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Kac–Moody groups

Timothée Marquis

Abstract

In this paper, we establish that complete Kac–Moody groups over finite fields are
abstractly simple. The proof makes essential use of Mathieu and Rousseau’s construction
of complete Kac–Moody groups over fields. This construction has the advantage that
both real and imaginary root spaces of the Lie algebra lift to root subgroups over
arbitrary fields. A key point in our proof is the fact, of independent interest, that both
real and imaginary root subgroups are contracted by conjugation of positive powers of
suitable Weyl group elements.

1. Introduction

Let A = (Aij)16i,j6n be a generalised Cartan matrix and let G = GA denote the associated
Kac–Moody–Tits functor of simply connected type, as defined by Tits [Tit87]. The value of G
over a field k is usually called a minimal Kac–Moody group of type A over k. This terminology is
justified by the existence of larger groups associated with the same data, usually called maximal
or complete Kac–Moody groups, and which are completions of G(k) with respect to some suitable
topology. One of them, introduced in [RR06], and which we will temporarily denote by ĜA(k),
is a totally disconnected topological group. It is, moreover, locally compact provided k is finite,
and non-discrete (hence uncountable) as soon as A is not of finite type.

The question whether ĜA(k) is (abstractly) simple for A indecomposable and k arbitrary
is very natural and was explicitly addressed by Tits [Tit89]. Abstract simplicity results for ĜA(k)
over fields of characteristic 0 were first obtained in an unpublished note by Moody [Moo82].
Moody’s proof has recently been generalised by Rousseau [Rou12, Théorème 6.19] who extended
Moody’s result to fields k of positive characteristic p that are not algebraic over Fp. The abstract
simplicity of ĜA(k) when k is a finite field was shown in [CER08] in some important special cases,
including groups of 2-spherical type over fields of order at least 4, as well as some other hyperbolic
types under additional restrictions on the order of the ground field.

In this paper, we establish the abstract simplicity of complete Kac–Moody groups ĜA(k) of
indecomposable type over arbitrary finite fields, without any restriction. Our proof relies on an
approach which is completely different from that used in [CER08].

Theorem A. Let ĜA(Fq) be a complete Kac–Moody group over a finite field Fq, with generalised
Cartan matrix A. Assume that A is indecomposable of indefinite type. Then ĜA(Fq) is abstractly
simple.
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As it turns out, it does not matter which completion of GA(Fq) we are considering; see

Theorem B and Remark 1 below.

After completion of this work, I was informed by Bertrand Rémy that, in a recent joint

work [CR13] with I. Capdeboscq, they obtained independently a special case of this theorem,

namely the abstract simplicity over finite fields of order at least 4 and of characteristic p in the

case where p is greater than M = maxi 6=j |Aij |. Their approach is similar to that used in [CER08].

Note that the topological simplicity of ĜA(Fq) (that is, the absence of non-trivial closed

normal subgroups), which we will use in our proof of Theorem A, was previously established by

Rémy when q > 3 (see [Rém04, Theorem 2.A.1]); the tiniest finite fields were later covered by

Caprace and Rémy (see [CR09, Proposition 11]).

Note also that for incomplete groups, abstract simplicity fails in general since groups of

affine type admit numerous congruence quotients. However, it has been shown by Caprace and

Rémy [CR09] that GA(Fq) is abstractly simple provided A is indecomposable, q > n > 2 and

A is not of affine type. They also recently covered the rank 2 case for matrices A of the form

A =
(

2 −m
−1 2

)
with m > 4 (see [CR12, Theorem 2]).

As mentioned at the beginning of this introduction, different completions of G(k) have been

considered in the literature, and therefore all deserve the name ‘complete Kac–Moody groups’.

We now proceed to review them briefly.

Essentially three such completions have been constructed so far, from very different points

of view. The first construction, due to Rémy and Ronan [RR06], is the one we considered above.

It is the completion of the image of G(k) in the automorphism group Aut(X+) of its associated

positive building X+, where Aut(X+) is equipped with the compact-open topology. For the

rest of this paper, we will denote this group by Grr(k), so that Ĝ(k) = Grr(k) in our previous

notation. To avoid taking a quotient of G(k), a variant of this group has also been considered

by Caprace and Rémy [CR09, § 1.2]. This latter group, here denoted Gcrr (k), contains G(k) as

a dense subgroup and admits Grr(k) as a quotient.

The second construction, due to Carbone and Garland [CG03], associates to a regular

dominant integral weight λ the completion, here denoted by Gcgλ(k), of G(k) for the so-called

weight topology.

The third construction, of which we will make essential use, was first introduced by

Mathieu [Mat88] and further developed by Rousseau [Rou12]. It is more algebraic and closer

in spirit to the construction of G. In fact, one gets a group functor over the category of

Z-algebras, which we will subsequently denote by Gpma. As noted in [Rou12, 3.20], this functor

is a generalisation of the complete Kac–Moody group over C constructed by Kumar [Kum02,

§ 6.1.6]. Note that in this case the closure G(k) of G(k) in Gpma(k) need not be the whole of

Gpma(k). However, G(k) = Gpma(k) as soon as the characteristic of k is zero or greater than the

maximum M (in absolute value) of the non-diagonal entries of A (see [Rou12, Proposition 6.11]).

These three constructions are strongly related, and hopefully equivalent. In particular,

they all possess refined Tits systems whose associated building is the positive building X+

of G(k) (with possibly different apartment systems). Moreover, there are natural continuous

group homomorphisms G(k)→ Gcgλ(k) and Gcgλ(k)→ Gcrr (k) extending the identity on G(k)

(see [Rou12, 6.3]). Their composition φ : G(k) → Gcgλ(k) → Gcrr (k) is an isomorphism of

topological groups in many cases (see [Rou12, Théorème 6.12]) and conjecturally in all cases.

If G is either Gpma(k) or G(k) or Gcgλ(k) or Gcrr (k), we let Z ′(G) denote the kernel of the

G-action on X+. As mentioned in Remark 1 below, Theorem A immediately implies the abstract

714

https://doi.org/10.1112/S0010437X13007598 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007598


Abstract simplicity of locally compact Kac–Moody groups

simplicity of G/Z ′(G) whenever G is one of G(k) or Gcgλ(k) or Gcrr (k) (and k is finite). As

pointed out to me by Pierre-Emmanuel Caprace, our arguments in fact also imply the abstract

simplicity of Gpma(k)/Z ′(Gpma(k)), even when G(k) 6= Gpma(k).

Theorem B. Assume that the generalised Cartan matrix A is indecomposable of indefinite type.

Then Gpma
A (Fq)/Z

′(Gpma
A (Fq)) is abstractly simple over any finite field Fq.

Note that even the topological simplicity of Gpma
A (Fq)/Z

′(Gpma
A (Fq)) was not previously

known in full generality (see [Rou12, Lemme 6.14 and Proposition 6.16] for known results).

While the Rémy–Ronan construction is more geometric in nature, the Mathieu–Rousseau

construction is purely algebraic and hence a priori more suitable for establishing algebraic

properties of complete Kac–Moody groups. The present paper is a good illustration of this

idea, and we hope it provides a strong motivation for studying these ‘algebraic completions’

further.

Remark 1. When the field k is finite, the several group homomorphisms G(k) → Gcgλ(k) →
Gcrr (k) → Grr(k) 6 Aut(X+) are all surjective (see [Rou12, 6.3]), and if G is either G(k) or

Gcgλ(k) or Gcrr (k), the effective quotient of G by the kernel Z ′(G) of its action on X+ coincides

with Grr(k). If, moreover, the characteristic p of k is greater than the maximum M (in absolute

value) of the non-diagonal entries of A, one has G(k) = Gpma(k), and thus in that case there

is only one simple group G/Z ′(G). Hence Theorem B is a consequence of Theorem A when

p > M . If p 6 M , it is possible that the effective quotient of Gpma(k) inside Aut(X+) properly

contains Grr(k) (see Corollary F below). When this happens, Theorem B thus asserts the abstract

simplicity of a different group than the one considered in Theorem A.

Finally, we notice that, although we assumed the Kac–Moody groups to be of simply

connected type to simplify the notation, the results remain valid for an arbitrary Kac–Moody

root datum (see Remark 6.3).

In the proof of Theorems A and B, we establish other results of independent interest, which

we now proceed to describe.

Let k be an arbitrary field. Fix a realisation of the generalised Cartan matrix A = (aij)16i,j6n

as in [Kac90, § 1.1]. Let Q =
∑n

i=1 Zαi be the associated root lattice, where α1, . . . , αn are the

simple roots. Let also ∆ (respectively, ∆±) be the set of roots (respectively, positive/negative

roots), so that ∆ = ∆+ t∆−. Write also ∆re and ∆im (respectively, ∆re
+ and ∆im

+ ) for the set of

(positive) real and imaginary roots.

Recall that a subset Ψ of ∆ is closed if α + β ∈ Ψ whenever α, β ∈ Ψ and α + β ∈ ∆.

For a closed subset Ψ of ∆+, define the subgroup scheme UmaΨ of Gpma as in [Rou12, 3.1]. Set

Uma+ = Uma∆+
. One can then define root groups Uma(α) in Uma+ by setting Uma(α) := Uma{α} for α ∈ ∆re

+

and Uma(α) := UmaN∗α for α ∈ ∆im
+ , where N∗ = N\{0}.

We also let B+, U+, N and T denote, as in [Rou12, 1.6], the sub-functors of G = GA such

that over k, (B+(k) = U+(k) o T(k),N(k)) is the canonical positive BN-pair attached to G(k),

and N(k)/T(k) ∼= W , where W = W (A) is the Coxeter group attached to A. We fix once for

all a section W ∼= N(k)/T(k)→ N(k) : w 7→ w. Note that N can be viewed as a sub-functor of

Gpma (see [Rou12, 3.12, Remarque 1]).

Finally, given a topological group H and an element a ∈ H, we define the contraction group

conH(a), or simply con(a), as the set of elements g ∈ H such that anga−n
n→∞−−−→ 1. Note then

that for any a ∈ G(k) ⊆ Gpma(k), one has ϕ(conGpma(k)(a) ∩G(k)) ⊆ conGrr(k)(ϕ(a)), where we

denote by ϕ the composition G(k)
φ→ Gcrr (k)→ Grr(k).
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Theorem C. Let k be an arbitrary field.

(i) Let ω ∈ W and let Ψ ⊆ ∆+ be a closed set of positive roots such that ωΨ ⊆ ∆+. Then

ωUmaΨ ω −1 = UmaωΨ.

(ii) Let ω ∈W and α ∈ ∆+ be such that ωlα is positive and different from α for all positive

integers l. Then Uma(α) ⊆ conGpma(k)(ω). In particular, ϕ(Uma(α) ∩G(k)) ⊆ conGrr(k)(ω).

(iii) Assume that A is of indefinite type. Then there exists some ω ∈ W such that Uma(α) ⊆
conGpma(k)(ω)∪ conGpma(k)(ω −1) for all α ∈ ∆+. Hence root groups (associated to both real and

imaginary roots) are contracted.

The proof of Theorem C can be found at the end of Section 4. The idea behind proving

Theorem A once Theorem C is established is as follows. We let a ∈N(Fq) be such that Uma(α)(Fq)⊆
conGpma(Fq)(a)∪conGpma(Fq)(a−1) for all α ∈∆+, as in Theorem C(iii). We deduce that Urr+(Fq)

is contained in the subgroup generated by the closures of conGrr(Fq)(a±1). Now, as the topological

simplicity of Grr(Fq) is known, it suffices to consider a dense normal subgroup K of Grr(Fq).

We can then conclude by invoking the following result of Caprace, Reid and Willis [CRW13,

Theorem 1.1].

Theorem 1.1. Let G be a totally disconnected locally compact group and let K be a dense

normal subgroup of G. Then K contains the closure in G of con(g) for any g ∈ G.

The proof of Theorem B follows the exact same lines, except that in this case the topological

simplicity of the group is not known in full generality, and we need one more argument to

establish it.

We also point out that Theorem C has another application, concerning the existence of

non-closed contraction groups in complete Kac–Moody groups of non-affine type. Recall that in

simple algebraic groups over local fields, contraction groups are always closed (in fact they either

are trivial or coincide with the unipotent radical of some parabolic subgroup). In particular,

they are closed in a complete Kac–Moody group G over a finite field as soon as the defining

generalised Cartan matrix A is of non-twisted affine type. It has been shown in [BRR08] that,

on the other hand, if A is indecomposable non-spherical, non-affine and of size at least 3, then

the contraction group con(a) of some element a ∈ G must be non-closed. The following result

shows that this also holds when A is indecomposable non-spherical, non-affine and of size 2.

Theorem D. Let A denote an n × n generalised Cartan matrix of indecomposable indefinite

type, let W = W (A) be the associated Weyl group, and let w = s1 . . . sn denote the Coxeter

element of W . Let also G be one the complete Kac–Moody groups Grr
A (Fq) or Gpma

A (Fq) of

simply connected type. Then the contraction group conG(w) is not closed in G, unless perhaps

if G = Grr
A (Fq) and Uma

∆im
+

(Fq) ∩G(Fq) is contained in the kernel of ϕ.

Here is a final application of our results concerning isomorphism classes of Kac–Moody

groups and their completions. While over infinite fields, it is known that two minimal

Kac–Moody groups can be isomorphic only if their ground fields are isomorphic and their

underlying generalised Cartan matrices coincide up to a row–column permutation (see [Cap09,

Theorem A]), this fails to be true over finite fields. Indeed, over a given finite field, two minimal

Kac–Moody groups associated with two different generalised Cartan matrices of size 2 can

be isomorphic, as noticed in [Cap09, Lemma 4.3]. The following result shows, however, that

the corresponding Mathieu–Rousseau completions should not be expected to be isomorphic as

topological groups.
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Theorem E. Let k = Fq be a finite field with char k 6= 2. Then there exist minimal Kac–Moody

groups G1 = GA1(Fq) and G2 = GA2(Fq) over Fq associated to 2×2 generalised Cartan matrices

A1, A2, such that G1 and G2 are isomorphic as abstract groups, but their Mathieu–Rousseau

completions Gpma
A1

(Fq) and Gpma
A2

(Fq) are not isomorphic as topological groups.

This surprising result provides, in particular, the first known families of examples over

arbitrary finite fields (of characteristic at least 3) of minimal Kac–Moody groups that are not

dense in their Mathieu–Rousseau completion (up to now, the only known such family was given

over F2 in [Rou12, 6.10]).

Corollary F. Let k = Fq be a finite field with char k 6= 2. Let A =
(

2 −m
−n 2

)
be a generalised

Cartan matrix with m,n > 2 and assume that m ≡ n ≡ 2 (mod q − 1). Then the minimal Kac–

Moody group GA(Fq) of simply connected type is not dense in its Mathieu–Rousseau completion

Gpma
A (Fq).

The proof of these statements will be given in § 5.

The paper is organised as follows. We first fix some notation and provide an outline of the

construction of Mathieu–Rousseau completions in § 2. We next prove some preliminary results

about the Coxeter group W and the set of roots ∆ in § 3. We then use these results to prove a

more precise version of Theorem C in § 4. We establish its consequences in § 5, and we conclude

the proof of Theorems A and B in § 6.

2. Preliminaries

2.1 Notations

Throughout this paper, we write N∗ (respectively, Z∗) for the set of non-zero natural numbers

(respectively, non-zero integers).

For the rest of this paper, k denotes an arbitrary field and A = (aij)i,j∈I denotes a generalised

Cartan matrix indexed by I = {1, . . . , n}. We fix a realisation (h,Π,Π∨) of A as in [Kac90,

§ 1.1]. We then retain all notation from the introduction. In particular, ∆ is the corresponding

set of roots and Π = {α1, . . . , αn} (respectively, Π∨ = {α∨1 , . . . , α∨n}) the set of simple roots

(respectively, coroots). For α ∈ ∆, we denote by ht(α) its height.

Recall the definition of the Tits functor G = GA and of its sub-functors B+, U+, N and

T. Again, Grr(k) denotes the Rémy–Ronan completion of G(k) and Urr+(k) the completion

in Grr(k) of U+(k), so that (Urr+(k) o T(k),N(k)) is a BN-pair for Grr(k) (see [CR09,

Proposition 1]). We will give more details about the Mathieu–Rousseau completion Gpma(k)

of G(k) in § 2.2 below.

As before, W = W (A) ∼= N(k)/T(k) is the Coxeter group associated to A, with generating

set S = {s1, . . . , sn} such that si(αj) = αj − aijαi for all i, j ∈ I, and we fix a section W ∼=
N(k)/T(k)→ N(k) : w 7→ w.

Finally, to avoid cumbersome notation, we will write con(a) for both contraction groups

conGpma(k)(a) and conGrr(k)(a), as k is fixed and as it will be always clear in which group we are

working.

2.2 The Mathieu–Rousseau completion

We now outline the construction of the Mathieu–Rousseau completion of G and give its basic

properties, as it will play an important role in what follows. The general reference for this section

is [Rou12].
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Some notation. Let Λ∨ be the free Z-module generated by Π∨, and let Λ be its Z-dual, which
we view as a Z-form of the dual h∗. In particular, Λ contains Π. Then, as we are considering a
Tits functor GA of simply connected type, the torus T(k) = TΛ(k) = Homgr(Λ, k

×) is generated
by {rh | r ∈ k×, h ∈ Π∨}, where

rh : Λ→ k× : λ 7→ r〈λ,h〉.

Let g denote the Kac–Moody algebra of G with root space decomposition g = h⊕
⊕

α∈∆ gα,
and let e1, . . . , en and f1, . . . , fn be the corresponding Chevalley generators, so that gαi = Cei
and g−αi = Cfi for all i ∈ I. Let also U denote the Z-form of the enveloping algebra UC(g)
of g introduced by Tits (see [Rou12, § 2]): this is a Z-bialgebra graded by Q :=

⊕
i∈I Zαi and

containing the elements e
(l)
i := eli/l! and f

(l)
i := f li/l! (l ∈ N, i ∈ I). We write Uα for the weight

space corresponding to α ∈ Q. The W -action on ∆ induces a W -action on UC(g) with si (i ∈ I)
acting as

s∗i = exp(ad ei) exp(ad fi) exp(ad ei) ∈ Aut(UC(g)).

This W -action preserves U , and given α ∈ ∆re such that α = wαi for some w ∈ W and i ∈ I,
the element eα = w∗ei is well defined (up to a choice of sign) and is a Z-basis for gαZ := gα ∩U .
In particular, we may choose e−αi := fi as a basis for g−αiZ. For a ring R, we also set gαR :=
gαZ ⊗Z R.

For a closed set Ψ ⊆ ∆, we define the Z-subalgebra U(Ψ) of U generated by all Uα :=
UC(⊕n> 1gnα)∩U for α ∈ Ψ. If in addition Ψ ⊆ w(∆+) for some w ∈W , we may also define the
completion ÛR(Ψ) of U(Ψ) over any ring R as

ÛR(Ψ) =
∏

α∈w.Q+

(U(Ψ)α ⊗Z R),

where Q+ :=
⊕

i∈I Nαi and U(Ψ)α = U(Ψ) ∩ Uα.

Pro-unipotent groups. The first step in the construction of Gpma is to define for each closed
set Ψ ⊆ ∆+ of positive roots the affine group scheme UmaΨ (which we view as a group functor)
whose algebra is the restricted dual

Z[UmaΨ ] :=
⊕
α∈NΨ

U(Ψ)∗α

of U(Ψ). In other words,

UmaΨ (R) = HomZ-alg(Z[UmaΨ ], R) for any ring R.

One can then define root groups Uma(α) in Uma+ := Uma∆+
by setting Uma(α) = Uα := Uma{α} for α ∈ ∆re

+

and Uma(α) := UmaN∗α for α ∈ ∆im
+ . For α ∈ ∆re

+ , one can similarly define the root group U−α = Uma{−α}
as above, with Ψ replaced by {−α}. In other words, for each α ∈ ∆re, the real root group Uα is
isomorphic to the additive group scheme Ga by

xα : Ga(R)
∼→ Uα(R) : r 7→ exp(reα)

for any ring R (see Proposition 2.1 below). Note that, identifying {Uα(R) | α ∈ ∆re} with the
root group datum of G(R), the element si ∈ N(R) lifting si ∈W may then be chosen as

si = xαi(1)x−αi(1)xαi(1) = exp(ei) exp(fi) exp(ei).

The group functor UmaΨ admits a nice description in terms of root groups, which we now briefly
review. For each x ∈ gαZ, α ∈∆+, G. Rousseau makes a choice of an exponential sequence, namely
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of a sequence (x[n])n∈N where x[0] = 1, x[1] = x, and x[n] ∈ Unα is such that x[n] − xn/n! has
filtration less than n in UC(g) for each n ∈N, and which satisfies some additional compatibility
condition with the bialgebra structure on U (see [Rou12, Propositions 2.4 and 2.7]). Such an
exponential sequence for x is unique up to modifying each x[n], n > 2, by an element of gnαZ.
For a ring R and an element λ ∈ R, one can then define the twisted exponential

[exp]λx :=
∑
n>0

λnx[n] ∈ ÛR(∆+).

Note that for α a real root, one can take the usual exponential. For each α ∈ ∆+, let Bα be
a Z-basis of gαZ. For α ∈ ∆re, we choose Bα = {eα}. Finally, for a closed subset Ψ ⊆ ∆+, set
BΨ =

⋃
α∈Ψ Bα. Here is the description of UmaΨ .

Proposition 2.1 [Rou12, Proposition 3.2]. Let Ψ ⊆ ∆+ be closed and let R be a ring. Then
UmaΨ (R) can be identified with the multiplicative subgroup of ÛR(Ψ) consisting of the products∏

x∈BΨ

[exp]λxx

for λx ∈ R, where the product is taken in any (arbitrary) chosen order on BΨ. The expression
for an element of UmaΨ (R) in the form of such a product is unique.

A consequence of this proposition which we will use later on is the following lemma
(see [Rou12, Lemme 3.3]).

Lemma 2.2. Let Ψ′ ⊆ Ψ ⊆∆+ be closed subsets of roots. Then UmaΨ′ is a closed subgroup of UmaΨ .
Moreover, if Ψ\Ψ′ is closed as well, then there is a unique decomposition UmaΨ = UmaΨ′ · UmaΨ\Ψ′ .

Minimal parabolics. The next step in the construction of Gpma is to define, for each i ∈ I, the
minimal parabolic subgroup Bma+

i of type i as the semi-direct product of Uma∆+\{αi} with the unique
connected affine algebraic group AΛ

i associated to the Kac–Moody root datum ({1}, (2),Λ, {αi},
{α∨i }) (see [Spr98, Theorem 10.1.1]). Note that AΛ

i contains T, Uαi and U−αi as closed subgroups
and is generated by them. To define this semi-direct product, it is thus sufficient to describe for
each ring R conjugation actions of T(R) = Homgr(Λ, R

×) and Uα(R) = {exp(reα) | r ∈ R} on
Uma∆+\{αi}, for α ∈ {±αi}. For t ∈ T(R), this is defined using Proposition 2.1 by

Int(t) · [exp]λx = [exp]t(γ)λx if x ∈ gγR.

For α ∈ {±αi}, we set
Int(exp(eα))(z) =

∑
m>0

(ad(eα)m/m!)(z)

for all z ∈ Uma∆+\{αi}(R), where Uma∆+\{αi}(R) is viewed as a subset of either ÛR(∆+) or ÛR(si(∆+)),
depending on whether α = αi or α = −αi.

The following lemma will be crucial for us.

Lemma 2.3. For any α ∈ ∆+ and any w ∈W such that wα ∈ ∆+,

wUma(α)w
−1 = Uma(wα).

Proof. For α a real root, this is [Rou12, 3.11]. In any case, this amounts to showing that, whenever
si ∈W is such that si(α) ∈ ∆+,

si · ([exp]x) · si −1 = [exp](s∗ix)
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for any homogenous x ∈ ⊕n>1gnαR, with R an arbitrary ring. This last statement readily follows

from the definition of the semi-direct product defining Bma+
i . 2

The group scheme Gpma. The Mathieu–Rousseau completion Gpma of G is then defined as

some amalgamated product of the minimal parabolics Bma+
i , i ∈ I (see [Rou12, 3.6]). Over the

field k, the identification of {Uα(k) | α ∈ ∆re} with the root group datum of G(k) (as well as

the identification of the tori T(k) of G(k) and Gpma(k)) induces an injection of G(k) in Gpma(k)

(see [Rou12, Proposition 3.13]). The Borel subgroup Bma+(k) = T(k)nUma+(k) and N(k) form

a BN-pair for Gpma(k) with associated building the positive building of G(k) (see [Rou12, 3.16]).

The topology on Gpma(k) is given as follows. For each n ∈ N, set Uman := UmaΨ(n), where

Ψ(n) = {α ∈ ∆+ | ht(α) > n}.

Lemma 2.4 [Rou12, 6.3.6]. Gpma(k) is a complete (Hausdorff) topological group with basis of

neighbourhoods of the identity the subgroups Uman (k), n ∈ N.

Comparison with the Rémy–Ronan completion. Recall from the introduction the continuous

homomorphism ϕ : G(k) → Grr(k), where G(k) denotes the closure of G(k) in Gpma(k). Write

also U+(k) for the closure of U+(k) in Uma+(k).

Lemma 2.5 [Rou12, 6.3.5]. Assume that the field k is finite. Then the restriction of ϕ to U+(k)

is surjective onto Urr+(k).

3. Coxeter groups and root systems

In this section, we prepare the ground for the proof of Theorem A by establishing several results

which concern the Coxeter group W and the set of roots ∆. Basics on these two topics are

covered in [AB08, chs. 1–3] and [Kac90, chs 1–5], respectively.

Throughout this section, we let Σ = Σ(W,S) denote the Coxeter complex of W . Also, we let

C0 be the fundamental chamber of Σ. Finally, with the exception of Lemma 3.1 below where no

particular assumption on W is made, we will always assume that W is infinite irreducible. Note

that this is equivalent to saying that A is indecomposable of non-finite type.

Lemma 3.1. Let w = s1 . . . sn be a Coxeter element of W . Let A = A1 + A2 be the unique

decomposition of A as a sum of matrices A1, A2 such that A1 (respectively, A2) is an upper

(respectively, lower) triangular matrix with 1s on the diagonal. Then the matrix of w in the

basis {α1, . . . , αn} of simple roots is −A−1
1 A2 = In −A−1

1 A.

Proof. For a certain property P of two integer variables i, j (e.g. P(i, j) ≡ j 6 i), we introduce

the Kronecker symbol δP(i,j) taking value 1 if P(i, j) is satisfied and 0 otherwise.

Let B = (bij) denote the matrix of w in the basis {α1, . . . , αn}. Thus, bij is the coefficient

of αi in the expression for s1 . . . snαj as a linear combination of the simple roots, which we will

write as [s1 . . . snαj ]i. Thus bij = [s1 . . . snαj ]i = [si . . . snαj ]i. Note that

si+1 . . . snαj =
n∑

k=i+1

[si+1 . . . snαj ]kαk + δj6iαj =
n∑

k=i+1

bkjαk + δj6iαj .
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Therefore

bij =

[
si

( n∑
k=i+1

bkjαk + δj6iαj

)]
i

= −
n∑

k=i+1

aikbkj − δj6iaij + δi=j

=

(
−

n∑
k=1

(A1)ikbkj + bij

)
+ (δj>iaij − aij) + δi=j

=−
n∑
k=1

(A1)ikbkj + bij − aij +

n∑
k=1

(A1)ik(In)kj .

Thus A = −A1B +A1, so that B = −A−1
1 A2, as desired. 2

For ω ∈ W and α ∈ ∆+, define the function fωα : Z → {±1} : k 7→ sign(ωkα), where
sign(∆±) = ±1.

Lemma 3.2. Let ω ∈ W be such that `(ωl) = |l|`(ω) for all l ∈ Z. Then fωα is monotonic for all
α ∈ ∆+.

Proof. Let ω ∈ W be such that `(ωl) = |l|`(ω) for all l ∈ Z and let ω = t1t2 . . . tk be a reduced
expression for ω, where tj ∈ S for all j ∈ {1, . . . , k}. Let α ∈ ∆+ and assume that fωα is not
constant. Then α is a real root because W.∆im

+ = ∆im
+ . Let kα ∈ Z∗ be minimal (in absolute

value) so that fωα (kα) = −1. We deal with the case when kα > 0; the same proof applies for
kα < 0 by replacing ω with its inverse. We have to show that ωlα ∈ ∆− if and only if l > kα.

Let β := ωkα−1α. Thus β ∈ ∆re
+ and ωβ ∈ ∆re

− . It follows that there is some i ∈ {1, . . . , k}
such that β = tktk−1 . . . ti+1αti . In other words, β is one of the n positive roots whose wall ∂β
in the Coxeter complex Σ of W separates the fundamental chamber C0 from ω−1C0. We want
to show that ωlβ ∈ ∆− if and only if l > 1.

Assume first for a contradiction that there is some l > 1 such that ωl+1β ∈ ∆+, that is,
ωl+1β contains C0. Since ωl+1β contains ωl+1C0 but not ωlC0, its wall ωl+1∂β separates ωlC0

from ωl+1C0 and C0. In particular, any gallery from C0 to ωl+1C0 going through ωlC0 cannot
be minimal. This contradicts the assumption that `(ωl) = |l|`(ω) for all l ∈ Z since this implies
that the product of l + 1 copies of t1 . . . tk is a reduced expression for ωl+1.

Assume next for a contradiction that there is some l > 1 such that ω−lβ ∈ ∆−. Then as
before, ω−l∂β separates ω−lC0 from ω−l−1C0 and C0. Again, this implies that any gallery from
C0 to ω−l−1C0 going through ω−lC0 cannot be minimal, yielding the desired contradiction. 2

Corollary 3.3. Let w = s1 . . . sn be a Coxeter element of W . Then fwα is monotonic for all
α ∈ ∆+.

Proof. As `(wl) = |l|`(w) for all l ∈ Z by the main result of [Spe09], this readily follows from
Lemma 3.2. 2

Lemma 3.4. Assume that A is of indefinite type. Let w = s1 . . . sn be a Coxeter element of W ,
and let α ∈ ∆+. Then wlα 6= α for all non-zero integers l.

Proof. Assume for a contradiction that wkα = α for some k ∈ N∗. It then follows from
Corollary 3.3 that wiα ∈ ∆+ for all i ∈ {0, . . . , k − 1}. Viewing w as an automorphism of
the root lattice, we get that

(w − Id)(wk−1 + · · ·+ w + Id)α = 0.
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Moreover, β := (wk−1 + · · ·+w + Id)α is a sum of positive roots, and hence can be viewed as a
non-zero vector of Rn with non-negative entries. Recall from Lemma 3.1 that w is represented
by the matrix −A−1

1 A2. Thus, multiplying the above equality by −A1, we get that Aβ = 0.
Since A is indecomposable of indefinite type, this gives the desired contradiction by [Kac90,
Theorem 4.3]. 2

Lemma 3.5. Let ω ∈ W and α ∈ ∆+ be such that ωlα 6= α for all positive integers l. Then
|ht(ωlα)| goes to infinity as l goes to infinity.

Proof. If |ht(ωlα)| were bounded as l goes to infinity, the set of roots {ωlα | l ∈ N} would be
finite, and so there would exist an l ∈ N∗ such that ωlα = α, a contradiction. 2

Lemma 3.6. Assume that A is of indefinite type. Let w = s1 . . . sn be a Coxeter element of W ,
and let α ∈ ∆+. Then there exists some ε ∈ {±} such that wεlα ∈ ∆+ for all l ∈ N. Moreover,
ht(wεlα) goes to infinity as l goes to infinity.

Proof. The existence of ε readily follows from Corollary 3.3, while the second statement is a
consequence of Lemmas 3.4 and 3.5. 2

4. Contraction groups

In this section, we make use of the results proven so far to establish, under suitable hypotheses,
that the subgroups Uma+(k) of Gpma(k) and Urr+(k) of Grr(k) are contracted. Throughout this
section, W is assumed to be infinite irreducible, and we fix some Coxeter element w = s1 . . . sn
of W .

Lemma 4.1. Let Ψ1 ⊆ Ψ2 ⊆ · · · ⊆ ∆+ be an increasing sequence of closed subsets of ∆+ and
set Ψ =

⋃∞
i=1 Ψi. Then the corresponding increasing union of subgroups

⋃∞
i=1 U

ma
Ψi

(k) is dense in
UmaΨ (k).

Proof. This readily follows from Proposition 2.1. 2

Proposition 4.2. Let Ψ ⊆ ∆+ be closed. Let ω ∈W be such that ωΨ ⊆ ∆+. Then ωUmaΨ ω −1 =
UmaωΨ.

Proof. For a positive root α ∈ ∆+, consider the root group Uma(α) as in Section 2.2. Let also Ψ
and ω be as in the statement of the lemma. By Lemma 2.3, we know that

ω〈Uma(α) | α ∈ Ψ〉ω −1 = 〈Uma(ωα) | α ∈ Ψ〉.

Passing to the closures, it follows from Lemma 4.1 that ωUmaΨ ω −1 = UmaωΨ, as desired. 2

Lemma 4.3. Let Ψ ⊆ ∆+ be the set of positive roots α such that wlα ∈ ∆+ for all l ∈ N. Then
both Ψ and ∆+\Ψ are closed. In particular, one has a unique decomposition Uma+ = UmaΨ ·Uma∆+\Ψ.

Proof. Clearly, Ψ is closed. Let α, β ∈ ∆+\Ψ be such that α + β ∈ ∆. Thus there exist some
positive integers l1, l2 such that wl1α ∈ ∆− and wl2β ∈ ∆−. Then wl(α + β) ∈ ∆− for all
l > max{l1, l2} by Corollary 3.3 and hence α+β ∈ ∆+\Ψ. Thus ∆+\Ψ is closed, as desired. The
second statement follows from Lemma 2.2. 2

Remark 4.4. Let Ψ ⊆ ∆+ be as in Lemma 4.3. Put an arbitrary order on ∆+. This yields
enumerations Ψ = {β1, β2, . . .} and ∆+\Ψ = {α1, α2, . . .}. For each i ∈N∗, we let Ψi (respectively,
Φi) denote the closure in ∆+ of {β1, . . . , βi} (respectively, of {α1, . . . , αi}). It follows from
Lemma 4.3 that Ψ =

⋃∞
i=1 Ψi and that ∆+\Ψ =

⋃∞
i=1 Φi.
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Lemma 4.5. Fix i ∈N∗, and let Ψi,Φi ⊆∆+ be as in Remark 4.4. Assume that A is of indefinite

type. Then there exists a sequence of positive integers (nl)l∈N going to infinity as l goes to infinity,

such that w lUmaΨi
w−l ⊆ Umanl and w−lUmaΦi

w l ⊆ Umanl for all l ∈ N.

Proof. Let αj , βj ∈ ∆+ be as in Remark 4.4. By Lemma 3.6 together with Corollary 3.3, one can

find for each j ∈ {1, . . . , i} sequences of positive integers (mj
l )l∈N and (njl )l∈N going to infinity

as l goes to infinity, such that ht(w−lαj) > mj
l and ht(wlβj) > njl for all l ∈ N. For each l ∈ N,

set nl = min{ml
j , n

l
j | 1 6 j 6 i}. Then the sequence (nl)l∈N goes to infinity as l goes to infinity.

Moreover, ht(α) > nl for all α ∈ w−lΦi and ht(β) > nl for all β ∈ wlΨi. The conclusion then

follows from Proposition 4.2. 2

Theorem 4.6. Let a = w ∈ G(k) ⊆ Gpma(k), and let Ψ,Ψi,Φi be as in Remark 4.4. Assume

that A is of indefinite type. Then the following hold.

(i) UmaΨi
(k) ⊆ con(a) and UmaΦi

(k) ⊆ con(a−1) for all i ∈ N∗.

(ii) UmaΨ (k) ⊆ con(a) and Uma∆+\Ψ(k) ⊆ con(a−1).

(iii) Uma+(k) ⊆ 〈con(a) ∪ con(a−1)〉.

Proof. The first statement follows from Lemma 4.5. The second statement is a consequence of

the first together with Lemma 4.1. The third statement follows from the second together with

Lemma 4.3. 2

Recall from Lemma 2.5 that ϕ(U+(k)) = Urr+(k) whenever k is finite.

Lemma 4.7. Let a = w ∈ G(k) ⊆ Grr(k). Assume that A is of indefinite type and that

ϕ(U+(k)) = Urr+(k) (e.g. k finite). Then Urr+(k) ⊆ 〈con(a) ∪ con(a−1)〉.

Proof. We know from Theorem 4.6(iii) that U+(k) ⊆ 〈con(a)∪con(a−1)〉. Applying ϕ then yields

the desired inclusion since ϕ(con(a±1)) ⊆ con(ϕ(a)±1) = con(a±1) by continuity of ϕ. 2

Proof of Theorem C. The first statement is Proposition 4.2 and the third follows from

Theorem 4.6(i). The second statement is a consequence of the first together with Lemmas 2.4

and 3.5. 2

5. Consequences of Theorem C

Before we give the proof of Theorems A and B in the next section, we examine the consequences,

stated in the introduction, of Theorem C. More precisely, we will make use of the following lemma.

Recall from [Wil12, § 3] the definition of the nub of an automorphism α of a totally disconnected

locally compact group G. It possesses many equivalent definitions (see [Wil12, Theorem 4.12])

and, given an element a ∈ G (viewed as a conjugation automorphism), it can be characterised

as nub(a) = con(a) ∩ con(a−1) (see [Wil12, Remark 3.3(b) and (d)]).

Lemma 5.1. Let G = Gpma
A (Fq) be a complete Kac–Moody group of simply connected type

over a finite field Fq, with indecomposable generalised Cartan matrix A of indefinite type.

Let U im+ = Uma
∆im

+
(Fq) denote its positive imaginary subgroup, let w ∈ W = W (A) denote a

Coxeter element of W , and set a := w ∈ N(Fq). Then

U im+ ⊆ nub(a) = con(a) ∩ con(a−1).
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Proof. Notice that Lemma 4.5 remains valid if one replaces Ψ by its (closed) subset ∆im
+ and w

by w−1. As in the proof of the second statement of Theorem 4.6, Lemma 4.1 then allows us to
conclude. 2

To establish Theorem D, we need one more technical lemma regarding contraction groups,
whose proof is an adaptation of [Wan84, the proof of Proposition 2.1].

Lemma 5.2. Let G be a locally compact group, let a be an element of G, and let Q be a compact
subset of G such that Q ⊆ con(a). Then Q is uniformly contracted by a, that is, for every open
neighbourhood U of the identity one has anQa−n ⊂ U for all large enough n.

Proof. Fix an open neighbourhood U of the identity, and let V be a compact neighbourhood
of the identity such that V 2 ⊂ U . By hypothesis, for all x ∈ Q there exists an Nx such that
anxa−n ∈ V for all n > Nx. In other words,

Q ⊂
⋃
N>0

⋂
n>N

a−nV an.

Note that the sets CN =
⋂
n>N a

−nV an form an ascending chain of compact sets. It follows from
Baire’s theorem that Q ∩ CN has non-empty interior in Q for a large enough N .

By compactness of Q, one then finds a finite subset F of Q such that

Q ⊂ F · CN .

Since F is finite and contained in con(a), we know that anFa−n ⊂ V for all large enough n.
Moreover, by construction, anCNa

−n ⊂ V for n > N , and hence

anQa−n = (anFa−n) · (anCNa−n) ⊂ V 2 ⊂ U

for all large enough n, as desired. 2

Proof of Theorem D. Let A denote an n × n generalised Cartan matrix of indecomposable
indefinite type, let W = W (A) be the associated Weyl group, and let w = s1 . . . sn denote a
Coxeter element of W . Set a := w ∈ N(Fq). It then follows from Lemma 5.1 that

Uma+
im := Uma

∆im
+

(Fq) ⊆ con(a) in Gpma
A (Fq)

and that
U rr+im := ϕ(Uma

∆im
+

(Fq) ∩ U+(Fq)) ⊆ con(a) in Grr
A (Fq).

Since Uma+
im is closed in Uma+(Fq) which is compact (see [Rou12, 6.3]), both the groups

Uma+
im and U rr+im are compact. Moreover, they are normalised by a by Proposition 4.2. Hence

they cannot be contracted by a because of Lemma 5.2, since by assumption U rr+im is non-trivial.
In particular, con(a) 6= con(a) and hence con(a) cannot be closed.

Note that one could also directly use the fact that con(a) is closed if and only if nub(a) = {1}
(see [Wil12, Remark 3.3(b)]) together with Lemma 5.1. We preferred, however, to present a more
elementary proof as well, as Lemma 5.2 will be used anyway in the proof of Theorem E below. 2

To prove Theorem E, we need two additional technical lemmas. The first lemma is an
adaptation of [Cap09, Lemma 4.3].

Lemma 5.3. Let k be a finite field of order q, and consider the generalised Cartan matrices
A =

(
2 −m
−n 2

)
and A′ =

(
2 −m′
−n′ 2

)
such that m,m′, n, n′ > 2. Assume, moreover, that m ≡ m′

(mod q − 1) and n ≡ n′ (mod q − 1). Then the minimal Kac–Moody groups GA(k) and GA′(k)
of simply connected type are isomorphic.
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Proof. As the Weyl groups of A and A′ are isomorphic (to the infinite dihedral group), one
can identify the corresponding sets of real roots. Moreover, as noted in the proof of [Cap09,
Lemma 4.3], the commutation relations between root groups corresponding to prenilpotent pairs
of roots are trivial in GA(k) (respectively, GA′(k)). In particular, one can identify the Steinberg
functors of GA and GA′ .

Recall from § 2.2 (and in the notation of that section) that the torus TΛ(k) of GA(k) is
generated by {rα∨i | r ∈ k×, i = 1, 2}, and similarly for the torus TΛ′(k) of GA′(k). This yields
identifications of TΛ(k) and TΛ′(k). As rm = rm

′
and rn = rn

′
for all r ∈ k, it then follows from

the above identifications that GA(k) and GA′(k) admit the same Steinberg type presentation
(see [Tit87, § 3.6]), as desired. 2

Lemma 5.4. Let k be an arbitrary field with char k 6= 2. Let G = Gpma(k) be the Mathieu–
Rousseau completion associated with a 2 × 2 generalised Cartan matrix A =

(
2 −m
−n 2

)
for some

m,n > 2. Then the imaginary subgroup U im+ = Uma
∆im

+
(k) of G is not contained in the kernel

Z ′(G) of the action of G on its associated building.

Proof. Let p denote the characteristic of k. Thus p = 0 or p > 3. Assume for a contradiction that
U im+ is contained in Z ′(G).

Note first that U im+ =
⋂
w∈W wUma+(k)w −1. Indeed, as ∆im

+ is W -stable, the inclusion ⊆ is
clear from Proposition 2.1 and Lemma 2.3. Assume now for a contradiction that there is some
u ∈

⋂
w∈W wUma+(k)w −1 that is not in U im+. Write u as a product u =

∏
x∈B∆+

[exp]λxx as in
Proposition 2.1, and let Φu be the set of positive real roots β such that λx 6= 0 for x ∈ Bβ. Thus
Φu is non-empty. Choose β ∈ Φu and v ∈ W such that −vβ is a simple root and vβ′ ∈ ∆+ for
all β′ ∈ Φu\{β}. Then by Lemma 2.3, the element v conjugates u outside Uma+(k), yielding the
desired contradiction.

As Z ′(G) = Z(G).(Z ′(G) ∩ Uma+(k)) and as Z ′(G) ∩ Uma+(k) is normal in G by [Rou12,
Proposition 6.4], where Z(G) denotes the centre of G, we deduce that U im+ = Z ′(G)∩ Uma+(k)
is normal in G.

Recall the notation from § 2.2. In particular, e1, e2 and f1, f2 denote the Chevalley generators
of the Kac–Moody algebra g with generalised Cartan matrix A, and α1, α2 (respectively, α∨1 ,
α∨2 ) are the corresponding simple roots (respectively, coroots). Recall also the definition of the
Z-form U of UC(g), as well as the Lie algebras gZ = g ∩ U and gk = gZ ⊗Z k. Finally, for each
real root γ ∈ ∆re, choose as before a Z-basis element eγ of gγZ.

We will show that there exist an imaginary root δ ∈ ∆im
+ , a simple root αi, and a non-zero

element x ∈ gδk such that δ − αi ∈ ∆re
+ and ad(fi)x is non-zero in gk. Recalling from § 2.2 the

definition of the semi-direct product Bma+
i = AΛ

i nUma∆+\{αi}, this will imply that the root group
U−αi(k) conjugates the imaginary root group Uma( δ)(k) outside U im+, so that U im+ cannot be
normal in G, yielding the desired contradiction.

Assume first that m is not a multiple of p. As m,n > 3, we know that δ := α1 + α2 is
an imaginary root (see [Kac90, Lemma 5.3]) and that x := [e1, e2] ∈ gZ is non-zero. Moreover,
ad(f1)x = −me2 is non-zero in gk since m is not a multiple of p, as desired.

Assume next that m is a multiple of p. Set γ := s1(α2) = α2 + mα1 ∈ ∆re
+ . Then again

δ := α2 + γ ∈ ∆im
+ since 〈δ, α∨1 〉 = 0 and 〈δ, α∨2 〉 = 4−mn < 0. Set x := [e2, eγ ] ∈ gZ. Note that

ad(f2)eγ = 0 since γ−α2 = mα1 /∈∆. As p 6= 2, we deduce that ad(f2)x = (2−mn)eγ is non-zero
in gk, as desired. 2

Proof of Theorem E. It follows from Lemma 5.3 that the minimal Kac–Moody group G1 =
GA1(Fq) over Fq of simply connected type with generalised Cartan matrix A1 =

(
2 −2
−2 2

)
(hence
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of affine type) is isomorphic to any minimal Kac–Moody group G2 = GA2(Fq) over Fq of simply
connected type with generalised Cartan matrix A2 =

(
2 −m
−n 2

)
for some m,n > 2 (hence of

indefinite type) with m ≡ n ≡ 2 (mod q − 1). We fix such a group G2.
For i = 1, 2 set Ĝi := Gpma

Ai
(Fq) and let Z ′i denote the kernel of the action of Ĝi on its

associated building. Assume for a contradiction that there is an isomorphism ψ : Ĝ1 → Ĝ2 of
topological groups. As noticed in [Rou12, Remarque 6.20(4)], the quotient Ĝ1/Z

′
1 is a simple

algebraic group over the local field Fq((t)). In particular, all the contraction groups of Ĝ1/Z
′
1 are

closed. Moreover, ψ(Z ′1) is the unique maximal proper normal subgroup of Ĝ2, and it is compact.
It follows that ψ(Z ′1) = Z ′2, for otherwise, by Tits’ lemma (see [AB08, Lemma 6.61]), the group
Ĝ2 would be compact, a contradiction. Hence ψ induces an isomorphism of topological groups
between Ĝ1/Z

′
1 and Ĝ2/Z

′
2, so that, in particular, all contraction groups of Ĝ2/Z

′
2 are closed.

Let π : Ĝ2 → Ĝ2/Z
′
2 denote the canonical projection, and let a be any element of Ĝ2. Then

π(con(a)) ⊆ π(con(a)) ⊆ con(π(a)) = con(π(a)).

It follows from Lemma 5.1 that the subgroup U im+ := Uma
∆im

+
(Fq) of Uma∆+

(Fq) in Ĝ2 is such that

π(U im+) ⊆ π(con(a)) ⊆ con(π(a))

for a suitably chosen a ∈ Ĝ2 normalising U im+. Thus Lemma 5.2 implies that π(U im+) = {1},
that is, U im+ ⊆ Z ′2. This contradicts Lemma 5.4, as desired. 2

Proof of Corollary F. Let k = Fq with char k 6= 2, and let the generalised Cartan matrix A be
as in the statement of Corollary F. As we saw in the proof of Theorem E above, the minimal
Kac–Moody group G2 = GA2(Fq) (where we set A2 = A) is then isomorphic to the minimal Kac–
Moody group G1 = GA1(Fq) over Fq of simply connected type with generalised Cartan matrix
A1 =

(
2 −2
−2 2

)
, whereas the quotients Ĝ1/Z

′
1 and Ĝ2/Z

′
2 cannot be isomorphic as topological

groups, where as before Ĝi := Gpma
Ai

(Fq) and Z ′i is the kernel of the action of Ĝi on its associated
building (i = 1, 2).

Note that the isomorphism between G1 and G2 is the one provided by Lemma 5.3, and it
maps the twin BN-pair of G1 to that of G2. In particular, the Rémy–Ronan completions Grr

A1
(Fq)

of G1 and Grr
A2

(Fq) of G2 are isomorphic as topological groups.
Moreover, as char k > 2, we know from [Rou12, Proposition 6.11] that G1 is dense in Ĝ1.

Assume now for a contradiction that G2 is dense in Ĝ2. Then the surjective continuous
homomorphisms ϕi : Ĝi → Grr

Ai
(Fq) (i = 1, 2) induce isomorphisms of topological groups

Ĝ1/Z
′
1
∼= Grr

A1
(Fq) ∼= Grr

A2
(Fq) ∼= Ĝ2/Z

′
2,

yielding the desired contradiction. 2

6. Proof of Theorems A and B

We now let k = Fq be a finite field, A be an indecomposable generalised Cartan matrix of
indefinite type, and G be one of the complete Kac–Moody groups Grr

A (Fq) or Gpma
A (Fq). We

also set U+ := Urr+(Fq) or U+ := Uma+(Fq) accordingly. Then G is a locally compact totally
disconnected topological group, and U+ is a compact open subgroup of G. Indeed, for Grr

A (Fq),
this follows from [CR09, Proposition 1]; Gpma

A (Fq) is locally compact because Uma+(Fq) is
compact open by [Rou12, 6.3], and it is totally disconnected because its filtration by the Uman (Fq)
is separated.
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Abstract simplicity of locally compact Kac–Moody groups

As mentioned in the introduction, we first need to establish the topological simplicity of
Gpma
A (Fq) in full generality.

Proposition 6.1. Assume that the generalised Cartan matrix A is indecomposable of indefinite
type. Then Gpma

A (Fq)/Z
′(Gpma

A (Fq)) is topologically simple over any finite field Fq.

Proof. Set G := Gpma
A (Fq) and Z ′ := Z ′(Gpma

A (Fq)). It follows from [CM11, Corollary 3.1]
that G possesses a closed cocompact normal subgroup H containing Z ′ and such that H/Z ′

is topologically simple. It thus remains to see that in fact H = G. Let π : G→ G/H denote the
canonical projection. Let also w be a Coxeter element of W , and set a := w ∈ N(Fq) ⊂ G. Since
G/H is compact and totally disconnected, its contraction groups are trivial (see the introduction
of [CRW13]). In particular,

π(con(a±1)) ⊆ con(π(a±1)) = {1},

and hence the closures of the contraction groups con(a) and con(a−1) are contained in kerπ = H.
It follows from Theorem 4.6 that H contains Uma+(Fq). But G normalises H and contains N(Fq),
and hence H also contains all real root groups. Therefore H = G, as desired. 2

We can now give a common proof for Theorems A and B.

Theorem 6.2. Assume that the generalised Cartan matrix A is indecomposable of indefinite
type, and let G be one of the complete Kac–Moody groups Grr

A (Fq) or Gpma
A (Fq). Then G/Z ′(G)

is abstractly simple.

Proof. Set U+ := Urr+(Fq) or U+ := Uma+(Fq) so that U+ 6 G. Let K be a non-trivial
normal subgroup of G/Z ′(G). Since G/Z ′(G) is topologically simple (see [CR09, Proposition
11] for Grr

A (Fq) and Proposition 6.1 for Gpma
A (Fq)), K must be dense in G. Since G is locally

compact and totally disconnected, it then follows from Theorem 4.6 and Lemma 4.7, together
with Theorem 1.1, that K contains U+. Since U+ is open, K is open as well, and hence closed
in G. Therefore K = G, as desired. 2

Remark 6.3. We remark that, although we made the assumption that the Kac–Moody group
G(k) is of simply connected type (to get simplified statements), this of course does not have
any impact on the simplicity results, and one might as well consider an arbitrary Kac–Moody
root datum D and the Kac–Moody group GD(k). The essential difference is that, in general,
GD(k) is no longer generated by its root subgroups, and one then has to consider a sub-quotient
of Gpma(k) (or else Grr(k)). More precisely, let G be either Gpma(k) or Grr(k), let U+ be the
corresponding subgroup Uma+(k) or Urr+(k), and let G(1) be the subgroup of G generated by
U+ and by all root groups of G(k). Then G(1) is normal in G (and G = T(k).G(1)), and what we
have proved is the abstract simplicity of G(1)/(Z

′(G) ∩G(1)).
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Mat88 O. Mathieu, Construction du groupe de Kac-Moody et applications, C. R. Acad. Sci. Paris Sér.
I Math. 306 (1988), 227–230.

Moo82 R. Moody, A simplicity theorem for Chevalley groups defined by generalized Cartan matrices,
Preprint (April 1982).
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