius 6 around o and Sb be the sphere

in Mo. Since Φ maps Sδ into SMb) and preserves the coordinate of spherical

part, we have

Φ*(didx2)p = ^6)/6 d/dx2, Φ (̂9/ay2)p - M&)/6 Wy* >

Since J 0 3/3x2 = 9/d;y2, J 0 3/9y2 = — 9/3x2 and J{djdx2)p =^ {djdy2)p, J{dfdy2)p

= —(d/dx2)p, we have

)p) = J0Φ*{dldx2)p, Φ*(J(d/dy2)p) = J0Φ*(d/dy2)p.

This means J0Φ*(X) = Φ*(JX) for all Xei7^. This completes the proof

of the lemma in the case of n = 2.

Next we consider the case τι ^ 3. Let p be a point of M - {o} and

X be a tangent vector at p. There is a 2-dimensional complex subspace

Πo of Mo such that 77 = exp Πo contains p and X is tangent to 77. 77

is a complex submanifold and (77, o) is a 2-dimensional Kahlerian model

with respect to the induced metric. Then Φ\Π is holomorphic. Hence

Φ*(JX) = J0Φ*(X), and this completes the proof of Lemma 2.

We continue the proof of the theorem. Since Φ is holomorphic and

o is a removable singularity, we can extend Φ across o. Obviously Φ is

a one to one mapping. So M is biholomorphic to Φ(M). In the case of
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(1), limμ(r) = oo, then Φ(M) = Mo. In the case of (2), f(r) is larger than
r-κχ

r, since f(r) satisfies the Jacobi equation. Hence f(r) is unbounded. By
the theorem of Milnor μ(r) is bounded and Φ(M) is an open ball of
radius lim μ(r). This completes the proof of the theorem.
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