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Abstract

Safety issues for the use of products containing nanoparticles need to be considered,
since these nanoparticles may break through human skin to damage cells. In this paper,
applied mathematical techniques are used to model the penetration of a spherical gold
nanoparticle into an assumed circular hole in a lipid bilayer. The 6–12 Lennard-Jones
potential is employed, and the total molecular interaction energy is obtained using
the continuous approximation. Nanoparticles of three different radii, namely, 10, 15
and 20 Å, are studied, which are initiated at rest, confined to the axis of the hole. A
similar behaviour for these three cases is observed. The critical hole radii at which
these nanoparticles enter the bilayer are 12.65, 17.62 and 22.60 Å, respectively. Further,
once the hole radii become larger than 20.79, 23.14 and 27.02 Å, respectively, the gold
nanoparticles tend to remain at the mid-plane of the bilayer, and do not pass through the
bilayer.
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1. Introduction

Nanoparticles have many potential benefits which can outweigh any potential hazard
and possible side effects [7]. They are widely used in many industrial and consumer
products, such as stain-resistant textiles or cosmetics [16, 23]. These products, while
they are close to the human skin, raise many health and environmental issues. For
example, nanocomposites on cloth may be released during the washing process, or
nanosomes in cosmetics may penetrate the skin and subsequently damage the skin
cells [23].

Gold nanoparticles have been comprehensively studied in many biological and
medical areas, and extensive reviews can be found in the literature [4, 5, 9, 17, 18].
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Moreover, it has been shown that mammalian cells can uptake gold nanoparticles [6],
and they have been successfully employed in cancer therapies [12]. As a result,
gold nanoparticles may be used as an example to study the penetration behaviour of
nanoparticles through human skin. There are various shapes of gold nanoparticles
which can be controlled during the growth processes. In this paper, the gold
nanoparticle is assumed to be a dense sphere.

A lipid bilayer is very thin as compared to its lateral dimensions with a hydrophilic
head group on the outer surface of thickness 8–9 Å, and with a hydrophobic
core typically approximately 30–40 Å thick, depending on the chain length and
chemistry [13, 20]. In terms of energy determination, Berger et al. [3] have
utilized molecular dynamics simulations together with the 6–12 Lennard-Jones
potential function and an electrostatic term to study the interaction for the bilayer
of dipalmitoylphosphatidylcholine (DPPC) under various conditions. Further, other
researchers have adopted a coarse grain model to study the behaviour of the lipid
bilayer, which reduces the complexity of the bilayer system [8, 15, 21, 22, 24].
Moreover, Shelley et al. [21] have concluded that the coarse grain model is
more efficient than the Monte Carlo simulations to model the self-assembly of
phospholipids. The physical translocation of various nanoparticle shapes through
the bilayer has been studied by Yang and Ma [25], and their findings provide a
practical guide to the geometry considerations for drug and gene carriers. Further,
a mathematical modelling approach was used by Baowan et al. [1] to study the
penetration of a C60 fullerene into the lipid bilayer, and a relation between particle size,
hole size and the location of the particle in the bilayer was determined. Here, a model
similar to that given by Baowan et al. [1] is employed to determine the corresponding
penetration behaviour for gold nanoparticles.

In this paper, the penetration of a spherical gold nanoparticle through an assumed
circular hole in a lipid bilayer is investigated. The Lennard-Jones potential and a
continuous approach are introduced in Section 2. The continuous approach assumes
that atoms in a molecule are uniformly distributed over a surface or throughout the
volume of the molecule, and then an integration approach is employed to evaluate the
total energy of the system. Assuming that the gold nanoparticle is a dense sphere
and that the head (tail) group of the bilayer is represented by a flat plane (rectangular
box), the surface integral and the volume integral approach to determine the molecular
interaction energy are detailed in Section 3. Numerical results obtained from the
analytical expressions are given in Section 4 and, finally, a summary of the analysis is
presented in Section 5.

2. The Lennard-Jones function and continuous approximation

This study aims at computing the energy of a system involving a nanoparticle and
a biomolecule of several nanometres in size. The mere size of the system renders an
atomistic modelling approach very expensive. Even a coarse grained particle approach
would involve computing around thousands of pairwise interactions. Instead, a much
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more efficient continuous approach is used that considers the same typical nonbonded
interaction. Moreover, it has been shown that such interaction based on the Lennard-
Jones potential plays a major role in order to determine an equilibrium configuration
of nanomaterials [2].

The classical 6–12 Lennard-Jones function is given by

Φ = −
A
ρ6 +

B
ρ12 = 4ε

[
−

(
σ

ρ

)6
+

(
σ

ρ

)12]
,

where ρ denotes the distance between two typical points, and A and B are attractive
and repulsive Lennard-Jones constants, respectively. Further, ε is a well depth and σ
represents a van der Waals diameter of an atom. The Lennard-Jones parameters in a
system of two atomic species can be obtained using the empirical combining laws or
mixing rules [11], which are given by ε12 =

√
ε1ε2 and σ12 = (σ1 + σ2)/2, where 1 and

2 refer to the respective individual atoms.
Using the continuous approach, where the atoms at discrete locations on the

molecule are averaged over a surface or a volume, the total energy is obtained by
calculating integrals over the surface or the volume of each molecule, given by

E = η1η2

∫
S2

∫
S1

(
−

A
ρ6 +

B
ρ12

)
dS1 dS2,

where η1 represents the mean volume density of the volume element S1 on the
nanoparticle. The second element S2 is assumed to be either the head or the tail group
of the lipid with the mean surface or the mean volume density η2, respectively. Further,
the integral In is defined as

In =

∫
S1

∫
S2

ρ−2n dS2 dS1, n = 3, 6, (2.1)

and, therefore, E = η1η2(−AI3 + BI6).
The Lennard-Jones parameters for the lipid bilayer are taken from the work of

Marrink et al. [15]. The head group is assumed to be a charged site Q, whereas the
tail group is assumed to be an apolar site C, both interacting with a nonpolar and
nonhydrogen bonding gold nanoparticle N0. The parameter values for Q, C and N0
can be found in the work of Marrink et al. [15], and these values for both head and tail
groups are the same. From the coarse grain model, there are two and eight interaction
sites for the head and tail groups, respectively [15], which contribute to the total energy
of the system. Further, the head group is assumed to be represented as a flat plane,
while the tail group is described as a rectangular box with a tail length `. The mean
atomic surface density for the head group and the mean atomic volume density for the
tail group are based on the work of Baowan et al. [1].

The Lennard-Jones parameters for gold nanoparticles are taken from the work of
Pu et al. [19]. Since gold adopts a face-centred-cubic (FCC) crystal structure where
there are four atoms occupied in a unit cell, the mean atomic volume density for the
gold nanoparticle can be determined using the atomic radius of 1.44 Å. The parameters
used in this model are given in Table 1.
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Table 1. Numerical values of constants used in the model.

Well depth of Au atoms within gold nanoparticle (meV) ε1 = 1.691
Well depth of atoms within the head group (meV) ε2 = 35.24
Well depth of atoms within the tail group (meV) ε3 = 35.24
van der Waals radius of Au atoms within gold nanoparticle (Å) σ1 = 2.934
van der Waals radius of atoms within the head group (Å) σ2 = 4.70
van der Waals radius of atoms within the tail group (Å) σ3 = 4.70
Length of lipid tail group (Å) ` = 15
Mean atomic volume density for gold nanoparticle (Å−3) ηg = 0.1675
Mean atomic surface density for head group lipid bilayer (Å−2) ηhead = 0.0308
Mean atomic volume density for tail group lipid bilayer (Å−3) ηtail = 0.1231/`

3. Interaction energy of system

Here the energy behaviour for a gold nanoparticle of radius a moving through a
circular hole in a lipid bilayer of radius b is considered. Further, the gold nanoparticle
is assumed to be a dense sphere. Also, the lipid bilayer is assumed to be an infinite
plane consisting of two head groups and two tail groups with a separation distance of
δ = 3.36 Å between the two layers [1] (see Figure 2). The total energy between a lipid
bilayer and a spherical nanoparticle comprises the interaction for:

(i) two head groups and a spherical nanoparticle,
(ii) two tail groups and a spherical nanoparticle.

First, the volume integral for a spherical nanoparticle interacting with a single
atom is considered and described in Section 3.1. Then the interaction energy between
a sphere and a flat plane, and that between a sphere and a box, are presented in
Sections 3.2 and 3.3, respectively.

3.1. Volume integral of a sphere interacting with single atom The model
formation for the interaction energy between a sphere and a point is shown in Figure 1.
Then the integral In defined by (2.1) becomes

In =

∫ π

−π

∫ a

0

∫ π

0

r2 sin φ
(r2 + ξ2 + 2rξ cos φ)n dφ dr dθ,

where ρ2 = r2 + ξ2 + 2rξ cos φ and ξ is the distance from the single atom to the
centre of the sphere. On making a substitution t = r2 + ξ2 + 2rξ cos φ and, since In
is independent of θ,

In =
π

ξ

∫ a

0

∫ (ξ+r)2

(ξ−r)2
r

1
tn dt dr

=
π

ξ(n − 1)

∫ a

0
r
[ 1
(ξ − r)2(n−1) −

1
(ξ + r)2(n−1)

]
dr.
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Figure 1. Model formation for a sphere interacting with an atom where the single atom is assumed to be
located at the origin.

Finally, using integration by parts,

In =
π

ξ(n − 1)

[
−

a
(3 − 2n)

{ 1
(ξ − a)2n−3 +

1
(ξ + a)2n−3

}
−

1
(3 − 2n)(4 − 2n)

{ 1
(ξ − a)2n−4 −

1
(ξ + a)2n−4

}]
.

For n = 3 and 6, placing fractions over common denominators, expanding and
reducing to fractions in terms of powers of (ξ2 − a2) yield

I3 =
4
3
πa3 1

(ξ2 − a2)3 , (3.1)

I6 =
2πa3

45

[ 30
(ξ2 − a2)6 +

216a2

(ξ2 − a2)7 +
432a4

(ξ2 − a2)8 +
256a6

(ξ2 − a2)9

]
. (3.2)

Therefore, the total interaction energy between the volume of a spherical nanoparticle
and a single atom is given by

Esp = ηg(−AI3 + BI6),

where ηg is the mean volume density of the gold nanoparticle.
For convenience, define the integral

Jn =

∫
S2

1
(ξ2 − a2)n dS2, (3.3)

where n is a positive integer corresponding to the degree of the polynomials in (3.1)
and (3.2).

https://doi.org/10.1017/S1446181115000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000103


[6] Penetration of spherical gold nanoparticle into a lipid bilayer 23

Gold
z

Z

x

l

l

a

b

(0, 0, Z )

Figure 2. Model formation for a sphere interacting with bilayer where the hole in H1 is assumed to be
located at z = 0.

3.2. Interaction energy between a sphere and two head groups The model
formation for a spherical gold nanoparticle interacting with a lipid bilayer is depicted
in Figure 2. Here H1 is defined as the head group located on the xy-plane and H2 as
the other head group located at z = −2` − δ. Then the interaction energy between the
head group H1 and the sphere is determined. A typical point of H1 has coordinates
(r cos θ, r sin θ, 0), where r ∈ (b,∞) and b is the radius of the hole. The centre of the
gold nanoparticle is assumed to be located on the z-axis at (0, 0,Z), where Z represents
the perpendicular distance from the upper surface to the centre of the sphere, and at
the mid-plane of the bilayer Z = −` − δ/2. Therefore, the distance from the centre of
the nanoparticle to a typical point on the infinite plane is given by ξ2 = r2 + Z2, and
the integral in (3.3) becomes

Jn =

∫ 2π

0

∫ ∞

b

r
(r2 + Z2 − a2)n dr dθ =

π

(n − 1)(Z2 + b2 − a2)n−1 .

Hence, the interaction energy between the head group H1 and the nanoparticle is

EH(Z) = 2
[
ηgηhead

{
−

4
3
πa3AJ3 +

2πa3B
45

(30J6 + 216a2J7 + 432a4J8 + 256a6J9)
}]
,

(3.4)

where the factor 2 comes from the number of interaction sites on the head group based
on the Martini force field [15].
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The interaction energy between the head group H2 and the spherical gold
nanoparticle can be obtained in precisely the same way by substituting Z + 2` + δ
for Z in (3.4), where δ is the equilibrium spacing between the two layers of the lipid
given by 3.36 Å [1].

3.3. Interaction energy between a sphere and two tail groups On assuming that
the tail group can be modelled as a rectangular box, the interaction energy between
the two tail groups and the spherical gold nanoparticle can be determined. Here T1
is defined as the tail group connected to the head group H1, and T2 as the other
tail group which is connected to the head group H2. A typical point of T1 has
coordinates (r cos θ, r sin θ,−z), where z ∈ (0, `), and ` is the tail length. The distance
between the centre of the nanoparticle and the surface of the tail group T1 is given by
ξ2 = r2 + (Z + z)2, and the integral Jn in (3.3) becomes

Jn =

∫ 2π

0

∫ `

0

∫ ∞

b

r
[r2 + (Z + z)2 − a2]n dr dz dθ

=
π

(n − 1)

∫ `

0

1
[b2 + (Z + z)2 − a2]n−1 dz.

Next, the substitution Z + z =
√

b2 − a2 tan φ yields

Jn =
π

(n − 1)(b2 − a2)n−3/2

∫ tan−1((Z+`)/
√

b2−a2)

tan−1(Z/
√

b2−a2)
cos2n−4 φ dφ (3.5)

for n = 3, 6, 7, 8 and 9. The above integral can be found in the work of Gradshteyn and
Ryzhik [10, p. 153, 2.513.3], which is∫

cos2p φ dφ =
1

22p

[(2p
p

)
φ +

p−1∑
k=0

(
2p
k

)
sin(2(p − k)φ)

p − k

]
,

where
(

x
y

)
is the usual binomial coefficient and p = n − 2.

The total interaction energy between the tail group T1 and the spherical gold
nanoparticle is

ET (Z) = 8
[
ηgηtail

{
−

4
3
πa3AJ3 +

2πa3B
45

(30J6 + 216a2J7 + 432a4J8 + 256a6J9)
}]
,

(3.6)

where in this case Jn is defined by (3.5) and the factor 8 is the number of the interaction
sites of the lipid tail group [15]. The interaction energy for the tail group T2 and
the spherical gold nanoparticle can be obtained by precisely the same technique on
replacing Z by Z + ` + δ in (3.6).

4. Numerical results
The total interaction between a gold nanoparticle and a lipid bilayer with a hole

radius b is given by

Etotal = EH(Z) + EH(Z + 2` + δ) + ET (Z) + ET (Z + ` + δ),
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Figure 3. Energy profile versus the distance Z for the particles of radii a = 10, 15 and 20 Å, where b is
fixed to be 20 Å (Colour available online).

where EH and ET are defined in (3.4) and (3.6), respectively. Here, three sizes of the
spherical gold nanoparticles are considered, where their radii are 10, 15 and 20 Å. The
energy profiles for these three cases are depicted in Figure 3, where the hole radius b
is fixed to be 20 Å. The equilibrium positions for the particles of radii 10 and 15 Å are
observed to be in the bilayer while the particle of radius 20 Å cannot pass into the
bilayer.

The relation between the minimum energy locations Zmin and the circular hole
radius b is graphically shown in Figure 4. A positive value of Zmin indicates that the
spherical gold nanoparticle is located above the lipid bilayer, while a negative value of
Zmin shows that the nanoparticle penetrates into the bilayer. The penetration behaviours
of the three cases are similar, and there are two regions which need to be examined.

In the first region, the particles behave like hard spheres, and they do not penetrate
into the bilayer until the hole radii in the bilayer are larger than the critical values
12.65, 17.62 and 22.60 Å of bc for the particle radii 10, 15 and 20 Å, respectively.
These values come from the physical particle radii plus the van der Waals repulsive
region around the atoms. The three curves in this region are quarter-circles with the
radii bc; then a simple curve fitting can be used. Further, the curve fittings for these
cases are determined and they are given by

a = 10, Zmin = (12.6492 − b2)1/2;
a = 15, Zmin = (17.6202 − b2)1/2;
a = 20, Zmin = (22.6032 − b2)1/2.

In the second region, the particles penetrate into the bilayer and, as b increases
further, the particles eventually find the equilibrium position located at the mid-plane
of the bilayer, which is at Z = −16.68 Å. Note that this finding is similar to a previous
work by the author [1]. The ranges for the hole radii in the second region are

https://doi.org/10.1017/S1446181115000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000103


26 D. Baowan [9]

20

15

10

5

0

–5

–10

–15

–20

–5 0 5 10 15 20 25 30 35 40 45 50

Mid-plane of bilayer

Figure 4. Relation between equilibrium location Zmin and hole radius b where the radii of gold
nanoparticles are assumed to be a = 10, 15 and 20 Å (Colour available online).

12.65 Å < b < 20.79 Å, 17.62 Å < b < 23.14 Å and 22.60 Å < b < 27.02 Å for particle
radii a = 10, 15 and 20 Å, respectively. The following curve fittings for the second
region are obtained from the rational nonlinear fit using OriginPro 8:

a = 10 Å, Zmin = (−0.365 + 0.014b)−1, R2 = 0.986;
a = 15 Å, Zmin = (−0.434 + 0.016b)−1, R2 = 0.999;
a = 20 Å, Zmin = (−0.594 + 0.020b)−1, R2 = 0.967.

Note that the dotted line joining region 1 and region 2 shows the jump behaviour of
the nanoparticles.

This result agrees well with the work of Lin et al. [14], where the gold nanoparticle
does not pass through the lower layer of the lipid. In order to induce the uptake process
into the cell, charged nanoparticles may be used to disrupt the hydrophilic head group
in forming a vesicle; then an endocytosis process may occur.

5. Summary

The continuous approach and the Lennard-Jones potential function were employed
to determine the penetration behaviour for three spherical gold nanoparticles of
different radii through a lipid hole. A circular hole is assumed to be in the bilayer and
the particles are initiated at rest above the bilayer. Both surface and volume integrals
are evaluated to calculate the total nonbonded interaction energy of the system. An
analytical expression is obtained in terms of the particle radius a, the hole radius b and
the perpendicular distance from the centre of the particle to the bilayer surface Z.

In all the three cases, there are similar regions for the penetration behaviour. In the
first region, the nanoparticle behaves like a hard sphere. As the circular hole radius
in the bilayer increases, the particle penetrates the bilayer and relocates inside the
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layer until the radius acquires a critical value, which for the three cases considered
are b = 20.79, 23.14 and 27.02 Å corresponding to the particle radii a = 10, 15 and
20 Å, respectively. Once the spherical gold nanoparticles enter the bilayer under no
additional applied external force and charge, they tend to remain at the mid-point of
the bilayer rather than penetrating further into the cell.

Acknowledgements

The author thanks Dr Barry J. Cox and Professor James M. Hill for many helpful
comments on this work. The author is also grateful for the support of the Thailand
Research Fund (RSA5880003).

References

[1] D. Baowan, B. J. Cox and J. M. Hill, “Instability of C60 fullerene interacting with lipid bilayer”,
J. Mol. Model. 18 (2012) 549–557; doi:10.1007/s00894-011-1086-4.

[2] D. Baowan, H. Peuschel, A. Kraegeloh and V. Helms, “Energetics of liposomes encapsulating
silica nanoparticles”, J. Mol. Model. 19 (2013) 2459–2472; doi:10.1007/s00894-013-1784-1.

[3] O. Berger, O. Edholm and F. Jahnig, “Molecular dynamics simulations of a fluid bilayer of
dipalmitoylphosphatidylcholine at full hydration, constant pressure and constant temperature”,
Biophys. J. 72 (1997) 2002–2013; doi:10.1016/S0006-3495(97)78845-3.

[4] R. Bhattacharya, C. R. Patra, A. Earl, S. Wang, K. Katarya, L. Lu, J. N. Kizhakkedathu,
M. J. Yaszemski, P. R. Greipp, D. Mukhopadhyay and P. Mukherjee, “Attaching folic acid on
gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and
targeting of cancer cells”, Nanomedicine 3 (2007) 224–238; doi:10.1016/j.nano.2007.07.001.

[5] P. C. Chen, S. C. Mwakwari and A. K. Oyelere, “Gold nanoparticles: from nanomedicine to
nanosensing”, Nanotechnol. Sci. Appl. 1 (2008) 45–66;
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781743.

[6] B. D. Chithrani, A. A. Ghazani and W. C. W. Chan, “Determining the size and shape dependence
of gold nanoparticle uptake into mammalian cells”, Nano Lett. 6 (2006) 662–668;
doi:10.1021/nl052396o.

[7] V. L. Colvin, “The potential environmental impact of engineered nanomaterials”, Nat. Biotechnol.
21 (2003) 1166–1170; doi:10.1038/nbt875.

[8] R. DeVane, A. Jusufi, W. Shinoda, C.-C. Chiu, S. O. Nielsen, P. B. Moore and M. L. Klein,
“Parametrization and application of a coarse grained force field for benzene/fullerene interactions
with lipids”, J. Phys. Chem. B 114 (2010) 16364–16372; doi:10.1021/jp1070264.

[9] P. Ghosh, G. Han, M. De, C. K. Kim and V. M. Rotello, “Gold nanoparticles in delivery
applications”, Adv. Drug Deliv. Rev. 60 (2008) 1307–1315; doi:10.1016/j.addr.2008.03.016.

[10] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th edn, (Academic
Press, San Diego, MA, 2007).

[11] J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, Molecular theory of gases and liquids (John Wiley,
New York, 1954).

[12] P. K. Jain, I. H. El-Sayed and M. A. El-Sayed, “Au nanoparticles target cancer”, Nano Today 2
(2007) 18–29; doi:1016/S1748-0132(07)70016-6.

[13] B. A. Lewis and D. M. Engelman, “Lipid bilayer thickness varies linearly with acyl chain length
in fluid phosphatidylcholine vesicles”, J. Mol. Biol. 166 (1983) 211–217;
doi:10.1016/S0022-2836(83)80007-2.

[14] J. Lin, H. Zhang, Z. Chen and Y. Zheng, “Penetration of lipid membranes by gold nanoparticles:
insights into cellular uptake, cytotoxicity and their relationship”, ACS Nano 4 (2010) 5421–5429;
doi:10.1021/nn1010792.

https://doi.org/10.1017/S1446181115000103 Published online by Cambridge University Press

http://dx.doi.org/10.1007/s00894-011-1086-4
http://dx.doi.org/10.1007/s00894-013-1784-1
http://dx.doi.org/10.1016/S0006-3495(97)78845-3
http://dx.doi.org/10.1016/j.nano.2007.07.001
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781743
http://dx.doi.org/10.1021/nl052396o
http://dx.doi.org/10.1038/nbt875
http://dx.doi.org/10.1021/jp1070264
http://dx.doi.org/10.1016/j.addr.2008.03.016
http://dx.doi.org/1016/S1748-0132(07)70016-6
http://dx.doi.org/10.1016/S0022-2836(83)80007-2
http://dx.doi.org/10.1021/nn1010792
https://doi.org/10.1017/S1446181115000103


28 D. Baowan [11]

[15] S. J. Marrink, A. H. de Vries and A. E. Mark, “Coarse grained model for semiquantitative lipid
simulations”, J. Phys. Chem. B 108 (2004) 750–760; doi:10.1021/jp036508g.
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