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Abstract

In recent works [Gonçalves and Mansfield, Stud. Appl. Math., 128 (2012), 1–29; Mansfield,
A Practical Guide to the Invariant Calculus (Cambridge University Press, Cambridge, 2010)],
the authors considered various Lagrangians, which are invariant under a Lie group action, in the
case where the independent variables are themselves invariant. Using a moving frame for the
Lie group action, they showed how to obtain the invariantized Euler–Lagrange equations and the
space of conservation laws in terms of vectors of invariants and the Adjoint representation of a
moving frame. In this paper, we show how these calculations extend to the general case where
the independent variables may participate in the action. We take for our main expository example
the standard linear action of SL(2) on the two independent variables. This choice is motivated
by applications to variational fluid problems which conserve potential vorticity. We also give the
results for Lagrangians invariant under the standard linear action of SL(3) on the three independent
variables.

2010 Mathematics Subject Classification: 58E30, 22E70 (primary); 34A26, 34K17 (secondary)

1. Introduction

Noether’s First Theorem states that for systems coming from a variational
principle, conservation laws may be obtained from Lie group actions which leave
the Lagrangian invariant.
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Table 1. Conservation laws arising from group actions on the base space.

Group action Conservation law
Time translation Energy
Space translation Linear momentum
Space rotation Angular momentum
Area preserving diffeomorphism Potential vorticity

Recently in [8, 17], for the case where the invariant Lagrangians may be
parametrized so that the independent variables are each invariant under the group
action, the authors were able to calculate the invariantized Euler–Lagrange system
in terms of the standard Euler operator and a ‘syzygy’ operator specific to the
action. Furthermore, they obtained the linear space of conservation laws in terms
of vectors of invariants and the Adjoint representation of a moving frame for
the Lie group action. This new structure for the conservation laws allowed the
calculations for the extremals to be reduced and given in the original variables,
once the Euler–Lagrange system was solved for the invariants. These results were
presented in [8] for all three inequivalent SL(2) actions in the complex plane and
in [9] for the standard SE(3) action.

In this paper, we show that the results presented in [8] can be extended
to cases where the independent variables are not invariant under the group
action, which is the case for many physically important models. In Table 1
we list some conservation laws arising from group actions on the base space.
We take as our main expository example the standard linear action of SL(2)
on the two independent variables due to its importance in variational problems
which conserve potential vorticity. Indeed in [4, 15], Bridges et al. give a
rigorous connection between particle relabelling, symplecticity and conservation
of potential vorticity; they show that conservation of potential vorticity is a
differential consequence of a one-form quasiconservation law, which is obtained
from rewriting the shallow water equations as a multisymplectic system. Here, we
will show that conservation of potential vorticity is a differential consequence of
Noether’s conservation laws for the SL(2) action.

In Section 2, we start by giving some background on moving frames,
differential invariants, invariant differential operators, and invariant forms.
We then move on to the invariant calculus of variations; we show in this section
how the invariantized Euler–Lagrange equations are obtained in a way similar to
that of the Euler–Lagrange equations in the original variables.

In Section 3, we show how the variational symmetry group acts on Noether’s
conservation laws and demonstrate the mathematical structure of Noether’s
conservation laws for invariant Lagrangians with independent variables that are
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not invariant under the group action. The conservation laws presented in this
section are a generalization of the ones obtained in [8]; they differ by the product
of a matrix which represents the group action on the (p − 1)-forms. In the
particular case of a variational problem with invariant independent variables, this
matrix corresponds to the identity matrix. We end this section with the calculation
of conservation laws associated to the Monge–Ampère equation.

In Section 4, we compute the new version of Noether’s conservation laws
which are associated to two three-dimensional invariant variational problems—
the shallow water equations, and Lagrangians invariant under the linear SL(3)
action on the base space.

In Section 5, we discuss the role that the frame plays in the integration of the
Euler–Lagrange equations and the conservation laws.

We conclude with some remarks about the form of the Euler–Lagrange
equations in terms of the conservation laws, that follow as a consequence of our
main result.

1.1. Summary of main result. The Euler–Lagrange equations of a functional
L̄ [u] =

∫
L̄(x,u,uJ) dpx are derived by setting

d
dε

∣∣∣∣
ε=0

L̄ [u+ εv] = 0

for any variation v. If the Lagrangian is invariant under a Lie group action,
then the variations v along the group orbits do not give any new information
and so it is sufficient to consider variations of the Lie group invariants using
L̄ [u] written in terms of the invariants of the group action. Taking advantage
of the calculus of invariants given in terms of the Lie group based moving frame,
we develop an invariant calculus of variations. One can then obtain the Euler–
Lagrange equations directly in terms of the invariants.

We show further that the conservation laws, whose existence is guaranteed by
Noether’s theorem, can be written in the form presented in the following theorem.
This theorem is a streamlined version of our main result in this paper, which can
be found in Section 3, along with its proof.

THEOREM 1. Let
∫

L(κ)I (dpx) be invariant under the prolonged action G ×
M → M, where M is a jet bundle. Furthermore, let Ad(g) be the Adjoint
representation of G with respect to its infinitesimal vector fields, and υ1, . . . ,

υ p the vectors of invariants coming from the action on the conservation laws
associated to the Euler–Lagrange equations, Eα(L). Finally, consider MJ to be
the matrix of first minors of the Jacobian matrix J = d(g · x)/dx. Then the
conservation laws associated to the Euler–Lagrange equations can be written as
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d(Ad(ρ)−1(υ1, . . . ,υ p)MJ dp−1x̂) = 0, (1)

where ρ is the moving frame and MJ dp−1̂x are in fact invariant (p − 1)-forms
written in terms of the original dx1 . . . d̂xi . . . dxp.

Since the frame is equivariant, this formulation provides an explicit expression
of the equivariance of the linear space of the conservation laws under the Lie
group action. The main technical result we need in order to prove our result is, in
fact, a proof of an explicit expression of the equivariance of the conservation laws.
The equivariance was known, but the proof for only the infinitesimal result was
written down (see [21, Proposition 5.64]).

1.2. Motivating example. Consider the following SL(2) group action on the
(x, u(x))-plane,

g · x = x̃ =
ax + b
cx + d

, g · u = ũ = u, (2)

where ad − bc = 1. The following expression

σ =
uxxx

u3
x

−
3
2

u2
xx

u4
x

,

is the lowest-order differential invariant, where a differential invariant is an
invariant for the prolonged group action of a Lie group on a jet space. All
differential invariants for the group action (2) are functions of σ and its derivatives
with respect to the invariant differential operator Dx = (1/ux)(d/dx).

Under this group action, the one-dimensional variational problem∫
(2uxxx ux − 3u2

xx)
2

4u7
x

dx =
∫
σ 2ux dx

has SL(2) as a variational symmetry group. Using the formula for Noether’s
conservation laws, as formulated in [21, Section 5.4, Proposition 5.98], we obtain
a system of conservation laws which can be written in matrix form as A(x, ux ,

uxx)υ(I ) = c, where υ(I ) is a vector of invariants, and c are the constants of
integration; more precisely, we have

xuxx + ux

ux
2xux −

uxx(xuxx + 2ux)

2u3
x

uxx

2ux
ux −

u2
xx

4u3
x

−
x(xuxx + 2ux)

2ux
−x2ux

(xuxx + 2ux)
2

4u3
x


 −4Dxσ

−2σ 2
+ 2D2

xσ

−4σ

 =
c1

c2

c3

 ,
(3)
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where this defines A and υ(I ). Note that matrix A corresponds to Ad(ρ)−1 in (1)
and MJ d0 x̂ in (1) is 1 in this example.

The Euler–Lagrange equation for this variational problem is−2D3
xσ + 6σDxσ

= 0, that is

(−D3
x + 2Dxσ + 2σDx)Eσ (L)+Dx (−L) = 0,

where Eσ is the Euler operator with respect to σ . This invariantized Euler–
Lagrange equation agrees with the invariant form given in Kogan and Olver [16],

A∗E(L)− B∗H(L) = 0, (4)

where E(L) is the invariantized Eulerian, H(L) a suitable invariantized
Hamiltonian, and A∗, B∗, which are named Eulerian and Hamiltonian operators,
respectively, are invariant differential operators.

Once one has solved the Euler–Lagrange equation for σ and substituted σ in
the system of conservation laws (3), one obtains three equations for ux and uxx as
functions of x . Combining and simplifying these yields

ux(c1x − c2x2
+ c3)+ 4σ = 0. (5)

Equation (5) can be solved for u, once a solution σ is known.
The matrix A defined in (3) is equivariant, in other words, letting the group

act on its components, then one can verify that the group action factors out; more
precisely,

A(̃x, ũx , ũxx) = R(a, b, c)A(x, ux , uxx),

where

R(a, b, c) =

ad + bc 2bd −2ac
cd d2

−c2

−ab −b2 a2

 , d =
1+ bc

a
.

The matrix R(a, b, c) is a representation of SL(2); the group product in parameter
space is given by

(a, b, c) · (α, β, γ ) = (aα+bγ, aβ+bδ, cα+dγ ), d =
1+ bc

a
, δ =

1+ βγ
α

,

and it is easily checked that

R(a, b, c) · R(α, β, γ ) = R((a, b, c) · (α, β, γ )).

This representation is the well-known Adjoint representation (see [17,
Section 3.3]). In fact, the map A is a moving frame, that is an equivariant
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map from the space M on which the Lie group G acts, in this case, the relevant
jet bundle, to the group itself.

It follows from the theory we demonstrate in this paper, that the matrix A
depends only on the symmetry class of the Lagrangian, that is, the symmetry
group and its action. In this example, A will be the same for all Lagrangians of the
form,

∫
L(σ,Dxσ,D2

xσ, . . . )ux dx . Only the vector of invariants, υ(I ) depends
on L . Other examples given in [8, 9], show that the system of conservation laws
can be used to solve for the extremals, in one-dimensional invariant variational
problems where the Adjoint representation is nontrivial.

At first glance the structure of the conservation laws, for invariant variational
problems whose independent variables are also invariant (see [8, Theorem 3]),
seems to be identical to the one where the independent variables participate in
the action. But in fact, they are not identical, as we saw in Theorem 1: there is
an extra matrix term in the conservation laws, MJ , which does not appear in one-
dimensional variational problems because Dx(F(x, u, ux , . . .)I (dx)) = d(F(x,
u, ux , . . .)) as will be proven later in Theorem 4. Besides this there is another
difference, which is not visible here: the vectors of invariants have a slightly
different formula, which is related to the fact that the independent variables
participate in the action.

2. Moving frames and invariant calculus of variations

In this section, we will introduce notions and concepts needed to understand
our results, namely, moving frames as formulated by Fels and Olver [6, 7] in the
context of differential algebra, differential invariants of a group action, invariant
differential operators, invariant forms and invariant calculus of variations. For
further details on these topics, see Fels and Olver [6, 7], and Mansfield [17]. Also,
a different approach to invariant calculus of variations can be found in Kogan and
Olver [16].

We will start by defining what a moving frame is and then use it to obtain
the differential invariants, the invariant differential operators and the invariant
differential forms. Then we will proceed to the topic of invariant calculus of
variations, where we explain how the invariantized Euler–Lagrange equations are
calculated. In the process of obtaining these, a collection of boundary terms are
picked up; as will be seen in Section 3, these will yield part of the new structured
version of Noether’s conservation laws in terms of invariants and a moving frame.

2.1. Moving frames and differential invariants. A smooth group acting on
a smooth space induces an action on the set of its smooth curves and surface
elements and on their higher-order derivatives in the relevant jet bundle. These
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curves and surfaces are known as the prolonged curves and surfaces. In this paper,
the set M on which the group G acts is the set of these prolonged curves and
surfaces.

Let X be the set of independent variables with coordinates x = (x1, . . . , xp)

and U the set of dependent variables with coordinates u = (u1, . . . , uq). We will
represent the derivatives of uα with a multi-index notation, for example

uαK =
∂ |K |uα

∂xk1 · · · ∂xkm

,

where K = (k1, . . . , km) is an unordered m-tuple of integers, where the entries
1 6 k` 6 p represent the derivatives with respect to xk` ; its order is denoted by
|K| = m. Consequently, we will represent the coordinates of M = J n(X ×U ) as

z = (x1, . . . , xp, u1, . . . , uq, u1
1, . . .).

Furthermore, the operator ∂/∂xi extends to the total differentiation operator

Di =
d

dxi
=

∂

∂xi
+

q∑
α=1

∑
K

uαKi
∂

∂uαK
,

where Di maps J n into J n+1.
A group action of G on M is a map

G × M → M, (g,z) 7→ g · z,

which satisfies either g ·(h ·z) = (gh)·z, called a left action, or g ·(h ·z) = (hg)·z,
called a right action. To ease exposition, we will denote at times g · z as z̃.

Suppose that G is a Lie group acting smoothly on M and that its action is free
and regular in some domain U ⊂ M . This implies that:

– the group orbits all have the same dimension and foliate U ;

– the existence of a surface K that intersects these orbits transversally, and for
which the intersection with a given group orbit is a single point. This surface K
is known as cross section; and

– if O(z) is an orbit through z, then the element h ∈ G which maps z to {c} =
O(z) ∩K is unique.

Under these conditions we can define an equivariant map ρ : U → M as the
map that sends an element z ∈ U to the unique element ρ(z) ∈ G which satisfies

ρ(z) · z = c.

The map ρ is called the right moving frame relative to the cross section K.
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To obtain the right moving frame, in a first instance, we define the cross section
K as the locus of the set of equations ψi(z) = 0, for i = 1, . . . , r , where r is the
dimension of G. Then solving the set of equations, known as the normalization
equations,

ψi (̃z) = ψi(g · z) = 0, i = 1, . . . , r,

for the r parameters describing G yields the frame in parametric form.

EXAMPLE 1. Consider the linear SL(2) action on the space (x, y, u(x, y)) as
follows (

x̃
ỹ

)
=

(
a b
c d

)(
x
y

)
, ad − bc = 1, ũ = u. (6)

The prolonged actions on ux and u y are given explicitly by g · ux = ũx = D̃x ũ
and g · u y = ũ y = D̃y ũ, respectively.

The transformed total differentiation operators D̃i are defined by

D̃i =
d

dx̃i
=

p∑
k=1

((d̃x/dx)−T)ik Dk, (7)

where d̃x/dx is the Jacobian matrix. So,

ũx = dux − cu y, ũ y = −bux + au y.

Taking M to be the space with coordinates (x, y, u, ux , u y, uxx , uxy, u yy, . . .), then
the action is locally free near the identity of SL(2) and regular away from the
coordinate plane x = 0 and the locus of xux + yu y = 0. In this domain, we may
take the normalization equations to be x̃ = 1, ỹ = 0 and ũ y = 0, and thus obtain

a =
ux

xux + yu y
, b =

u y

xux + yu y
, and c = −y, (8)

as the frame in parametric form.

THEOREM 2. Let ρ be a right moving frame, then the quantity I (z) = ρ(z) · z
is an invariant of the group action (see [6]).

If z is given in coordinates, and the normalization equations are z̃i = ci , for
i = 1, . . . , r , then

ρ(z) · z = (c1, . . . , cr , I (zr+1), . . . , I (zn)),

where
I (zk) = g · zk |g=ρ(z), for k = r + 1, . . . , n.
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Thus, we denote the invariantized jet bundle coordinates as

J k
= I (xk) = x̃k |g=ρ(z), I αK = I (uαK) = ũαK|g=ρ(z).

These are also known as the normalized differential invariants. This follows the
notation in [7]. Other notations appearing in the literature are ι(z) and ῑz.

EXAMPLE 1. (cont.) The normalized differential invariants up to order two are as
follows

g · z = (̃x, ỹ, ũ, ũx , ũ y, ũxx , ũxy, ũ yy)|g=ρ(z)

= (J x , J y, I u, I u
1 , I u

2 , I u
11, I u

12, I u
22)

=

(
1, 0, u, xux + yu y, 0, x2uxx + 2xyuxy + y2u yy,

xux uxy − yu yuxy + yux u yy − xu yuxx

xux + yu y
,

u2
x u yy − 2ux u yuxy + u2

yuxx

(xux + yu y)2

)
.

(9)

The first, second and fifth components correspond to the normalization equations
and are known as the phantom invariants. We will see that the third and eighth
components, u = I (u) and I (u yy), respectively, are the generating invariants and
one can obtain all the higher-order invariants in terms of them and their invariant
derivatives (we refer to [17, Ch. 5] for a discussion of the relevant results that
allow such claims to be proved).

2.2. Invariant differential operators and differential forms. The invariant
differential operators are calculated in a similar way to that of the normalized
differential invariants. We obtain them by evaluating the transformed total
differentiation operators at the frame, in other words,

Di = D̃i |g=ρ(z),

where D̃i are as defined in (7). These invariant differentiation operators map
differential invariants to differential invariants.

We know that Di uαK = uαKi , but the same is not true for their invariantized
counterparts; in general

Di I αK 6= I αKi .

To show this we shall first define the notion of infinitesimal of a prolonged group
action.
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DEFINITION 1. Let G be a group parametrized by a1, . . . , ar , where r = dim(G),
in a neighbourhood of the identity element. The infinitesimals of the prolonged
group action with respect to these parameters are

ξ i
j =

∂ x̃i

∂a j

∣∣∣∣
g=e

, φαK, j =
∂ ũαK
∂a j

∣∣∣∣
g=e

. (10)

Since ξ i
j and φαK, j are functions of the xi , for i = 1, . . . , p, uα, for α = 1, . . . , q ,

and uαK, we can define
ξ i

j(I ) = ξ
i
j(J

i , I β)

and
φαK , j(I ) = φ

α
K , j(J

i , I β, I βM),

where the arguments have been invariantized.

By definition of I αK and Di , from the chain rule we obtain

Di I αK = D̃i |g=ρ(z) ũαK(ρ1, . . . , ρr , x,u,uJ)

=

r∑
`=1

∂ ũαK
∂a`

∣∣∣∣
g=ρ(z)

(D̃iρ`)|g=ρ(z) + (D̃i ũαK)|g=ρ(z). (11)

The second summand in (11) is I αKi by definition. By [17, Theorem 3.2.27] and by
definition of infinitesimal, the first summand becomes

r∑
`=1

φαK,`(I )(D̃iρ`(z̃))|g=ρ(z),

where this defines Ki` = D̃iρ`(z̃)|g=ρ(z), and K = (Ki`) is known as the correction
matrix. Thus,

Di I αK = I αKi + Mα
Ki , where Mα

Ki =

r∑
`=1

Ki`φ
α
K,`(I ) (12)

are called the correction terms. Similarly, we can obtain the invariant
differentiation of the J k

Di J k
= δk

i + Nki , where Nki =

r∑
`=1

Ki`ξ
k
` (I ) (13)

and δk
i is the Kronecker delta.

The error terms can be calculated without explicit knowledge of the frame,
requiring merely information on the normalization equations and infinitesimals—
symbolic software exists which computes these, see [12, 18]. From Equation (12),
one can verify that the processes of invariantization and differentiation do not
commute. If we consider two generating invariants, I αJ and I αL , and let JK = LM
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such that I αJK = I αLM, then we obtain the so-called syzygies or differential identities

DK I αJ −DM I αL = Mα
JK − Mα

LM. (14)

For more information on syzygies, see [17, Ch. 5]. A full discussion of the finite
generation of invariant differential algebras and their syzygy modules is given
in [13, 14].

EXAMPLE 1. (cont.) The invariant differential operators for this action are

Dx = x
d

dx
+ y

d
dy
, (15)

Dy = −
u y

xux + yu y

d
dx
+

ux

xux + yu y

d
dy
. (16)

It can now be seen that in the list of differential invariants given in Equation
(9), that the fourth component is Dx(u), the sixth component is D2

x(u) − Dx(u),
and the seventh component is DyDx(u). It is not possible, however, to obtain the
eighth component, I (u yy) by invariant differentiation of u, since Dy(u) = 0. All
other differential invariants of the form I (uK) can be obtained from u and I (u yy)

by invariant differentiation and algebraic operations, and thus these two invariants
generate the algebra of invariants.

The syzygy between I (u) and I (u yy) is

Dx(I (u yy))−D2
yDx(u) = −4I (u yy)+

1
Dx(u)

(I (u yy)D2
x(u)− 2(DyDx(u))2).

(17)

EXAMPLE 2. We now extend the previous example by adding an extra, dummy,
independent variable τ , which we declare to be invariant under the group action.
In the sequel, we will use differentiation by τ to effect the variation, a step
which will allow us to use the invariant calculus to achieve our results. As τ is
a dummy variable, the normalization equations will never contain τ derivatives.
The new generating invariants will therefore be first order in τ , and there will be
new syzygies. Set u = u(x, y, τ ). Let g ∈ SL(2) act on (x, y, u(x, y, τ )) as in
Example 1 and set τ̃ = τ . Taking the normalization equations as before, we obtain

ũτ |g=ρ(z) = I u
3 = uτ ,

ũxx |g=ρ(z) = I u
11 = x2uxx + 2xyuxy + y2u yy,

ũxy|g=ρ(z) = I u
12 =

xux uxy − yu yuxy + yux u yy − xu yuxx

xux + yu y
,

ũ yy|g=ρ(z) = I u
22 =

u2
x u yy − 2ux u yuxy + u2

yuxx

(xux + yu y)2
.
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Figure 1. Paths to I u
K3 in Example 2, where K represents the index of

differentiation with respect to the xi , for i = 1, . . . , p.

From Figure 1, we can see that there are two ways to reach I u
113 and since these

must yield the same result, we get the following syzygy between I u
3 and I u

11:

Dτ I u
11 = D2

x I u
3 −Dx I u

3 . (18)

Similarly, there are two possibilities to obtain I u
223, which give rise to the following

syzygy between I u
3 and I u

22:

Dτ I u
22 = D2

y I u
3 −

2I u
12

I u
1
Dy I u

3 +
I u

22

I u
1
Dx I u

3 . (19)

Finally, there are several ways in which to reach I u
123; there are two syzygies

between I u
3 and I u

12, which are as follows:

Dτ I u
12 = DyDx I u

3 −

(
I u

11

I u
1
+ 1

)
Dy I u

3 , (20)

Dτ I u
12 = DxDy I u

3 +

(
1−

I u
11

I u
1

)
Dy I u

3 +
I u

12

I u
1
Dx I u

3 . (21)

From Equations (20) and (21) in Example 2, one can verify that the invariant
operators Dx and Dy do not commute. In general, the invariant total differentiation
operators do not commute. In [7], Fels and Olver gave a formula for the
commutators of these invariant operators, which only relies on the correction
matrix K and the infinitesimals of the group action. Denote the invariantized
derivatives of the infinitesimals ξ k

` , for k = 1, . . . , p and ` = 1, . . . , r , by

Ξ k
`i = D̃iξ

k
` (̃z)|g=ρ(z).
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Then the commutators are given by

[Di ,D j ] =
∑

k

Ak
i jDk, Ak

i j =

r∑
`=1

K j`Ξ
k
`i − Ki`Ξ

k
`j . (22)

Invariant volume forms are obtained by taking the wedge product of invariant
zero and one-forms. We define the latter next, and their behaviour under the
invariant Lie derivative operators.

DEFINITION 2. The invariant one-forms obtained via the moving frame are
denoted as

I (dxi) = dx̃i |g=ρ(z) =

( p∑
j=1

D j(x̃i) dx j

)∣∣∣∣
g=ρ(z)

. (23)

These are known in the literature as contact-invariant horizontal one-
forms [22].

As for differential invariants, the invariant total differentiation operators send
invariant differential forms to invariant differential forms.

By definition,

Di =

p∑
`=1

(J −T)i`D`, where J = d̃x
dx

∣∣∣∣
g=ρ(z)

.

Let Vi = ((J −T)i1, . . . , (J −T)i p) and D = (D1, . . . , Dp)
T; so Di = Vi · D.

Consider the invariant total differentiation Di of a form ω, denoted as Di(ω),
to be the Lie derivative

Di(ω) = d(Vi · Dyω)+ Vi · Dy (dω), (24)

where d is the usual exterior derivative, and y is the interior product of a vector
field with a form. In fact if ω = I (dx j), then (24) simplifies to

Di(I (dx j)) = Vi · Dy (d I (dx j)), (25)

by the following lemma.

LEMMA 1. Let Di = Vi · D be the invariant differential operator. Then

Vi · Dy I (dx j) = δi j , (26)

where δi j is the Kronecker delta, in other words {I (dx1), . . . , I (dxp)} forms a
basis to the dual space of T M |̃x, whose basis is {D1, . . . ,Dp}.
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Proof. Let J denote the Jacobian matrix d̃x/dx|g=ρ(z). Then

Vi · Dy I (dx j) = ((J −T)i1, . . . , (J −T)i p) · Dy

( p∑
`=1

(J ) j`dx`

)
= ((J −1)1i , . . . , (J −1)pi) · Dy

( p∑
`=1

(J ) j`dx`

)
= (J −1)1i(J ) j1 + · · · + (J −1)pi(J ) j p

= δi j .

It is possible to calculate the Lie derivative of the I (dx j) with respect to the Di

knowing only the infinitesimals and the normalization equations, that is, without
explicit knowledge of the frame. The following theorem shows exactly this.

THEOREM 3. Let g ∈ G act on x ∈ X and let f be a function on M, and denote
the set of invariant total differentiation operators by {Di}, and the set of invariant
one-forms, {I (dx j)}. Then setting

Di(I (dx j)) =

p∑
k=1

Bk
i j I (dxk) (27)

we have
B j

ki = Ai
jk,

where the Ai
jk are the coefficients in the commutator

[D j ,Dk]( f ) =
p∑

i=1

Ai
jkDi( f )

given explicitly in (22).

Proof. We first prove that for any function f on M ,

d f =
p∑

i=1

Di( f )I (dxi).

Let dx = (dx1, . . . , dxp)
T and D = (D1, . . . , Dp)

T; further, set

I (dx) =
(
I (dx1), . . . , I (dxp)

)T

and D = (D1, . . . ,Dp)
T. We know that I (dx) = J dx, where J is the Jacobian

matrix d̃x/dx|g=ρ(z), so that dx = J −1 I (dx), D = J −T D and D = J TD, then
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d f =
p∑

n=1

d f
dxn

dxn

=

p∑
n=1

[ p∑
m=1

(J T)nmDm( f )
( p∑

i=1

(J −1)ni I (dxi)

)]
=

p∑
i=1

p∑
m=1

p∑
n=1

(J )mn(J −1)niDm( f )I (dxi)

=

p∑
i=1

p∑
m=1

δmiDm( f )I (dxi)

=

p∑
i=1

Di( f )I (dxi).

Next, since d2
≡ 0, we have

0 = d2 f = d
( p∑

i=1

Di( f )I (dxi)

)
=

p∑
i=1

[d(Di( f )) ∧ I (dxi)+Di( f ) d(I (dxi))].

Let Dk = Vk · D. From Vk · Dy d2 f = 0, it follows that

0 =
p∑

i=1

[(Vk · Dy d)(Di( f ))I (dxi)− d(Di( f ))(Vk · Dy I (dxi))

+Di( f )(Vk · Dy d)(I (dxi))]

=

p∑
i=1

[Dk(Di( f ))I (dxi)− δki d(Di( f ))+Di( f )Dk(I (dxi))]

=

p∑
i=1

[
Dk(Di( f ))I (dxi)+Di( f )

p∑
m=1

Bm
ki I (dxm)

]
− d(Dk( f )),

where we have used the properties of the interior product in the first line, the
equality (25) in the second line, and the definition of Bk

i j , (27), in the third line.
Note this proves that Di(I (dx j)) is linear in the I (dx`).

Finally, we have further that V j · Dy (Vk · Dy d2 f ) = 0, and thus

0 =
p∑

i=1

[Dk(Di( f ))δi j +Di( f )Bm
kiδmj ] − (V j · Dy d)Dk( f )

= Dk(D j( f ))−D j(Dk( f ))+
p∑

i=1

Di( f )B j
ki

= [Dk,D j ]( f )+
p∑

i=1

Di( f )B j
ki ,

https://doi.org/10.1017/fms.2016.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.24
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where we have used the properties of the interior product in the first line and the
equality (25) in the second line. Rewriting the above we obtain

[D j ,Dk]( f ) =
p∑

i=1

Di( f )B j
ki .

Since [D j ,Dk]( f ) =
∑p

i=1 Ai
jkDi( f ), where Ai

jk is defined in Equation (22), this
implies that

Ai
jk = B j

ki ,

as required.

EXAMPLE 3. Recall in Example 2 we introduced an invariant dummy
independent variable, τ , which will be used in the sequel to effect the variation.
Let g ∈ SL(2) act on (x, y, τ ) as in Example 2. Then the Lie derivatives of
I (dx j) with respect to Di are as shown in Table 2.

Table 2. Lie derivatives of the I (dx j ) with respect to the Di .

Lie derivative I (dx) I (dy) I (dτ)

Dx
I u

12

I u
1

I (dy) 2I (dy) 0

Dy −
I u

12

I u
1

I (dx)−
I u

23

I u
1

I (dτ) −2I (dx) 0

Dτ

I u
23

I u
1

I (dy) 0 0

Note that in Example 3, the Lie derivatives Di of I (dτ) are all equal to zero.
This is no coincidence as is shown in the following lemma.

LEMMA 2. Let g ∈ G act on the set of independent variables {xi}, for i = 1, . . . ,
p + 1. If g · x p+1 = x p+1, then

Di(I (dx p+1)) = 0,

for all i = 1, . . . , p + 1.

Proof. The Lie derivative of a form can be written as

Di(I (dx p+1)) =

p+1∑
`=1

B`
i,p+1 I (dx`).
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According to Theorem 3, the coefficients B`
i,p+1 are equal to

Ap+1
`i =

r∑
n=1

KinΞ
p+1

n` − K`nΞ
p+1

ni .

Since x p+1 is invariant, ξ p+1
n = 0, and therefore, Ξ p+1

n` = Ξ
p+1

ni = 0. Thus, for
` = 1, . . . , p + 1,

B`
i,p+1 I (dx`) = 0.

As we are interested in calculating the invariantized Euler–Lagrange equations
and its associated conservation laws for variational problems whose independent
variables are not invariant, it will at times be necessary to apply recursively the
commutators [Dp+1,Di ] =

∑p+1
k=1 Ak

p+1,iDk , for i = 1, . . . , p, where x p+1 is a
dummy invariant independent variable and Ak

p+1,i are as defined in (22). The next
lemma provides a formula for the commutators [Dp+1,DK], where K is a multi-
index of differentiation with respect to xi , for i = 1, . . . , p.

LEMMA 3. Let g ∈ G act on the set of independent variables {xi}, for i = 1, . . . ,
p + 1. If g · x p+1 = x p+1 and ω is some differential form on M, then

Dp+1DK(ω) =

(
DKDp+1 +

m∑
`=1

p∑
n=1

DK`(An
p+1, k`Dn)DK\(K`,k`)

)
(ω), (28)

where K = (k1, . . . , km) is a multi-index of differentiation with respect to xi , for
i = 1, . . . , p, of order m and, K` and K\(K`, k`) are tuples of differentiation of
the following form

K` = (k1, . . . , k`−1), with K1 = (0), and K\(K`, k`) = (k`+1, . . . , km).

Proof. To obtain (28), we use the equation for the commutators (22) recursively
as follows,

Dp+1DK(ω) =

(
Dk1Dp+1 +

p+1∑
n=1

An
p+1, k1

Dn

)
Dk2 . . .Dkm (ω)

= Dk1

(
Dk2Dp+1 +

p+1∑
n=1

An
p+1, k2

Dn

)
Dk3 . . .Dkm (ω)

+

p+1∑
n=1

An
p+1, k1

DnDk2 . . .Dkm (ω)
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= Dk1Dk2Dp+1Dk3 . . .Dkm (ω)

+

2∑
`=1

p+1∑
n=1

DK`(An
p+1, k`Dn)DK\(K`,k`)(ω), (29)

and so on. Note that as x̃ p+1 = x p+1, then ξ p+1
j = 0, for all j = 1, . . . , r , and

therefore, from (22) we have that Ap+1
p+1, k` = 0 for all `. After applying the

commutators (22) recursively and setting Ap+1
p+1, k` to zero for all `, (29) becomes

DKDp+1(ω) = DKDp+1(ω)+

m∑
`=1

p∑
n=1

DK`(An
p+1, k`Dn)DK\(K`,k`)(ω).

2.3. Invariant calculus of variations. Consider Lagrangians L̄ to be smooth
functions of x, u and finitely many derivatives of uα and denote the related
functional as L̄ [u] =

∫
L̄[u]dpx, where dpx = dx1 . . . dxp. Moreover, assume

these to be invariant under some group action and let the κ j , for j = 1, . . . , N ,
denote the generating differential invariants of that group action; in [14] Hubert
and Kogan prove that there exists a finite number of generating invariants. We can
then rewrite L̄ [u] as L [κ] =

∫
L[κ] I (dpx), where I (dpx) = I (dx1) . . . I (dxp)

is the invariant volume form obtained via the moving frame.
Kogan and Olver in [16] obtained formulae for the invariantized Euler–

Lagrange equations through the construction of a variational bicomplex; we arrive
at these using calculations that are similar to those employed to obtain the Euler–
Lagrange equations in the original variables (x,u).

Recall that if x 7→ (x,u(x)) extremizes the functional L̄ [u], then a small
perturbation of u yields

0 =
d
dε

∣∣∣∣
ε=0

L̄ [u+ εv]

=

∫ q∑
α=1

[
Eα(L̄)vα +

p∑
i=1

d
dxi

(
∂ L̄
∂uαi

vα + · · ·

)]
dpx

after differentiation under the integral sign and integration by parts, where

Eα
=

∑
K

(−1)m
dm

dxk1 . . . dxkm

∂

∂uαK

is the Euler operator with respect to the dependent variables uα and K = (k1, . . . ,

km).
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To obtain the invariantized analogue of (d/dε)|ε=0L̄ [u + εv], we must first
introduce a dummy invariant independent variable x p+1, where p is the number
of independent variables.

The introduction of this new independent variable results in q new invariants
I αp+1 = g · ∂uα/∂x p+1|g=ρ(z) and a set of syzygies Dp+1κ = HI (up+1), that is

Dp+1

κ1
...

κN

 = H

I 1
p+1
...

I q
p+1

 , (30)

where H is an N×q matrix of operators depending only on the Di , for i = 1, . . . ,
p, the κ j , for j = 1, . . . , N , and their invariant derivatives. Since the independent
variables are not necessarily invariant, the operators Di , for i = 1, . . . , p, and
Dp+1 do not commute in general.

We know that, symbolically,

d
dε

∣∣∣∣
ε=0

L̄ [u+ εv] =
d

dx p+1

∣∣∣∣
up+1=v

L̄ [u].

Proceeding as for the calculation of the Euler–Lagrange equations in the
original variables, we obtain the following, after differentiating under the integral
sign and performing integration by parts,

0 = Dp+1

∫
L[κ]I (dpx)

=

∫ [∑
j,K

∂L
∂DKκ j

Dp+1DKκ j I (dpx)+ LDp+1(I (dpx))
]

=

∫ [∑
j,K

∂L
∂DKκ j

(
DKDp+1 +

m∑
`=1

p∑
i=1

DK`(Ai
p+1,k`Di)DK\(K`,k`)

)
(κ j I (dpx))

+ LDp+1(I (dpx))
]

=

∫ [∑
j,K

(
(−1)mDK

(
∂L

∂DKκ j
I (dpx)

)
Dp+1κ j
::::::

+
∂L

∂DKκ j

m∑
`=1

p∑
i=1

DK`(Ai
p+1,k`Di)DK\(K`,k`)(κ j I (dpx))

)

+ L
p∑

j=1

I (dx1) . . .Dp+1 I (dx j) . . . I (dxp)

]
+ B.T.’s, (31)
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where B.T.’s stands for boundary terms, m is the order of the multi-index of
differentiation K, and K` and K\(K`, k`) correspond to the tuples defined in
Lemma 3. Note that we have used Lemma 3 in (31).

Next, we substitute the underlined Dp+1κ j by (30) and use Theorem 3 to
differentiate the invariant one-forms, which yields

0 =
∫ [∑

j,K

(∑
α

(
(−1)mDK

(
∂L

∂DKκ j
I (dpx)

)
H j, α I αp+1

)

+
∂L

∂DKκ j

m∑
`=1

p∑
i=1

DK`(Ai
p+1,k`Di)DK\(K`,k`)κ j I (dpx)

)

+ L
p∑

j=1

B j
p+1, j I (dpx)

]
+ B.T.’s. (32)

Note that the terms Ai
p+1, k` , DK`(Ai

p+1,k`), and B j
p+1, j involve sums of terms

which include I αK,p+1. Unless |K| = 0, then one needs to substitute the I αK,p+1, by
their respective differential formulae DK I αp+1−Mα

p+1,K, where Mα
p+1,K are the error

terms obtained by applying DK to I αp+1. Note that if the Mα
p+1,K involve terms of

the form I αJ,p+1, then these must also be substituted by their respective differential
formulae. Performing a second set of integration by parts to (32) yields

0=
∫ (∑

α

Eα(L)I αp+1 I (dpx)+
p∑

i=1

Di

( p+1∑
j=1

Fi j I (dx1) . . . Î (dx j) . . . I (dx p+1)

))
,

(33)
where Eα(L) are the invariantized Euler–Lagrange equations as defined in (4), Fi j

depend on I αK,p+1 and I αJ with K and J multi-indices of differentiation with respect
to xi , for i = 1, . . . , p, and

I (dx1) . . . Î (dx j) . . . I (dx p+1) = I (dx1) . . . I (dx j−1)I (dx j+1) . . . I (dx p+1).

Note that after the second set of integration by parts has been performed in
(32), all p-forms involving I (dx p+1), which sit outside the boundary terms, have
been discarded as there is no integration along x p+1. In the next theorem, we will
show that the boundary terms of (33) do not contain any (p− 1)-forms involving
I (dx p+1), and therefore as they crop up in the calculation we can simply just
discard them. Furthermore, an important point of the next theorem is to show that
the resulting boundary terms are linear in I αK,p+1.

THEOREM 4. The process of calculating the invariantized Euler–Lagrange
equations produces boundary terms that can be written as
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i=1

d
(
(−1)i−1

(∑
K,α

I αK,p+1Cα
K,i

)
I (dx1) . . . Î (dxi) . . . I (dxp)

)
, (34)

where

I (dx1) . . . Î (dxi) . . . I (dxp) = I (dx1) . . . I (dxi−1)I (dxi+1) . . . I (dxp),

K is a multi-index of differentiation with respect to xi , for i = 1, . . . , p, and Cα
K,i

are functions of I αJ , with J a multi-index of differentiation with respect to xi .

Proof. Consider the boundary terms in (33)

∫ p∑
i=1

Di

( p+1∑
j=1

Fi j I (dx1) . . . Î (dx j) . . . I (dx p+1)

)
. (35)

Since Di is a derivation, we obtain

Di

( p+1∑
j=1

Fi j I (dx1) . . . Î (dx j) . . . I (dx p+1)

)

=

p+1∑
j=1

(Di(Fi j)I (dx1) . . . Î (dx j) . . . I (dx p+1)

+ Fi jDi(I (dx1) . . . Î (dx j) . . . I (dx p+1))). (36)

For j = 1, . . . , p + 1, Di((I (dx1) . . . Î (dx j) . . . I (dx p+1)) in (36) can be written
as

Di(I (dx1)) . . . Î (dx j) . . . I (dx p+1)+ · · · + I (dx1) . . . Î (dx j) . . .Di(I (dx p+1)).

(37)
For j = 1, . . . , p, the last term in (37) is zero by Lemma 2, also all remaining
terms in (37) disappear as they all possess a I (dx p+1) form and there is no
integration along x p+1.

Furthermore, for j = 1, . . . , p, the terms Di(Fi j)I (dx1) . . . Î (dx j) . . . I (dx p+1)

in (36) disappear as there is no integration along x p+1. Hence, (36) reduces to

Di(Fi,p+1)I (dpx)+ Fi,p+1Di(I (dpx))
= Di(Fi,p+1 I (dpx))
= d(Vi · Dy Fi,p+1 I (dpx))+ Vi · Dy d(Fi,p+1 I (dpx)), (38)
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where Di = Vi · D. The invariant volume form, I (dpx), can be written as |J | dpx,
where as before J = d̃x/dx|g=ρ(z), and therefore (38) becomes

d((−1)i−1 Fi,p+1 I (dx1) . . . Î (dxi) . . . I (dxp))+ Vi · Dy
∂(Fi,p+1|J |)
∂x p+1

dx p+1 dpx.

Note that to simplify the first term of (38) we have used the result of Lemma
1. Since Di = Vi · D does not involve any Dp+1, we will be left in the second
summand with a form involving dx p+1 and as there is no integration along x p+1

we obtain
d((−1)i−1 Fi,p+1 I (dx1) . . . Î (dxi) . . . I (dxp)). (39)

From Theorem 3, we know that Bk
i j = Ai

jk , which is equal to
r∑
`=1

Kk`Ξ
i
`j − K j`Ξ

i
`k .

Since some of the terms in Fi,p+1 are products of the form I αK,p+1 I βJ Bk
i j , where

k 6= p + 1, and the Bk
i j in these products never involve invariants of the form

I γM,p+1, the Fi,p+1 are linear combinations of the I αK,p+1.
Thus, the boundary terms (35) simplify to∫ p∑

i=1

d((−1)i−1 Fi,p+1 I (dx1) . . . Î (dxi) . . . I (dxp))

=

∫ p∑
i=1

d
(
(−1)i−1

(∑
K,α

I αK,p+1Cα
K,i

)
I (dx1) . . . Î (dxi) . . . I (dxp)

)
, (40)

where Cα
K,i are coefficients of the I αK,p+1.

EXAMPLE 4. Consider the variational problem
∫∫

u(uxx u yy − u2
xy) dx dy, which

is invariant under the action presented in Example 1. Finding the Euler–Lagrange
equation in the original variables for this particular variational problem is a simple
task and in this case, the invariantized version of the calculation of the Euler–
Lagrange equation is not simpler, although it does provide a simple check of
our theory. On the other hand, the conservation laws contain many terms and
using invariants to rewrite them, does reduce them. To find the invariantized Euler–
Lagrange equation, introduce a dummy invariant independent variable τ and set
u = u(x, y, τ ). The introduction of this new independent variable results in the
new invariant ũτ |g=ρ(z) = I u

3 and a set of syzygies, as computed in Example 2.
Rewriting the above variational problem in terms of the invariants of the group
action yields ∫∫

I u(I u
11 I u

22 − (I
u
12)

2)I (dx)I (dy).
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In the process of calculating the invariantized Euler–Lagrange equation and its
boundary terms, we differentiate under the integral sign and obtain

Dτ

∫∫
I u(I u

11 I u
22 − (I

u
12)

2)I (dx)I (dy)

=

∫∫
[(Dτ (I u)(I u

11 I u
22 − (I

u
12)

2)+ I u I u
22Dτ I u

11 + I u I u
11Dτ I u

22

− 2I u I u
12Dτ I u

12)I (dx)I (dy)+ I u(I u
11 I u

22 − (I
u
12)

2)Dτ (I (dx)I (dy))].

Using Table 2 we find that Dτ (I (dx)I (dy)) = 0. Then substituting Dτ I u
11,

Dτ I u
22, and Dτ I u

12 by (18), (19), and (20), respectively, and performing integration
by parts yields∫∫

3(I u
11 I u

22 − (I
u
12)

2)I u
3 I (dx)I (dy)

+

∫∫ [
Dx

(((
I u I u

22 − I u
1 I u

22 + I u I u
122 −

I u I u
11 I u

22

I u
1

)
I u

3

+ I u I u
22 I u

13

)
I (dx)I (dy)

)
+Dy

(((
I u I u

11 I u
12

I u
1
− I u I u

112

)
I u

3 − 2I u I u
12 I u

13 + I u I u
11 I u

23

)
I (dx)I (dy)

)]
, (41)

where all forms involving I (dτ) have been discarded as there is no integration
along τ . Thus, we obtain the invariantized Euler–Lagrange equation

Eu(L) = 3(I u
11 I u

22 − (I
u
12)

2) = 3(uxx u yy − u2
xy),

as expected, and according to (40), the boundary terms can be written as∫∫
d
(((

I u I u
22 − I u

1 I u
22 + I u I u

122 −
I u I u

11 I u
22

I u
1

)
I u

3 + I u I u
22 I u

13

)
I (dy)

−

((
I u I u

11 I u
12

I u
1
− I u I u

112

)
I u

3 − 2I u I u
12 I u

13 + I u I u
11 I u

23

)
I (dx)

)
, (42)

where the summands are linear in the I αK3 as expected. In Example 7 we will
continue this example and obtain the conservation laws.

We note that we have not used the translation invariance of this Lagrangian, and
indeed we could have used the equiaffine action to study this problem. This would
have led to three normalized derivative terms instead of just the one. However,
we would also have had three generating differential invariants and additional
syzygies.
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REMARK 1. Note that in Example 4 we could have substituted Dτ I u
12 by Equation

(21) instead of Equation (20), or we could even have used a combination of the
two; in any case, no matter which syzygy is used the seemingly different boundary
terms yield equivalent conservation laws.

3. Structure of Noether’s conservation laws

In [8] it was shown that, for invariant Lagrangians that may be parametrized so
that the independent variables are each invariant under the group action, Noether’s
conservation laws could be written in terms of the differential invariants of the
group action and the adjoint representation of a moving frame for the Lie group
action. Here we generalize this result to variational problems with independent
variables that are not invariant; in this case Noether’s conservation laws have a
similar form as the ones presented in [8], but with an extra factor—the matrix
representing the group action on the space of (p−1)-forms, where p is the number
of independent variables.

EXAMPLE 5. Consider the SL(2) action as in Example 1 and the variational
problem of Example 4. Applying Noether’s Theorem to the variational problem
and rewriting the three conservation laws in terms of the differential invariants of
the group action yields

d





Ad(ρ)−1

xux − yu y

xux + yu y
−

2ux u y

(xux + yu y)2
−2xy

yux

xux + yu y

u2
x

(xux + yu y)2
−y2

xu y

xux + yu y
−

u2
y

(xux + yu y)2
x2




υ1 υ2

I u
1 I u

22(I
u
− I u

1 ) I u
1 I u

12(I
u
− I u

1 )

−I u I u
1 I u

12 −I u I u
1 I u

11

0 0



×

 x −y
u y

xux + yu y

ux

xux + yu y


︸ ︷︷ ︸

MJ

(
dy
dx

)
︸ ︷︷ ︸

d1 x̂

 = 0, (43)

where Ad(ρ)−1 is the inverse of the Adjoint representation of SL(2) with respect
to its generating vector fields evaluated at the frame (8), υ1 and υ2 are vectors
of invariants, and MJ is the matrix of first minors of the Jacobian matrix J , as
defined in the proof of Lemma 1, evaluated at the frame (8). The quantity MJ d1̂x
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is in fact invariant, as will be shown in the proof of Theorem 6, Equation (64).
Note that each row of (43) corresponds to the conservation law for the invariance
with respect to a, b, and c, respectively.

3.1. The group action on the conservation laws. Before we proceed to
generalizing the result in [8], we shall look in detail at the group action on the
conservation laws, for which we will need the following definitions and identities.

DEFINITION 3. The Adjoint action Ad of g ∈ G on the vector field v j =∑
α,i(ξ

i
j∂xi + φ

α
j ∂uα ) is given as follows

Adg

(∑
α,i

(ξ i
j∂xi + φ

α
j ∂uα )

)
=

∑
α,i

(ξ i
j (̃x, ũ)∂x̃i + φ

α
j (̃x, ũ)∂ũα ),

so that (
Adg(Ξ j) Adg(Φ j)

)
=
(
Ξ j (̃x, ũ) Φ j (̃x, ũ)

) (∂(̃x, ũ)
∂(x,u)

)−T

, (44)

with Ξ j = (ξ
1
j , . . . , ξ

p
j ) and Φ j = (φ

1
j , . . . , φ

q
j ). By [17, Theorem 3.3.10], for all

v j we have that

Ad(g)
(
Ξ(x,u) Φ(x,u)

)
=
(
Ξ(̃x, ũ) Φ(̃x, ũ)

) (∂(̃x, ũ)
∂(x,u)

)−T

, (45)

where Ad(g) is an r × r matrix, giving the Adjoint action, depending only on the
group parameters, with r = dim(G).

EXAMPLE 6 (Example of the calculation of an adjoint action). Consider the
infinitesimal vector fields

x∂x − y∂y, y∂x and x∂y,

which generate the linear SL(2) action. The Adjoint action of g ∈ SL(2) on these
infinitesimal vector fields is as follows

g · (α(x∂x − y∂y)+ βy∂x + γ x∂y)

= α(̃x∂x̃ − ỹ∂ỹ)+ β ỹ∂x̃ + γ x̃∂ỹ

=
(
α β γ

)ad + bc 2bd −2ac
cd d2

−c2

−ab −b2 a2


︸ ︷︷ ︸

Ad(g)

x∂x − y∂y

y∂x

x∂y

 , (46)

where ad − bc = 1.
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For more details on the Adjoint representation of G with respect to the
generating vector fields, see Gonçalves and Mansfield [8, 17].

LEMMA 4. Let x = (x1, . . . , xp) and u(x) = (u1(x), . . . , uq(x)). The q× p matrix
∂u/∂x can be written as

∂u
∂x
=

(
∂ũ
∂u
−

d̃u
d̃x
∂ x̃
∂u

)−1( d̃u
d̃x
∂ x̃
∂x
−
∂ũ
∂x

)
. (47)

Proof. We have
d̃u
d̃x

d̃x
dx
=

d̃u
dx

and
d̃z
dx
=
∂̃z
∂x
+
∂̃z
∂u
∂u
∂x
, where z = x or u.

The result follows from expanding the first equation, and collecting terms in
∂u/∂x.

DEFINITION 4. Given the vector field v j =
∑

α,i(ξ
i
j∂xi + φ

α
j ∂uα ), the column

vector Q j with components

Qα
j (x,u,ux) = φ

α
j (x,u)−

p∑
i=1

uαi ξ
i
j(x,u), α = 1, . . . , q,

is referred to as the characteristic of the vector field v j .

Letting g ∈ G act on Q j , we have

Q j (̃x, ũ, ũx) =

(
−

d̃u
d̃x

Iq

)(
ΞT

j (̃x, ũ)
ΦT

j (̃x, ũ)

)
.

Using (44) and (47) this can be written as

Q j (̃x, ũ, ũx) =

(
∂ũ
∂u
−

d̃u
d̃x
∂ x̃
∂u

)(
Adg(Φ

T
j )−

∂u
∂x

Adg(Ξ
T
j )

)
=

(
∂ũ
∂u
−

d̃u
d̃x
∂ x̃
∂u

)
Adg(Q j), (48)

where this defines

Adg(Q j) = Adg(Φ
T
j )−

∂u
∂x

Adg(Ξ
T
j ). (49)
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The following lemma provides a result on the action of an element g ∈ G on
the (p − 1)-forms, which will be needed to determine the action on Noether’s
conservation laws.

LEMMA 5. If

(−1)k−1dx̃1 . . . d̂x̃k . . . dx̃p =

p∑
`=1

(−1)`−1 Z k
`dx1 . . . d̂x` . . . dxp

defines Z k
` , then

(−1)`−1 Z k
` =

((
d̃x
dx

)−1)
`k

det
(

d̃x
dx

)
. (50)

The proof of this lemma can be found in Appendix A.

THEOREM 5. Let L [u] =
∫
Ω

L(x,u,uK) dpx be a variational problem, which is
invariant under the action of a Lie group symmetry G given by

x 7→ g · x = x̃(x,u),
u 7→ g · u = ũ(x,u),

uαK 7→ g · uαK = ũαK :=
∂ |K|ũα

∂ x̃k1 . . . ∂ x̃km

,

so that

L(x,u,uK) = L (̃x, ũ, ũK) det
(

d̃x
dx

)
.

If
p∑

k=1

(−1)k−1C j
k (x,u,uK, Ξ j(x,u),Φ j(x,u)) dx1 . . . d̂xk . . . dxp,

for j = 1, . . . , r,

are Noether’s conservation laws, with Ξ j= (ξ
1
j , . . . , ξ

p
j ) and Φ j= (φ

1
j , . . . , φ

q
j )

being the infinitesimals as defined in (10), then for all g ∈ G
p∑

k=1

(−1)k−1C j
k (̃x, ũ, ũK, Ξ j (̃x, ũ),Φ j (̃x, ũ)) dx̃1 . . . d̂x̃k . . . dx̃p

=

p∑
k=1

(−1)k−1C j
k (x,u,uK,Adg(Ξ

T
j ),Adg(Φ

T
j )) dx1 . . . d̂xk . . . dxp.
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To simplify the proof of Theorem 5, we shall need the following lemma.

LEMMA 6. It is sufficient to demonstrate Theorem 5 for a first-order Lagrangian
with a Lie group symmetry. That is, any Lagrangian invariant under an action
of a Lie group G is equivalent to a first-order Lagrangian that is also invariant
under an extended action of G.

Proof. Any nth-order Lagrangian can be written as a first-order Lagrangian by
introducing Lagrangian multipliers and a new dependent variable, vαJ for every
derivative of uα appearing as an argument of L . Specifically, define

L̄ = L(x,u, vαJ )−
∑
α,K

λαK(u
α
K − v

α
K)−

∑
α,K,`>kn−1

λαK`((v
α
K)` − v

α
K`),

where J and K are ordered multi-indices of differentiation. The multi-index orders
of J and K, in the first two summands, range, respectively, from 1 to n and from
1 to n − 1. The ordered multi-indices K in the third summand are of the form
(k1, . . . , kn−1). Note that (vαK)` = ∂v

α
K/∂x` 6= vαK`. The Euler–Lagrange equations

for L̄ are

Eu(L̄) =
{
∂L
∂uα
+

∑
K

(−1)|K|+1 DK(λ
α
K)

∣∣∣∣ α, 0 < |K| 6 n − 1
}
,

Ev(L̄) =
{
∂L
∂vαK
+ λαK

∣∣∣∣ α, |K| 6= 0, n − 1
}

∪

{
∂L
∂vαK
+ λαK +

∑
`>kn−1

D`(λK`)

∣∣∣∣ α, |K| = n − 1
}
,

Eλ(L̄) = {uαK − v
α
K | α, 0 < |K| 6 n − 1} ∪ {(vαK)` − v

α
K` | α, |K| = n − 1, `}.

Eliminating the v’s and the λ’s yields the Euler–Lagrange system for L . We now
induce an action on the additional dependent variables as follows. Set

g · vαJ = (g · u
α
J )|{uαM=v

α
M | |M|>0},

g · λαK =
((

g · uαK − g · vαK
uαK − v

α
K

)
det

(
d(g · x)

dx

))−1

λαK,

g · λαK` =
((

g · (vαK)` − g · vαK`
(vαK)` − v

α
K`

)
det

(
d(g · x)

dx

))−1

λαK`,

and thus, by construction L̄dpx is invariant. This is indeed a group action: the
action on the vαJ is symbolically that of the action on the derivatives, uαJ , which is

https://doi.org/10.1017/fms.2016.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.24


Moving frames and Noether’s conservation laws—the general case 29

a right action. Further,

h · (g · λαK) = h ·
((

g · uαK − g · vαK
uαK − v

α
K

)
det

(
d(g · x)

dx

))−1

λαK

=

((
gh · uαK − gh · vαK

h · uαK − h · vαK

)
det

(
d(gh · x)
d(h · x)

))−1

h · λαK

=

((
gh · uαK − gh · vαK

uαK − v
α
K

)
det

(
d(gh · x)

dx

))−1

λαK

= gh · λαK
by the chain rule and using the fact that the determinant is multiplicative.

The argument for λαK` is similar. Finally, we note that obtaining Noether’s
conservation laws for L̄ and eliminating the vαJ and λαJ using the Euler–Lagrange
equations Ev(L̄) and Eλ(L̄), yields the conservation laws for L .

Proof of Theorem 5. By Lemma 6, it is enough to prove the result for a first-
order Lagrangian. A first-order Lagrangian with a Lie symmetry has Noether’s
conservation laws in the form

p∑
k=1

d
dxk

C j
k = 0, for j = 1, . . . , r,

where

C j
k = L(x,u,ux)ξ

k
j (x,u)+

q∑
α=1

Qα
j (x,u,ux)

∂L
∂uαk

and Qα
j is as defined in Definition 4. For further details, see [21, Corollary 4.30].

Step 1. Now considering the operator used for the k th component of the
conservation law

q∑
α=1

Qα
j (x,u,ux)

∂

∂uαk
where k is fixed, we will show that the action of g ∈ G on the operator is equal to

q∑
α=1

Qα
j (̃x, ũ, ũx)

∂

∂ ũαk
=

∑
α,`

Adg(Qα
j )

(
d̃x
dx

)
k`

∂

∂uα`
.

Since we know what the action of g ∈ G is on Q j (see (48)), we just need to find
how g ∈ G acts on ∂/∂uαk . Schematically, we have that

∇ũx =

(
dũx

dux

)−T

∇ux,
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and to obtain the components of this Jacobian matrix, we consider Equation (47)
and calculate

d
dε

∣∣∣∣
ε=0

∂u
∂x

∣∣∣∣
d̃u/d̃x7→d̃u/d̃x+εH

.

Set A(ε) = ∂ũ/∂u−(d̃u/d̃x+εH)(∂ x̃/∂u) and C(ε) = (d̃u/d̃x+εH)(∂ x̃/∂x)−
∂ũ/∂x. Then the calculation is

d
dε

∣∣∣∣
ε=0

A(ε)−1C(ε) = −A−1

(
− H

∂ x̃
∂u

)
A−1C + A−1 H

∂ x̃
∂x

= A−1 H
(
∂ x̃
∂u

A−1C +
∂ x̃
∂x

)
= A−1 H

(
∂ x̃
∂u
∂u
∂x
+
∂ x̃
∂x

)
= A−1 H

d̃x
dx
= A−1 H B = V (H),

where this defines A, B and V (H). By construction, the coefficient of Hαk in the
(β, `) component of this matrix equals

∂uβ`
∂ ũαk

.

Direct calculation shows that if ei j is the matrix with (ei j)k` = δikδ j`, then

V (ei j) =


(A−1)1i

(A−1)2i
...

(A−1)qi

(B j1 B j2 · · · B j p
)
,

and thus
∂uβ`
∂ ũαk
=

((
∂ũ
∂u
−

d̃u
d̃x
∂ x̃
∂u

)−1)
βα

(
d̃x
dx

)
k`

.

We have then, for k fixed,
q∑
α=1

Qα
j (̃x, ũ, ũx)

∂

∂ ũαk

=

∑
β,`,n,α

AαnAdg(Qn
j )(A

−1)βαBk`
∂

∂uβ`

=

∑
β,`

Adg(Q
β

j )

(
d̃x
dx

)
k`

∂

∂uβ`
,

using (48), and noting that the matrix appearing as a factor of Q(̃x, ũ, ũx) is A.
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Step 2. Now we evaluate
∑

α Qα
j (̃x, ũ, ũx)∂/∂ ũαk on

L (̃x, ũ, ũx) = L(x,u,ux) det
(

d̃x
dx

)−1

, (51)

which is the invariance condition on the Lagrangian. From

d̃x
dx
=
∂ x̃
∂x
+
∂ x̃
∂u
∂u
∂x

it can be shown that

∂

∂uβ`
det

(
d̃x
dx

)
=

p∑
j=1

∂ x̃ j

∂uβ

(
( j, `) first minor of

d̃x
dx
· (−1) j+`

)

=

p∑
j=1

∂ x̃ j

∂uβ

((
d̃x
dx

)−1)
`j

det
(

d̃x
dx

)
.

Thus, we obtain, recalling k is fixed, that
q∑
α=1

Qα
j (̃x, ũ, ũx)

∂

∂ ũαk
(L (̃x, ũ, ũx))

= det
(

d̃x
dx

)−1(∑
β,`

Adg(Q
β

j )

(
d̃x
dx

)
k`

∂

∂uβ`
L(x,u,ux)

−

∑
β

Adg(Q
β

j )
∂ x̃k

∂uβ
L(x,u,ux)

)
. (52)

Step 3. We are now in a position to consider the kth component of the
conservation law in the transformed variables, namely,

g · C j
k = L (̃x, ũ, ũx)ξ

k
j (̃x, ũ)+

∑
α

Qα
j (̃x, ũ, ũx)

∂

∂ ũαk
L (̃x, ũ, ũx).

Using Equations (44), (51), and (52), and collecting terms, yields

g·C j
k = det

(
d̃x
dx

)−1( d̃x
dx

)
k`

(
L(x,u,ux)Adg(ξ

k
j )+

∑
α

Adg(Qα
j )
∂

∂uα`
L(x,u,ux)

)
.

(53)

Step 4. We now consider

g ·
( p∑

k=1

(−1)k−1C j
k dx1 . . . d̂xk . . . dxp

)
=

p∑
k=1

(−1)k−1(g · C j
k ) dx̃1 . . . d̂x̃k . . . dx̃p.
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Combining Equation (53) and Lemma 5 yields

g ·
( p∑

k=1

(−1)k−1C j
k (x,u,ux, Ξ j , Φ j) dx1 . . . d̂xk . . . dxp

)

=

p∑
k=1

(−1)k−1C j
k (x,u,ux,Adg(Ξ j),Adg(Φ j)) dx1 . . . d̂xk . . . dxp, (54)

which completes the proof.

Since we can write the Adjoint action on the generating vector fields in matrix
form (see (44)) and the conservation laws are linear in ξ and φ, the action of
g ∈ G on the conservation laws can be written as

Ad(g)



p∑
k=1

(−1)k−1C1
k

...
p∑

k=1

(−1)k−1Cr
k


, (55)

where Ad(g) is the Adjoint representation of G. This representation can be easily
computed as was shown in Example 6.

3.2. Noether’s laws in terms of the invariants and the Adjoint action
of a moving frame. The following result states the structure of Noether’s
conservation laws for the general case, where the independent variables are not
necessarily invariant under the Lie group action.

THEOREM 6. Let
∫

L(κ1, κ2, . . .)I (dpx) be invariant under the prolonged action
G × M → M, where M = J n(X ×U ), with generating invariants κ j , for j = 1,
. . . , N. Introduce a dummy invariant variable x p+1 to effect the variation and then
integration by parts yields

Dp+1

∫
L(κ1, κ2, . . .)I (dpx)

=

∫ [∑
α

Eα(L)I αp+1 I (dpx)+
p∑

k=1

d
(
(−1)k−1

(∑
J,α

I αJ,p+1Cα
J,k

)
× I (dx1) . . . Î (dxk) . . . I (dxp)

)]
,
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where this defines the vectors Cαk = (Cα
J,k). Recall that Eα(L) are the invariantized

Euler–Lagrange equations and I αJ,p+1 = I (uαJ,p+1), where J is a multi-index of
differentiation with respect to the variables xi , for i = 1, . . . , p. Let (a1, . . . , ar )

be the coordinates of G near the identity e, and vi , for i = 1, . . . , r , the associated
infinitesimal vector fields. Furthermore, let Ad(g) be the Adjoint representation
of G with respect to these vector fields. For each dependent variable, define the
matrices of characteristics to be

Qα (̃z) = (D̃K(Qα
i )), α = 1, . . . , q,

where K is a multi-index of differentiation with respect to the xk and

Qα
i = φ

α
i −

p∑
k=1

ξ k
i uαk =

∂ ũα

∂ai

∣∣∣∣
g=e

−

p∑
k=1

∂ x̃k

∂ai

∣∣∣∣
g=e

uαk

are the components of the q-tuple Qi known as the characteristic of the vector
field vi . Let Qα(J, I ), for α = 1, . . . , q, be the invariantization of the above
matrices. Then, the r conservation laws obtained via Noether’s Theorem can be
written in the form

d(Ad(ρ)−1(υ1, . . . ,υ p)MJ dp−1x̂) = 0,

where
υk =

∑
α

(−1)k−1(Qα(J, I )Cαk + L(Ξ(J, I ))k), (56)

are the vectors of invariants, with (Ξ(J, I ))k the kth column of Ξ(J, I ), MJ is
the matrix of first minors of the Jacobian matrix evaluated at the frame, J =
d̃x/dx|g=ρ(z), and

dp−1x̂ =


d̂x1dx2 . . . dxp

dx1d̂x2dx3 . . . dxp
...

dx1 . . . dx p−1d̂xp

 =


dx2dx3 . . . dxp

dx1dx3 . . . dxp
...

dx1dx2 . . . dx p−1

 . (57)

Proof. The infinitesimal criterion of invariance tells us that G is a variational
symmetry group of

∫
L̄(z) dpx if and only if

pr(n)vi(L̄)+ L̄DivΞi = 0,

for all z ∈ M and every infinitesimal generator vi ; the nth prolongation of vi is
defined as pr(n)vi =

∑
k ξ

k
i ∂xk +

∑
α,J φ

α
J,i∂uαJ . This criterion can also be written as

pr(n)vQi (L̄)+ Div(L̄Ξi) = 0,
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where pr(n)vQi =
∑

α,J DJ Qα
i ∂uαJ . Calculating

∫
pr(n)vQi (L̄) dpx yields∫

(Qi · E(L̄)+ Div(A))dpx,

which is exactly what d/dε|ε=0L̄ [uα + εvα] produces, where vα correspond to
the infinitesimals. Since we know that

d
dε

∣∣∣∣
ε=0

L̄ [uα + εvα] and
d

dx p+1

∣∣∣∣
uαp+1=v

α

L̄ [uα]

yield the same symbolic result,

Dp+1|D̃p+1ũα |g=ρ(z)=vα
L [κ]

provides us with the invariantized Euler–Lagrange system and the boundary terms

p∑
k=1

d
(
(−1)k−1

(∑
J,α

I αJ,p+1Cα
J,k

)
I (dx1) . . . Î (dxk) . . . I (dxp)

)
. (58)

By definition, I αJ,p+1 is equal to

I αJ,p+1 = D̃p+1 ũαJ |g=ρ(z).

Hence by the chain rule,

(I αp+1 I αJ1,p+1 I αJ2,p+1 · · · )

= (D̃p+1uα D̃p+1uαJ1
D̃p+1uαJ2

· · · )|g=ρ(z)
∂(ũα, ũαJ1

, ũαJ2
, . . .)

∂(uα, uαJ1
, uαJ2

, . . .)

∣∣∣∣T
g=ρ(z)

, (59)

where the Jk are multi-indices of differentiation with respect to xi , for i = 1, . . . ,
p.

We know that the Jacobian matrix J = d̃x/dx|g=ρ(z) can be written as a
partitioned matrix

J =



∂ x̃1

∂x1

∣∣∣∣
g=ρ(z)

· · ·
∂ x̃1

∂xp

∣∣∣∣
g=ρ(z)

∂ x̃1

∂x p+1

∣∣∣∣
g=ρ(z)

...
. . .

...
...

∂ x̃p

∂x1

∣∣∣∣
g=ρ(z)

· · ·
∂ x̃p

∂xp

∣∣∣∣
g=ρ(z)

∂ x̃p

∂x p+1

∣∣∣∣
g=ρ(z)

∂ x̃ p+1

∂x1

∣∣∣∣
g=ρ(z)

· · ·
∂ x̃ p+1

∂xp

∣∣∣∣
g=ρ(z)

∂ x̃ p+1

∂x p+1

∣∣∣∣
g=ρ(z)


=

(
AT bT

0 1

)
,
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where this defines A and b, and that

D̃p+1uαJ` |g=ρ(z) = −bA−1

∂x1

...

∂xp

 uαJ` +
∂uαJ`
∂x p+1

=
∂uαJ`
∂x p+1

−
∂x1

∂x p+1
uαJ`1 − · · · −

∂xp

∂x p+1
uαJ` p.

Next consider

∂ ũα

∂x p+1

∣∣∣∣
g=e

−
∂ x̃1

∂x p+1

∣∣∣∣
g=e

uα1 − · · · −
∂ x̃p

∂x p+1

∣∣∣∣
g=e

uαp = uαp+1

= Qα
i = φ

α
i −

p∑
k=1

ξ k
i uαk =

∂ ũα

∂ai

∣∣∣∣
g=e

−
∂ x̃1

∂ai

∣∣∣∣
g=e

uα1 − · · · −
∂ x̃p

∂ai

∣∣∣∣
g=e

uαp, (60)

and

∂ ũαJ`
∂x p+1

∣∣∣∣
g=e

−
∂ x̃1

∂x p+1

∣∣∣∣
g=e

uαJ`1 − · · · −
∂ x̃p

∂x p+1

∣∣∣∣
g=e

uαJ` p = uαJ`,p+1

= DJ` Q
α
i = φ

α
J`,i −

p∑
k=1

ξ k
i uαJ`k =

∂ ũαJ`
∂ai

∣∣∣∣
g=e

−
∂ x̃1

∂ai

∣∣∣∣
g=e

uαJ`1 − · · · −
∂ x̃p

∂ai

∣∣∣∣
g=e

uαJ` p,

(61)
so that x p+1 is considered to be the group parameter, ai .

Furthermore, from Theorem 7 we know that

Ad(ρ)−1Qα(J, I ) = Qα(z)

(
∂ũαJ
∂uαJ

)T∣∣∣∣
g=ρ(z)

(62)

where Qα(z) = (DK(Qα
i )).

Substituting the vector (I αp+1 I αJ1,p+1 I αJ2,p+1 · · · ) in (58) by its expression in
Equation (59) yields

p∑
k=1

d
(
(−1)k−1

(∑
α

(D̃p+1uα D̃p+1uαJ1
D̃p+1uαJ2

· · · )|g=ρ(z)
∂ũαJ
∂uαJ

∣∣∣∣T
g=ρ(z)

Cαk
)

× I (dx1) · · · Î (dxk) · · · I (dxp)

)
.

By (60) and (61), the vector (D̃p+1uα D̃p+1uαJ1
D̃p+1uαJ2

· · · ) in the above equation
can be substituted by every single row of the matrix of characteristics Qα(z).
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Hence, for each independent group parameter ai we obtain

p∑
k=1

d
(
(−1)k−1

(∑
α

Qα
i (z)

∂ũαJ
∂uαJ

∣∣∣∣T
g=ρ(z)

Cαk
)

I (dx1) · · · Î (dxk) · · · I (dxp)

)
,

i = 1, . . . , r,

where Qα
i (z) corresponds to row i in Qα(z).

If we have r group parameters describing group elements near the identity of
the group, we can write the r equations in matrix form as

p∑
k=1

d
(
(−1)k−1

(∑
α

Qα(z)
∂ũαJ
∂uαJ

∣∣∣∣T
g=ρ(z)

Cαk
)

I (dx1) · · · Î (dxk) · · · I (dxp)

)
.

Using the equality (62), we obtain

p∑
k=1

d
(
(−1)k−1

(
Ad(ρ)−1

∑
α

Qα(J, I )Cαk
)

I (dx1) · · · Î (dxk) · · · I (dxp)

)
. (63)

Next, it is a standard computation in differential exterior algebra to show that


Î (dx1)I (dx2) · · · I (dxp)

I (dx1) Î (dx2) · · · I (dxp)
...

I (dx1) · · · I (dx p−1) Î (dxp)

 =


M11 M12 · · · M1p

M21 M22 · · · M2p
...

...
. . .

...

Mp1 Mp2 · · · Mpp


︸ ︷︷ ︸

MJ


d̂x1dx2 · · · dxp

dx1d̂x2 · · · dxp
...

dx1 · · · dx p−1d̂xp


︸ ︷︷ ︸

dp−1x̂

,

(64)
where MJ is the matrix of first minors of the Jacobian matrix J . Thus, (63)
reduces to

p∑
k=1

d
(
Ad(ρ)−1

(∑
α

(−1)k−1Qα(J, I )Cαk
)

MJ dp−1x̂
)
, (65)

and we have thus found the invariantized version of Div(A). We must now find
the invariantized version of the term Div(L̄Ξi) in the infinitesimal criterion of
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invariance, for i = 1, . . . , r . We know from Theorem 5 that

p∑
k=1

(−1)k−1C1
k (̃x, ũ, ũx, Ξ1(̃x, ũ),Φ1(̃x, ũ)) dx̃1 . . . d̂x̃k . . . dx̃p

...
p∑

k=1

(−1)k−1Cr
k (̃x, ũ, ũx, Ξr (̃x, ũ),Φr (̃x, ũ)) dx̃1 . . . d̂x̃k . . . dx̃p



= Ad(g)



p∑
k=1

(−1)k−1C1
k (x,u,ux, Ξ1(x,u),Φ1(x,u)) dx1 . . . d̂xk . . . dxp

...
p∑

k=1

(−1)k−1Cr
k (x,u,ux, Ξr (x,u),Φr (x,u)) dx1 . . . d̂xk . . . dxp


.

Thus,
p∑

k=1

(−1)k−1 L̄ (̃x, ũ, ũK)(Ξ(̃x, ũ))kdx̃1 . . . d̂x̃k . . . dx̃p

= Ad(g)
p∑

k=1

(−1)k−1 L̄(x,u,uK)(Ξ(x,u))kdx1 . . . d̂xk . . . dxp,

where (Ξ(x,u))k is the kth column of Ξ(x,u). Evaluating this at the frame and
rearranging produces the boundary term, Div(L̄(Ξ)k),

d
(
Ad(ρ)−1

p∑
k=1

(−1)k−1 L[κ](Ξ(J, I ))k I (dx1) . . . Î (dxk) . . . I (dxp)

)
. (66)

Thus, adding the boundary terms (65) and (66) yields

d(Ad(ρ)−1(υ1, . . . ,υ p)MJ dp−1x̂ ) = 0,

with dp−1̂x defined in (57), as required.

In terms of calculating the conservation laws in the form

d(Ad(ρ)−1(υ1, . . . ,υ p)MJ dp−1x̂) = 0,

the vectors of invariants can be obtained by either

(1) invariantization of the components of the law in the original coordinates; or

(2) using the formula (56).
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As there exists software which calculates the conservation laws (Maple package
DifferentialGeometry, subpackage JetCalulus [1]), it will usually be easier to
invariantize the conservation laws to obtain the vectors of invariants, rather than
perform the invariantized integration by parts.

To obtain the vectors of invariants using formula (56), we have used the package
Indiff [18]. The package AIDA also determines syzygies between invariants [12].

EXAMPLE 7. Here we illustrate how the different components of the conservation
laws in Example 5 are obtained which concerns the Monge–Ampère problem of
Example 4. We have already obtained the Adjoint representation Ad(g) for SL(2)
in Example 6. Inverting Ad(g) in (46) and evaluating it at the frame (8) yields
Ad(ρ)−1.

Theorem 6 tells us that to obtain the vectors of invariants, we need to compute
the invariantized matrix of characteristics, Qu(J, I ), the vectors of invariantized
infinitesimals, (Ξ(J, I ))i , and the vectors Cu

i . The latter have already been
calculated in Example 4; the elements of Cu

i correspond to the coefficients of
the I αJτ in (42). The invariantized matrix of characteristics is

Qu(J, I ) =


Qu Dx(Qu) Dy(Qu)

a −I u
1 −I u

1 − I u
11 −I u

12
b 0 0 −I u

1
c 0 −I u

12 −I u
22


and the (Ξ(J, I ))i , for i = 1, 2, are

(Ξ(J, I ))1 =


ξ x

a 1
b 0
c 0

, (Ξ(J, I ))2 =


ξ y

a 0
b 0
c 1

.
Thus, the vectors of invariants are

υ1 =

I u
1 I u

22(I
u
1 − 2I u)− I u I u

1 I u
122 + I u(I u

11 I u
22 − (I

u
12)

2)

0
−I u I u

12 I u
22

 ,

υ2 =

−I u I u
1 (2I u

12 + I u
112)

I u I u
1 I u

11
−I u(I u

12)
2

 .
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Finally, the Jacobian matrix J is
∂ x̃
∂x

∣∣∣∣
g=ρ(z)

∂ x̃
∂y

∣∣∣∣
g=ρ(z)

∂ ỹ
∂x

∣∣∣∣
g=ρ(z)

∂ ỹ
∂y

∣∣∣∣
g=ρ(z)

 =
 ux

xux + yu y

u y

xux + yu y
−y x

 ,
and its matrix of first minors, MJ , is x −y

u y

xux + yu y

ux

xux + yu y

 .
Although the vectors of invariants obtained here are not the same as those

obtained in Example 5 (these were obtained by invariantizing the laws), the
resulting conservation laws are equivalent, that is the conservation laws differ
by trivial conservation laws. Indeed, the boundary terms in (41)

Dx

(((
I u I u

22 − I u
1 I u

22 + I u I u
122 −

I u I u
11 I u

22

I u
1

)
I u

3 + I u I u
22 I u

13

)
I (d2x)

)
+Dy

(((
I u I u

11 I u
12

I u
1
− I u I u

112

)
I u

3 − 2I u I u
12 I u

13 + I u I u
11 I u

23

)
I (d2x)

)
= 0

can be written as

Dx((−I u
1 I u

22 I u
3 + I u I u

22 I u
13 − I u I u

12 I u
23 +Dy(I u I u

12 I u
23))I (d

2x))
+Dy((I u

1 I u
12 I u

3 − I u I u
12 I u

13 + I u I u
11 I u

23 −Dx(I u I u
12 I u

23))I (d
2x)) = 0,

which simplify to

Dx((−I u
1 I u

22 I u
3 + I u I u

22 I u
13 − I u I u

12 I u
23)I (d

2x))
+Dy((I u

1 I u
12 I u

3 − I u I u
12 I u

13 + I u I u
11 I u

23)I (d
2x)) = 0;

it is easy to see that from these we get the vectors of invariants in (43).
To conclude this example, we summarize the information made available

by employing the invariant calculus for this group action. For the frame with
normalization equations x̃ = 1, ỹ = 0, and ũ y = 0, the differential algebra
of invariants is generated by u and I (u yy). In addition to the Euler–Lagrange
equation, which is now seen to be one equation for the two generators, there is also
the syzygy, Equation (17), providing a second equation connecting the generating
invariants. In this case we can calculate the frame which is given in Equation (8).
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The invariant differentiation operators are given in Equations (15) and (16), and
setting the frame into the standard 2× 2 matrix form we have

Dxρρ
−1
=

(
1 DyDx (u)

Dx (u)
0 1

)
, Dyρρ

−1
=

(
0 I (uyy )

Dx (u)
−1 0

)
. (67)

The differential compatibility of these equations also yields the syzygy between
the generating invariants. Also, the conservation laws, when differentiated, yield
the Euler–Lagrange equation. Finally, we note that the frame, its Adjoint
representation, the differential operators, the syzygies, and the equations
connecting the derivatives of the frame with the invariants are independent
of the form of the Lagrangian (that is, the form of the Lagrangian as a function
of its arguments), so that these are a ‘one time’ calculation once the equations for
the frame are chosen.

4. Two variational problems with area and volume preserving symmetries

In this section, we present two examples which illustrate how to obtain the
conservation laws in this new format. The first example regards the conservation
laws for the shallow water equations, due to the importance that conservation of
potential vorticity plays in meteorology [3, 5, 23–25]. In the second application
we look at conservation laws arising from a linear SL(3) action on the base
space, as it exemplifies the basic volume preserving action on a three-dimensional
base space. This type of action appears in ideal incompressible fluid flow
problems [2, 20].

4.1. Conservation laws for the shallow water equations. The conservation
laws for the shallow water equations are well known [3]; we are particularly
interested in the conservation laws arising from the linear SL(2) action on the
particle labels.

To ease the exposition, some notation is introduced. In the two-dimensional
shallow water theory [25], a particle is represented by the Cartesian coordinates

x = x(a, b, t), y = y(a, b, t), (68)

where (a, b) ∈ R2 are the particle labels and t ∈ R+ is time. At the reference time,
t = 0,

x(a, b, 0) = a, y(a, b, 0) = b.

Usually we regard liquids, such as water, to be incompressible; the
incompressibility hypothesis requires that

h(a, b, 0)
h(a, b, t)

=
∂(x, y)
∂(a, b)

,
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where h is the fluid depth, and the Jacobian on the right is the one corresponding to
the map (68). In this paper we assume that h(a, b, 0) = 1, so the incompressibility
hypothesis becomes

h(a, b, t) =
1

xa yb − xb ya
. (69)

As shown by Salmon [26], the following first-order Lagrangian

L̄ da db dt =
(
(u − R̄)ẋ + (v + P̄)ẏ − 1

2 (u
2
+ v2
+ gh)

)
da db dt, (70)

where g is a nonzero constant (corresponding to the combined effect of
acceleration of gravity and a centrifugal component from the Earth’s rotation),
P̄ = P̄(x, y) and R̄ = R̄(x, y) satisfy

P̄x + R̄y = f, with the Coriolis parameter, f = constant,

has the shallow water equations

ẋ = u, (71)
ẏ = v, (72)

u̇ + gh(ybha − yahb)− f v = 0, (73)
v̇ + gh(xahb − xbha)+ f u = 0, (74)

as the associated Euler–Lagrange equations.
To simplify we will consider P̄ and R̄ to be linear functions of x and y, that is

P̄ = c1x + c2 y + c3 and R̄ = c4x + c5 y + c6.

The following vector field

−Sb(a, b)∂a + Sa(a, b)∂b, Sb = −ξ, Sa = η,

where ξ and η are the infinitesimals of the group action on the base space,
generates the particle relabelling symmetry group [3]. The generators of the linear
SL(2) action are of this type; the action is(

ã
b̃

)
=

(
α β

γ δ

)(
a
b

)
, t̃ = t, αδ − βγ = 1.

We now find the associated conservation laws.
We start by calculating the moving frame using as normalization equations

ã = 0, b̃ = 1, x̃a = 0,
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which yields
α = b, β = −a, γ =

xa

axa + bxb
, (75)

as the moving frame in parametric form.
We already have the Adjoint representation for SL(2) (see (46)); so evaluating it

at the frame (75) and inverting it gives Ad(ρ)−1 (see first matrix of (76)). Next we
need to compute the vectors of invariants. For this, we introduce a dummy variable
τ and set x = x(a, b, t, τ ), y = y(a, b, t, τ ), u = u(a, b, t, τ ), and v = v(a, b,
t, τ ). Proceeding as in Section 3, we rewrite the Lagrangian (70) in terms of the
invariants; then differentiating and integrating by parts yields the invariantized
shallow water equations

f I y
3 − I u

3 +
gI y

2

(I x
2 )

3(I y
1 )

3
(I y

11 I x
2 − I x

11 I y
2 + I x

12 I y
1 )

+
g

(I x
2 )

3(I y
1 )

2
(I x

12 I y
2 − I y

12 I x
2 − I x

22 I y
1 ) = 0,

− f I x
3 − I v3 −

g
(I x

2 )
2(I y

1 )
3
(I y

11 I x
2 − I x

11 I y
2 + I x

12 I y
1 ) = 0,

I x
3 − I u

= 0,
I y

3 − I v = 0,

as expected, and the boundary terms

Da

((
gI y

2 I x
4

2(I x
2 )

2(I y
1 )

2
−

gI y
4

2I x
2 (I

y
1 )

2

)
I (da)I (db)I (dt)

)
+Db

((
−

gI x
4

2(I x
2 )

2 I y
1

)
I (da)I (db)I (dt)

)
+Dt(((I u

− R)I x
4 + (I

v
+ P)I y

4 )I (da)I (db)I (d)t) = 0,

where P and R are the invariantized versions of P̄ and R̄, respectively.
Thus, the vectors of invariants are

υ1(J, I ) =

I x
2
0
0


︸ ︷︷ ︸

Qx

gI y
2

2(I x
2 )

2(I y
1 )

2
−

 I y
2
−I y

1
0


︸ ︷︷ ︸

Qy

g
2I x

2 (I
y
1 )

2
+ L

0
1
0


︸︷︷ ︸
(Ξ)1

=

 0

L +
g

2I x
2 I y

1
0

 ,

υ2(J, I ) =

I x
2
0
0


︸ ︷︷ ︸

Qx

g
2(I x

2 )
2 I y

1
− L

−1
0
0


︸ ︷︷ ︸
(Ξ)2

=

L +
g

2I x
2 I y

1
0
0

 ,
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υ3(J, I ) =

I x
2
0
0


︸ ︷︷ ︸

Qx

(I u
− R)+

 I y
2
−I y

1
0


︸ ︷︷ ︸

Qy

(I v + P)+ L

0
0
0


︸︷︷ ︸
(Ξ)3

=

I x
2 (I

u
− R)+ I y

2 (I
v
+ P)

−I y
1 (I

v
+ P)

0

 .
The matrix of first minors of the Jacobian matrix ∂(̃a, b̃, t̃)/∂(a, b, t) evaluated

at the frame (75) is

MJ =


xb

axa + bxb

xa

axa + bxb
0

−a b 0
0 0 1

 .
Thus, the conservation laws are

d





bxb − axa

axa + bxb
2ab

2xa xb

(axa + bxb)2

−
bxa

axa + bxb
b2
−

x2
a

(axa + bxb)2

−
axb

axa + bxb
−a2 x2

b

(axa + bxb)2



×


0 L +

g
2I x

2 I y
1

I x
2 (I

u
− R)+ I y

2 (I
v
+ P)

L +
g

2I x
2 I y

1
0 −I y

1 (I
v
+ P)

0 0 0



×


xb

axa + bxb

xa

axa + bxb
0

−a b 0
0 0 1


db dt

da dt
da db


 = 0. (76)

Note that L = L̄(I ).
In [4] Bridges et al. proved that conservation of potential vorticity

is a differential consequence of some of the components of a one-form
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T. M. N. Gonçalves and E. L. Mansfield 44

quasiconservation law, which relies on writing the shallow water equations
as a multisymplectic system. Below we show that conservation of potential
vorticity is a differential consequence of the system of conservation laws (76).

Multiplying (76) through, we obtain

d
(
(aF1) db dt + (bF1) da dt +

(
bxb − axa

axa + bxb
F2 − 2ab F3

)
da db

)
= 0, (77)

d
(
(bF1) db dt +

(
−

bxa

axa + bxb
F2 − b2 F3

)
da db

)
= 0, (78)

d
(
−(aF1) da dt +

(
−

axb

axa + bxb
F2 + a2 F3

)
da db

)
= 0, (79)

where F1 = L+ g/(2I x
2 I y

1 ), F2 = I x
2 (I

u
− R)+ I y

2 (I
v
+ P), and F3 = I y

1 (I
v
+ P).

Performing the following operations, Da(b · (79)) − Db(a · (78)) + (77), on the
above equations we obtain

(
Da(Db(abF1)− aF1)+ Da

(
bDt

(
−axb

axa + bxb
F2 + a2F3

)))
da db dt

−

(
Db(Da(abF1)− bF1)+ Db

(
aDt

(
−

bxa

axa + bxb
F2 − b2F3

)))
da db dt

+

(
Da(aF1)− Db(bF1)+ Dt

(
bxb − axa

axa + bxb
F2 − 2abF3

))
da db dt

= Dt

(
Da

(
−abxb

axa + bxb
F2 + a2bF3

)
+ Db

(
abxa

axa + bxb
F2 + ab2F3

))
da db dt

= Dt

(
ab

I x
12

I x
2

F2 + 2abF3 − abDaF2 + abDbF3

)
da db dt

= −abDt(I u
1 I x

2 + I y
2 I v1 − I y

1 I v2 − I x
2 I y

1 f ) da db dt
= −abDt(Ω) = 0,

whereΩ = 1/h(∂ ẏ/∂x−∂ ẋ/∂y+ f ) represents the potential vorticity. Note that
we have used the product rule and the definitions of the invariantized differential
operators Da and Db. Thus, conservation of potential vorticity is a differential
consequence of Noether’s conservation laws for the linear SL(2) action. More to
the point, it does not require the full pseudogroup. This was also observed by
Hydon, [15], who found the conservation of potential vorticity as a differential
consequence of the conservation of the linear momenta.
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4.2. Variational problems invariant under the standard SL(3) action on the
base space. Consider the linear SL(3) action on the base space (x, y, z),x̃

ỹ
z̃

 =
a11 a12 a13

a21 a22 a23

a31 a32 a33


︸ ︷︷ ︸

A

x
y
z

 , det A = 1, (80)

which leaves the dependent variables, (u, v, w), invariant.
Let g ∈ SL(3) act on the Jacobian B = ∂(u, v, w)/∂(x, y, z) and define the

cross section by

g ·
∂(u, v, w)
∂(x, y, z)

=

1 0 0
0 1 0
0 0 Iw3

 , (81)

where Iw3 = (g · wz)|frame. Thus, the moving frame in parametric form is

(a11, a12, a13, a21, a22, a23, a31, a32) =

(
ux , u y, uz, vx , vy, vz,

wx

|B|
,
wy

|B|

)
. (82)

Consider an invariant Lagrangian, written in terms of the invariants of the group
action (80), such as ∫∫∫

L(Iw,Dz Iw)I (dx)I (dy)I (dz). (83)

To calculate the invariantized Euler–Lagrange equations and its associated
conservation laws, we introduce a dummy variable τ and set u = u(x, y, z, τ ),
v = v(x, y, z, τ ), and w = w(x, y, z, τ ). Differentiating the functional (83) in
terms of τ and integrating by parts, we obtain

Dτ

∫∫∫
L(Iw,Dz Iw)I (dx)I (dy)I (dz)

=

∫∫∫ [
−Dx

(
∂L

∂Dz Iw

)
Iw3 I u

4−Dy

(
∂L

∂Dz Iw

)
Iw3 I v4+

(
∂L
∂ Iw
−Dz

(
∂L

∂Dz Iw

))
Iw4

]
I (d3x)

+

∫∫∫ [
Dx

(
∂L

∂Dz Iw
Iw3 I u

4 I (d3x)
)
+Dy

(
∂L

∂Dz Iw
Iw3 I v4 I (d3x)

)
+Dz

(
∂L

∂Dz Iw
Iw4 I (d3x)

)]
,

(84)

where we have used the equality Dz Iw = Iw3 , the commutator

[Dτ ,Dz] = −Dz I u
4 Dx −Dz I v4 Dy + (Dx I u

4 +Dy I v4 )Dz,

and the Lie derivatives of the invariant one-forms presented in the Table 3.
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Table 3. Lie derivatives of the invariant one-forms for the frame (82).

I (dx) I (dy) I (dz) I (dτ)

Dx −I u
14 I (dτ) −I v14 I (dτ) −

(
I u

11+I v12+
Iw13

Iw3

)
I (dz) 0

−
Iw14

Iw3
I (dτ)

Dy −I u
24 I (dτ) −I v24 I (dτ) −

(
I u

12+I v22+
Iw23

Iw3

)
I (dz) 0

−
Iw24

Iw3
I (dτ)

Dz −I u
34 I (dτ) −I v34 I (dτ)

(
I u

11+I v12+
Iw13

Iw3

)
I (dx) 0

+

(
I u

12+I v22+
Iw23

Iw3

)
I (dy)

+(I u
14 + I v24)I (dτ)

Dτ I u
14 I (dx)+ I u

24 I (dy) I v14 I (dx)+I v24 I (dy)
Iw14

Iw3
I (dx)+

Iw24

Iw3
I (dy) 0

I u
34 I (dz) I v34 I (dz) − (I u

14+I v24)I (dz)

Notice that the coefficients of I u
4 , I v4 , and Iw4 in (84), which are not in the

boundary terms, correspond to the invariantized Euler–Lagrange equations with
respect to u, v, and w, respectively.

Proceeding as in Section 3, we let g ∈ SL(3) act linearly on its generating
vector fields

x∂x − z∂z, y∂x , z∂x , x∂y, y∂y − z∂z, z∂y, x∂z, y∂z.

This yields the Adjoint representation, Ad(g), for SL(3)
M11 A − M31

(
R3
0
0

)
−M12 A + M32

(
R3
0
0

)
M13 (C1 C2)− M33

( a31 a32
0 0
0 0

)
−M21 A − M31

(
0
R3
0

)
M22 A + M32

(
0
R3
0

)
−M23 (C1 C2)− M33

(
0 0

a31 a32
0 0

)
M31

(R1
R2

)
−M32

(R1
R2

)
M33

(a11 a12
a21 a22

)
 ,

(85)
where the Ri , for i = 1, 2, 3, and C j , for j = 1, 2, represent, respectively, the rows
and columns of matrix A defined in (80), the Mmn , for m, n = 1, 2, 3, represent the
first minors of A, and the amn are elements of the matrix A. Evaluating Ad(g)−1

at the frame (82) yields Ad(ρ)−1.
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The vectors of invariants, υ i = (−1)i−1(
∑

α Qα(J, I )Cαi + L(Ξ(J, I ))i), are

υ1(J, I ) =



J x

(
L − Iw3

∂L
∂Dx Iw

)
J y

(
L − Iw3

∂L
∂Dx Iw

)
J z

(
L − Iw3

∂L
∂Dx Iw

)
0
0
0
0
0



, υ2(J, I ) =



0
0
0

J x

(
− L + Iw3

∂L
∂Dx Iw

)
J y

(
− L + Iw3

∂L
∂Dx Iw

)
J z

(
− L + Iw3

∂L
∂Dx Iw

)
0
0



,

υ3(J, I ) =



J z

(
− L + Iw3

∂L
∂Dx Iw

)
0
0
0

J z

(
− L + Iw3

∂L
∂Dx Iw

)
0

J x

(
L − Iw3

∂L
∂Dx Iw

)
J y

(
L − Iw3

∂L
∂Dx Iw

)



,

where we have used

Qu(J, I ) =



−J x

−J y

−J z

0
0
0
0
0


, Qv(J, I ) =



0
0
0
−J x

−J y

−J z

0
0


, Qw(J, I ) =



J z Iw3
0
0
0

J z Iw3
0

−J x Iw3
−J y Iw3


,
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(Ξ(J, I ))1 =



J x

J y

J z

0
0
0
0
0


, (Ξ(J, I ))2 =



0
0
0
J x

J y

J z

0
0


, (Ξ(J, I ))3 =



−J z

0
0
0
−J z

0
J x

J y


.

Finally, we calculate the last component of the conservation laws, the matrix of
first minors of the Jacobian

J = ∂(̃x, ỹ, z̃)
∂(x, y, z)

∣∣∣∣
frame

.

Thus,

MJ =


vywz − vzwy

|B|
vxwz − vzwx

|B|
vxwy − vywx

|B|
u ywz − uzwy

|B|
uxwz − uzwx

|B|
uxwy − u ywx

|B|
u yvz − uzvy uxvz − uzvx uxvy − u yvx

 .
Thus, the conservation laws are

d(Ad(ρ)−1 (υ1(J, I ) υ2(J, I ) υ3(J, I )
)

MJ d2x̂) = 0,

where d2̂x is defined in (57).

5. The role of the frame in the integration of the Euler–Lagrange system

If a Lagrangian is invariant under a Lie group action, then the Euler–Lagrange
equations will be expressible in terms of the invariants of the action, and can
therefore be viewed as differential equations for the generating invariants. It
should be noted, however, that these cannot always be solved using standard
techniques as the invariant differential operators can involve expressions in the
original variables. Once these have been solved for the generating invariants, there
remains the problem of finding the solutions to the Euler–Lagrange system in the
original variables; if a generating invariant is of the form I αK = I (uαK), then there
will still be K degrees of integration to obtain uα. On the other hand, if the frame
ρ is known, then we will have

uα = ρ−1
· I α, α = 1, . . . , q, (86)

https://doi.org/10.1017/fms.2016.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.24


Moving frames and Noether’s conservation laws—the general case 49

where the action · is the group action specific to uα; this is true even in the case
that I α = c is a normalization equation for some constant c.

In the texts [17, 19], it is explained in detail how to write down the so-
called curvature matrices, Q j = D j% %

−1, j = 1, . . . , p, where % is any matrix
representation of the frame ρ, in terms of the invariants I αK , knowing only the
normalization equations and the infinitesimals of the group action. Further, the
set {Q j | j = 1, . . . , p} are compatible in the sense that

DiQ j −D jQi = [Di ,D j ]% %
−1
+ [Qi ,Q j ] =

∑
k

Ak
i jQk + [Qi ,Q j ]

where the Ak
i j are given explicitly in (22). Thus, we can write down the matrices

Q̄ j = D jAd(ρ)Ad(ρ)−1 (87)

directly in terms of the generating invariants. Once we have solved the Euler–
Lagrange equations for the generating invariants, then the matrices Q̄ j are known,
and we thus have p compatible equations for the frame,

DiAd(ρ) = Q̄iAd(ρ), i = 1, . . . , p. (88)

We note that if one has solved for the frame using the normalization equations
in terms of the derivative terms uαK, then the equations uα = ρ−1

· I α, α = 1,
. . . , q, are a tautology. One needs the frame as a function of the independent
variables without reference to the uαK in order to obtain the desired solutions to the
differential equations.

Thus far, these results may be applied to any Lie group invariant system of
equations. One solves the equations for the generating invariants, yielding the
matrices Q̄i as functions of the independent variables. One then solves (88)
for the frame and then, finally, applies the inverse of the frame to the I α to
arrive at the uα. Examples of this process are detailed in [17]. Knowing that the
conservation laws can be written in terms of the frame and the invariants, can ease
the second integration step for the frame. Indeed, in the one-dimensional case, the
conservation laws are first integrals. As we have indicated in the examples, both
in the Introduction of this paper and in [8, 9], if the Adjoint representation is
not trivial and has been solved for in terms of the uαK, then a far simpler second
integration step may be achieved.

Instead of solving the differential equations (88) for ρ, which may be difficult
if the Di involve the uαK as happens in the examples, we propose the following.
The conservation laws are, by Stokes’ Theorem, integral equations for the frame
which hold on the boundary of any topologically simple domain, such as a simplex
of a mesh. One can thus use a numerical quadrature method to obtain an algebraic
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system for Ad(ρ) on say, particular sets of points on the faces, Edges, and vertices
of a mesh; this will then yield values of the uα on those points. The use of
the conservation laws in the numerical solution of the Euler–Lagrange system
remains to be explored, and will be left to future work.

6. Conclusion

In [8, Theorem 3], it was shown that for Lagrangians which are invariant
under a certain group action, and whose independent variables are left unchanged
by that action, the conservation laws can be written as the product of the
Adjoint representation of a moving frame for the Lie group action and vectors
of invariants; in this new format, the laws are handled and analysed more easily.

In this paper we have generalized this result to include cases where the
independent variables of a Lagrangian participate in the action. The structure of
these conservation laws differs from the ones in [8, Theorem 3] by a matrix factor,
which represents the action on the (p − 1)-forms, and by some invariant terms in
the vectors of invariants, υ i(J, I ).

It is interesting to note that from (38) we know that

d(Adρ−1(υ1, . . . ,υ p)MJ dp−1x̂) = 0

is equivalent to
p∑

i=1

Di(Ad(ρ)−1υ i I (dpx)) = 0,

which simplifies to an equivalent form of the Euler–Lagrange system,
p∑

i=1

(Di(υ i)− Q̄ jυ i + ci(J, I )υ i) = 0,

where Q̄ j =Di(Ad(ρ))Ad(ρ)−1 is the invariant curvature matrix defined in (87),
and ci(J, I ) is the coefficient of I (dpx) in Di(I (dpx)).

Our rewrite of Noether’s conservation laws brings insight into the structure of
the laws. Using invariants and a frame usually condenses the number of terms
needed to write down the laws, and makes explicit their structure by using the
same invariants as those needed to write down the Euler–Lagrange equations.
Further, we have shown how these results can aid the (numerical) solution of
the Euler–Lagrange system.

The structure of the conservation laws presented in this paper rely on
symmetries arising from point transformations. At the present time, we do
not know if these can be generalized or adapted to the case of generalized
symmetries. This would certainly be an interesting topic to research in the future.
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Appendix A.

In this appendix, we give the proof of Lemma 5 which shows how an element
g ∈ G acts on a differential form. Furthermore, we state and prove an adaptation
of the result on the Adjoint action as induced on the generating vector fields
presented in [17, Theorem 3.3.10].

Proof of Lemma 5. We have

dx̃ j∧(−1)k−1dx̃1 . . . d̂x̃k . . . dx̃p =

dx̃1 . . . dx̃p = det
(

d̃x
dx

)
dx1 . . . dxp, j = k,

0, else.

Note that we can write

(−1)k−1dx̃1 . . . d̂x̃k . . . dx̃p

as
p∑
`=1

(−1)k+`−2 Z k
`dx1 . . . d̂x` . . . dxp

and therefore,

dx̃ j ∧ (−1)k−1dx̃1 . . . d̂x̃k . . . dx̃p =

p∑
`=1

dx̃ j

dx`
(−1)k−1 Z k

`dx1 . . . dxp

= δ jk det
(

d̃x
dx

)
dx1 . . . dxp,

that is
p∑
`=1

dx̃ j

dx`
(−1)k−1 Z k

` = δ jk det
(

d̃x
dx

)
. (A.1)

Now (A.1) implies that

(−1)k−1 Z k
` =

((
d̃x
dx

)−1)
`k

det
(

d̃x
dx

)
,

as (d̃x/dx)−1(d̃x/dx) = (d̃x/dx)(d̃x/dx)−1
= I .
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THEOREM 7. Let (a1, . . . , ar ) be coordinates on the Lie group G and let the
infinitesimal vector field with respect to the coordinate a j be given as

v j = Ξ j Dx +Q j∇uα
J
,

where Ξ j = (ξ
1
j , . . . , ξ

p
j ), Q j = (Q1

j , . . . , Qq
j , D1 Q1

j , . . .), Dx = (D1, . . . , Dp)

and ∇uα
J
= (∂u1, . . . , ∂uq , ∂u1

1
, . . .). Let Ad(g) be the Adjoint representation of G

with respect to the v j . Then the action of g ∈ G on v j is

g ·
((
Ξ j(z) Q j(z)

) ( Dx
∇uα

J

))
=
(
Ξ j (̃z) Q j (̃z)

)

×


(

d̃x
dx

)−T

O

−

(
∂ũαJ
∂uαJ

)−T(
∂ x̃
∂uαJ

)T

X −1

(
∂ũαJ
∂uαJ

)−T(
∂ x̃
∂uαJ

)T

X −1

(
duαJ
dx

)T

+ Y−1


×

(
Dx
∇uα

J

)
, (A.2)

where

X =
(
∂ x̃
∂x

)T

−

(
∂ũαJ
∂x

)T(
∂ũαJ
∂uαJ

)−T(
∂ x̃
∂uαJ

)T

,

Y =
(
∂ũαJ
∂uαJ

)T

−

(
∂ x̃
∂uαJ

)T(
∂ x̃
∂x

)−T(
∂ũαJ
∂x

)T

,

O = zero matrix.

Furthermore,

Ad(g)Ξ(z) = Ξ(̃z)
(

d̃x
dx

)−T

−Q(̃z)

(
∂ũαJ
∂uαJ

)−T(
∂ x̃
∂uαJ

)T

X −1 (A.3)

and

Ad(g)Q(z) = Q(̃z)

((
∂ũαJ
∂uαJ

)−T(
∂ x̃
∂uαJ

)T

X −1

(
duαJ
dx

)T

+ Y−1

)
. (A.4)

Note that here uαJ = (u,uJ).

Proof. We know that

g ·
(
∇x
∇uα

J

)
=


∂ x̃
∂x

∂ x̃
∂uαJ

∂ũαJ
∂x

∂ũαJ
∂uαJ


−T (
∇x
∇uα

J

)
, (A.5)
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where
∂ x̃
∂x

∂ x̃
∂uαJ

∂ũαJ
∂x

∂ũαJ
∂uαJ


−T

=


X −1

−

(
∂ x̃
∂x

)−T(
∂ũαJ
∂x

)T

Y−1

−

(
∂ũαJ
∂uαJ

)−T(
∂ x̃
∂uαJ

)T

X −1 Y−1

 ,
which was calculated using a result in [10, 11] since we assume ∂ x̃/∂x and
∂ũαJ /∂uαJ are nonsingular.

Letting g ∈ G act on Dx, we obtain

g · Dx = ∇x̃ +

(
dũαJ
d̃x

)T

∇ũα
J
= X −1

∇x −

(
∂ x̃
∂x

)−T(
∂ũαJ
∂x

)T

Y−1
∇uα

J

+

(
d̃x
dx

)−T(dũαJ
dx

)T[
−

(
∂ũαJ
∂uαJ

)−T(
∂ x̃
∂uαJ

)T

X −1
∇x + Y−1

∇uα
J

]
=

(
d̃x
dx

)−T(((
∂ x̃
∂x

)T

+

(
duαJ
dx

)T(
∂ x̃
∂uαJ

)T)
−

((
∂ũαJ
∂x

)T

+

(
duαJ
dx

)T(
∂ũαJ
∂uαJ

)T)(
∂ũαJ
∂uαJ

)−T(
∂ x̃
∂uαJ

)T)
X −1
∇x

+

(
d̃x
dx

)−T(((
∂ũαJ
∂x

)T

+

(
duαJ
dx

)T(
∂ũαJ
∂uαJ

)T)
−

((
∂ x̃
∂x

)T

+

(
duαJ
dx

)T(
∂ x̃
∂uαJ

)T)(
∂ x̃
∂x

)−T(
∂ũαJ
∂x

)T)
Y−1
∇uα

J

=

(
d̃x
dx

)−T(
XX −1

∇x +

(
duαJ
dx

)T

YY−1
∇uα

J

)
=

(
d̃x
dx

)−T

Dx.

Note that we have used Dx = ∇x + (duαJ /dx)T∇uα
J

and the chain rule.
From (A.5) we already know what the action of g ∈ G is on ∇uα

J
; we just need

to substitute ∇x by Dx − (duαJ /dx)T∇uα
J

to obtain

g · ∇uα
J
= −

(
∂ũαJ
∂uαJ

)−T(
∂ x̃
∂uαJ

)T

X −1 Dx

+

[(
∂ũαJ
∂uαJ

)−T(
∂ x̃
∂uαJ

)T

X −1

(
duαJ
dx

)T

+ Y−1

]
∇uα

J
.
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This completes the proof of (A.2).
Since v j = Ξ j Dx + Q j∇uα

J
can be written as Ξ j∇x + Φ j∇uα

J
, by [17,

Theorem 3.3.10] we know that

Ad(g)
(
Ξ(z) Q(z)

) ( Dx
∇uα

J

)
=
(
Ξ(̃z) Q(̃z)

)

×


(

d̃x
dx

)−T

O

−

(
∂ũαJ
∂uαJ

)−T(
∂ x̃
∂uαJ

)T

X −1

(
∂ũαJ
∂uαJ

)−T(
∂ x̃
∂uαJ

)T

X −1

(
duαJ
dx

)T

+ Y−1


(

Dx
∇uα

J

)
;

from this we can easily read the results (A.3) and (A.4).
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[9] T. M. N. Gonçalves and E. L. Mansfield, ‘Moving frames and conservation laws for Euclidean

invariant Lagrangians’, Stud. Appl. Math. 130 (2012), 134–166.
[10] H. V. Henderson and S. R. Searle, ‘On deriving the inverse of a sum of matrices’, SIAM Rev.

23 (1981), 53–60.
[11] H. Hotelling, ‘Some new methods in matrix calculation’, Ann. Math. Statist. 14 (1943), 1–34.
[12] E. Hubert, ‘The AIDA Maple package: algebraic invariants and their differential algebras’,

2007. Available at: http://www.inria.fr/members/Evelyne.Hubert/aida.
[13] E. Hubert, ‘Differential invariants of a Lie group action: syzygies on a generating set’,

J. Symbolic Comput. 44 (2009), 382–416.
[14] E. Hubert and I. A. Kogan, ‘Rational invariants of a group action Construction and rewriting’,

J. Symbolic Comput. 42 (2007), 203–217.
[15] P. E. Hydon, ‘Multisymplectic conservation laws for differential and differential-difference

equations’, Proc. R. Soc. Lond. A 461 (2005), 1627–1637.
[16] I. A. Kogan and P. J. Olver, ‘Invariant Euler–Lagrange equations and the invariant variational

bicomplex’, Acta Appl. Math. 76 (2003), 137–193.

https://doi.org/10.1017/fms.2016.24 Published online by Cambridge University Press

http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
http://www.inria.fr/members/Evelyne.Hubert/aida
https://doi.org/10.1017/fms.2016.24


Moving frames and Noether’s conservation laws—the general case 55

[17] E. L. Mansfield, A Practical Guide to the Invariant Calculus (Cambridge University Press,
Cambridge, 2010).

[18] E. L. Mansfield, ‘The Indiff Maple package’. Available at: http://www.kent.ac.uk/smsas/pers
onal/elm2/.

[19] E. L. Mansfield and P. van der Kamp, ‘Evolution of curvature invariants and lifting
integrability’, J. Geom. Phys. 56 (2006), 1294–1325.

[20] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2nd edn (Springer,
New York, 1999).

[21] P. J. Olver, Applications of Lie Groups to Differential Equations, 2nd edn (Springer, New
York, 1993).

[22] P. J. Olver, Equivalence, Invariants and Symmetry (Cambridge University Press, Cambridge,
1995).

[23] I. Roulstone and J. Norbury, ‘Computing Superstorm Sandy: the mathematics of predicting
hurricane’s path’, Sci. Amer. 309 (2013), 22.

[24] I. Roulstone and M. J. Sewell, ‘Potential vorticities in semi-geostrophic theory’, Q. J. R. Met.
Soc. 122 (1996), 983–992.

[25] V. N. Rubstov and I. Roulstone, ‘Holomorphic structures in hydrodynamical models of nearly
geostrophic flow’, Proc. R. Soc. Lond. A 457 (2001), 1519–1531.

[26] R. Salmon, ‘Practical use of Hamilton’s principle’, J. Fluid Mech. 132 (1983), 431–444.

https://doi.org/10.1017/fms.2016.24 Published online by Cambridge University Press

http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
http://www.kent.ac.uk/smsas/personal/elm2/
https://doi.org/10.1017/fms.2016.24

	Introduction
	Summary of main result
	Motivating example

	Moving frames and invariant calculus of variations
	Moving frames and differential invariants
	Invariant differential operators and differential forms
	Invariant calculus of variations

	Structure of Noether's conservation laws
	The group action on the conservation laws
	Noether's laws in terms of the invariants and the Adjoint action of a moving frame

	Two variational problems with area and volume preserving symmetries
	Conservation laws for the shallow water equations
	Variational problems invariant under the standard SL(3) action on the base space

	The role of the frame in the integration of the Euler–Lagrange system
	Conclusion
	
	References



