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1. Introduction

Let n be a positive integer and S, the group of permutations of the set {1, ..., n}. We
use the one-line notation to write the elements of S,; namely, for w € S, we write
w = wiwy...w,, Wwhere w; = w(i) for 1 < i < n. We denote the cardinality of a finite
set A by |A|. Let (n) be the complete flag variety consisting of flags
E,=(E\CE, C---CE,=C") of nested vector spaces in C". For 1 <i<n, let
e; be the ith standard basis vector of C" and F; = (ey, ..., e;) the subspace of C"
spanned by ey, ..., e;. The Schubert variety X,, is the subvariety of (n) consisting
of the flags E, such that dim(E,NF,)>=|{i<pwi<gq}| for 1<p,g<n
Equivalently, if B is the Borel subgroup of GL,(C) consisting of the upper triangular
matrices, then X,, = BwB/B. The Bruhat order < on S, can be defined as follows:

v=w if [ig<pvi<gI=|i<pw <q}lforl<p,g<n.
Therefore v < w if and only if X, C X,,. The Bruhat order makes S, into a graded

poset. The length /(w) of a permutation w € S, is the rank of w in the Bruhat order
on S,. Equivalently, /(w) is the number of inversions of w, i.e.,

Iw)=HGE NI <i<j<nand w; > w}.

We have that dim X,, = /(w). We associate to v € S, the coordinate flag

eV = ((e\)l) C <evls evz) C et C (evla e 7evn> = CH)

https://doi.org/10.1023/A:1017585921369 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017585921369

48 VESSELIN GASHAROV

Then e, € X,, if and only if v < w. For an introduction to the theory of Schubert
varieties see e.g. [2].
Smooth Schubert varieties are characterized combinatorially as follows:

THEOREM 1.1 (Lakshmibai and Sandhya [7]). The Schubert variety X,, is smooth if
and only if w does not contain a subsequence w; wi,wiw;, of 4 elements with the same
relative order as 4231 or 3412.

THEOREM 1.2 (Gasharov [3]). Let w € S,,. The Schubert variety X,, is smooth if and
only if the Poincaré polynomial p,,(t) = Y, -, ') factors into polynomials of the form
l+t+2+...+1.

A criterion for smoothness of Schubert varieties in terms of the nil Hecke ring was
given by Kumar [6].

Let Sing X,, denote the singular locus of X),. The Borel group B acts on X,, and
Sing X, is invariant under this action, so Sing X,, is a union of Schubert varieties
X, for some . < w. We have that Sil’ng4231 = X>143 and SingX3412 = X34 [7,
Remark 3.1]. Lakshmibai and Sandhya conjectured a combinatorial description
of Sing X,, in [7]:

y=w

CONJECTURE 1.3. Ifw € S, then Sing X,, = U, X , where 1 runs over all maximal
elements (in the Bruhat order) of the set Z consisting of all T < w satisfying (1)
or (2) below:

(1) There exists a subsequence w;, w;,w;,w;, of 4 elements in w with the same relative
order as 4231. Let t€ S, be the permutation obtained from w by replacing
Wi, Wiy, Wiy, Wi, as elements in w by wy,, w;,, w;, w;, respectively. There exists a
w €8S, containing a subsequence w;]w}zw;»}w}4 such that w_;-l =w;, w_;.z

. VA / . / . / / / /
Wi = wi, wi, = wj, T is obtained from w' by replacing wi, ,w; ,wi,w; as elements

inw by w}z, w}4, w}l, w}} respectively, and 1 < v < w' < w.

(2) There exists a subsequence w;, wi,w;,w;, of 4 elements in w with the same relative
order as 3412. Let t €S, be the permutation obtained from w by replacing

Wi, Wiy, Wiy, Wi, as elements in w by wy,, wi, w;,, w;, respectively. There exists a

w €8S, containing a subsequence w}] w]’-zw}zwﬁ such that w]’-1 =w;, w}z =W,
S O : g / ’ : / / / /
Wi = wi, w, =wj, T is obtained from w' by replacing Wi Wi, Wi, Wi as elements

inw by W}%’ w}l, W}A, w]/-2 respectively, and T < v/ < w' < w.

= Wig;

Gonciulea and Lakshmibai showed that Conjecture 1.3 is true for a class of
Schubert varieties related to ladder determinantal varieties [4, 5].

A permutation n = x; ... 7, which does not contain a subsequence w;, 7, 7;7;,
with the same relative order as 2143 is called vexillary. The Kazhdan—Lusztig
polynomials P, ,(g), ® < w € S,, measure the singularities of Schubert varieties.
In [9] (see also [10]) Lascoux computed the polynomials P, ,,(¢) when x is a vexillary
permutation. Other classes of Kazhdan—Lusztig polynomials are treated, e.g., in
[11, 13].
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Next we give an example which illustrates the above conjecture.

EXAMPLE 1.4. Let w=53826471 € Ss. Then the irreducible components of
Sing X,, are the Schubert varieties X0, i =1,2,3,4, where n() =32548671,
@ =32816574, 1® =53218674, and n® =53624187. We have that =(
satisfies condition (2) of Conjecture 1.3 with ij =1, =3,i3=4,i3 =6,j; =2,
j2:3,j3:4,j4:5, and

w=53826471,

w =35824671,
) =1 =32548671,
1=23546871.

(The boldface numbers are the elements in positions iy, i, i3, iy in w and 7 and the
elements in positions ji, j2, 3, j4 in w and 7.)

We also have that n® satisfies condition (1) of Conjecture 1.3 with i} =1,
i2:4,i3:6,i4:8,j1 :2,j2:4,j3:6,j4:8, and

w=753826471,
w =35826471,
¥ =1 =32816574,
1=23816574.

The permutation 7 satisfies condition (1) of Conjecture 1.3 with i; = 3, i, = 4,
i3 = 6’ i4 = Sajl = 3,j2 = 4,j3 == 5,j4 - 8, and

w=253826471,
W =53824671,
¥ =1=53218674,
1=53216874.

Finally, n® satisfies condition (1) of Conjecture 1.3 with iy =3,i, =6,i3 =7,
ib=8,j1=5j,=6,j3=7,js=28, and

w=53826471,
w=53628471,
W =17=53624187,
1=53426187.

Remark 1.5. In Conjecture 1.3, given a 7’ satisfying condition (1) or (2), there is in

general more than one choice for the permutations w’ and 7. Consider for instance the
permutations w and v = n® from Example 1.4. They satisfy condition (1) of
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Conjecture 1.3 with iy =1, =2,i3=6,is=8,j1 =1,/ =4,j3=6,j4 = 8§, and

w=53826471,
w =52836471,

® =1 =32816574,
1=31826574.

This is a different choice of w' and t than the one we made in Example 1.4.
In this paper we prove one direction of Conjecture 1.3, namely the sufficiency of
Lakshmibai-Sandhya singularity conditions:

THEOREM 1.6. In the notation of Conjecture 1.3, U; X, C Sing X,, .

2. Proof of Theorem 1.6
Theorem 1.6 follows immediately from Proposition 2.1 below.

PROPOSITION 2.1. Let w and 1’ satisfy conditions (1) or (2) in Conjecture 1.3.
Then X, C Sing X,,.

In the special case when v =t and w' = w (in the notation of Conjecture 1.3),
Proposition 2.1 was proved in [7, Lemma 3.1].

Before proving Proposition 2.1 we introduce some notation and prove a prelimi-
nary lemma. For 1 <i,j<n, i#j, denote by s; € S, the transposition which
interchanges i and j. For n < ¢ € S, let T(o, ) denote the Zariski tangent space
to X, at e; and

A(o,m) = {(i,L,)Il <i<j<nand mos; <o}.

Lakshmibai and Seshadri [8] proved that dim T'(g, ) = |A(0, 7)|. Consider also the
set

Bo,n) = {(i,) )l <i<j<n mn<m, and nos; < o}.
Since mos; < m < o for all inversions (7, ) of =, it follows that
A(o,m) = {(i,HIl <i<j<nand m > n;} UB(o, n),

hence
|[A(e, m)| = I(n) + |B(a, m)|.

Let P={ay,...,a;} and Q = {by, ..., by} be subsets of {1,...,n}. We say that
P < Q if when the elements of P and Q are arranged in decreasing order,
ay = -+ =za and by = --- = by, we have that a; < b; for 1 <i < k. This gives a
partial order on the k-element subsets of {1,...,n} for 1 <k < n. For a sequence
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0 of k numbers, denote by Sy the set of elements of 6 and by 0 <;, 1 <i <k, the
subsequence of 6 consisting of the first i elements. In [1] Ehresmann defined the
following partial order on S, (see also [10] and [12]): If v,w € S,, then

vw &= §5._< 8, forl<i<n.

It is not difficult to check that the Ehresmann order coincides with the Bruhat order.
We will use this fact later in the paper.
In the following lemma we identify (7, /) and (j, i) for 1 <i,j <n.

LEMMA 22. Let n <v X0 €S, be such that v=mos; for some 1 <i<j<n.
Define an injective map

¢:¢UA(O—7V)C_>{(p’q)|1 <P7(]<n}

as follows:
o If(r,t)e A(a,v) and r,t & {i,j} or r =1, t =, then ¢(r, t) = (1, 1).
Now let r #1,].

o [f(r,i),(r,j) € A(a, V), then ¢(r,i) = (r, i) and ¢(r,j) = (r,)).
o [f(r,i) e A(a,v), but (r,j) ¢ A(o,v), then

(,b(r,i):{(r’ 0, if r<j,m<m;

(r,)), otherwise.
o If(r,j) € A(o,v), but (r,i) ¢ A(a,v), then

o(r,)) = {(r’ 0, Yr<jm<m

(r,)), otherwise.

Then Im ¢ C A(a, n).

Proof. If (r,t) € A(o,v) and r,t ¢ {i,j}, then mwos,, <vos, <ag, so ¢, t)=
(r,t) € A(o, ™). We also have that ¢(i, j) = (i,)) € A(o, v), A(g, n). It remains to show
that for r # i, j if both (r, i), (r,) € A(a, v), then (r, i), (r,j) € A(c, 7) and if at least
one of (r,i),(r,j) is in A(g, v), then A(o, n) contains (r, i) (resp. (r,j)) if r <j and
m, < m; (resp. r > j or m, > m;). There are six possible cases and we consider each
one separately:

Case (1) r > j, m. > m;

In this case mos, < vos,, vos,. Therefore, if one of (r,i), (r,/) € A(c, v), then
(r,j) € A(o, ). It remains to prove that if both (r,i), (r,j) € A(c,v), then
(r,iye A(o,m). Let a=mosy, Pf=voss and yp=vos, If k<j, then
Sy =Sp_, <S;_,. On the other hand, if k>j, then S,_, =S,  <S;_,.
Therefore, & = wos,; < w.
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Case 2) r > j, m. < m;
We have nos; <n <o, so (r,j) € A(g, n). It remains to show that if both
(r,0),(r,j) € A(o,v), then (r,i) € A(o,n). This follows from the fact that

O Sr < VOSyy.

Case 3)i<r<j, m >m
In this case mos,; <m<w, so (r,j)e€ A(o,n). It remains to show that if
(r,0),(r,j) € A(o,v), then (r,i) € A(g,n). This follows from the fact that

T O Sy < VOS,,.

Case (4)i<r<j, m <m

We have that mos,; <v <0, hence (r,i) € A(c, n). It remains to show that if
(r, i), (r,j) € A(g,v), then (r,j) € A(o,n). This follows from the fact that
MO Sy < VO Sy,

Case (5) r < i, m, > m;
We have that each of mos,, mos,, vosy, vos, is smaller than v. Hence
(r,0), (r,j) € A(o, ), A(o, v).

Case (6) r < i, m, <m;

In this case mos, < vos,, vos,. Therefore, if one of (r,i), (r,j) € A(o, v), then
(r,i) € A(g, ). It remains to prove that if both (r,i), (r,j) € A(o,v), then
(r,j) € A(o, m). Let a =mosy, f=vos,, and y=vos,. If k<i, then S,_,
Sp_, < Ss_,. On the other hand, if k >, then S,_, =S, , <S,_,. Therefore,

a=mos,; X0. N

Proof of Proposition 2.1. Since the Borel group B acts on X,, and for ¢ < w the
closure of the orbit of ¢, is X;, to prove the inclusion X;; € Sing X,, it will be enough
to show that e, is a singular point in X,.

Let w and 7’ satisfy conditions (1) or (2) in Conjecture 1.3. We need to show that

[A(w, 7)| = dim T(w, 7') > dim X,, = /(w)

We will deal separately with conditions (1) and (2).
First assume that the permutations w and 7’ satisfy condition (1) in Conjecture 1.3.
If n=4, then w=w = 4231 and t =t = 2143, hence

Aw, )y ={G NN <i<j< 4}

and |4A(w,7)|=6>1I(w)=5. Now let n>4. Suppose that w; #n. Then
n ¢ {w;,wi,, wi,, w;,}, hence n is in the same position in w and 7. Since
w > w > 1 > 1 it follows that n is in the same position in w, w', 7/, and 7. Therefore
we can replace w, w, v/, T by w\n, w\n, '\ n, t\n respectively and conclude
the proof by induction on n. Thus we can assume that w; = n. Similarly we can
assume that w;, = 1. The fact that w > w/, 7 > 7, and w;, = n implies the following
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inequalities:
iy <j1 and i3 > j. (D
The fact that w = w/, v’ > 7, and w;, = 1 implies that
is = Jja and i, < Jja. (2)

Let v € S, be the permutation obtained from 7’ by interchanging 7; and tj; as
elements in 7/, i.e., v = 1" 0s;,;;. Then w' > v > 7’. The inequalities (1) and (2) imply
that if a = w;, < b = w;,, then we can write w, W', v, 7/, and 7 as follows:

W e fenenns Aevnennnn. b-----. 1---,
W= neeee a---bo---- | T ,

Pm s Meveo P be----.. , (3)
= A | P PR b-----.. ,

B ) PP neven- b

(As in Example 1.4, the boldface numbers are the elements in positions iy, i», i3, is in

w and 7 and the elements in positions ji, /2, j3,j4 in W, v, and 7’.) The only freedom

in (3) is that the relative positions of the i;th and j;th columns can be interchanged,

and also the relative positions of the i3th and jsth columns can be interchanged.
For example, the permutations

w=975328641 and 1 =753219864

satisfy condition (1) in Conjecture 1.3 with /i =1, =4,i3=7,is =9,/ =3,
j» =15,j3 =06, and j, = 8. Indeed, in this example

w =759236814, 1=375128946,

wp Wi wipwy, = w, wow, w, =9361 has the same relative order as 4231, and
170 T R s

T<T <w <w.
We know that |A(w,v)] =dim T(w,v) > dimX,,.. So to prove the desired
inequality |4(w, )| > dim X, it will be enough to show that |4(w, 7')| > |4(w, V).
In the example above

v=759213864,

B(w, ) ={(1,6),(2,6),(3,6),(4,6),(56),(1,7),(2,7),(3,7), (4, 7),
(5,7),(2,8),(3,8),(4,8),(5,8),(3,9), (4,9), (5, 9)},

and

Bw,v) ={(1, 3),(2,3),(4,6),(5,6),(6,7), (6, 8), (6,9)}.

Therefore in this example we have that

|A(w, ¥)| = I(<) + | Bw, 7)| = 19+ 17 = 36
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and
[A(w, v)| = [(v) + |B(w, v)| =20+ 7 = 27,

hence [A(w, T)| > |A(w, v)|.

Apply Lemma 2.2 to the triple 7" < v < w. Since (j»,js) € A(w, v'), to prove the
inequality |A(w, v)| < |A(w, 7")| it will be enough to show that (j,,js) ¢ ¢, where
¢ = ¢, + A(w, v)=>A(w, 7') is the monomorphism from Lemma 2.2. We have that
J2,Ja & {1,j3}, so from the definition of ¢ it follows that the only element that ¢
could possibly map to (j,js) is (j2,j4) itself. Thus, to prove the inequality
|A(w, v)| < |4A(w, 7')| it will be enough to show that (j,, js) € A(w, v).

In our example vos;;, =vosss =759263814 £ w, hence (5, 8) ¢ A(w, ).

Assume that (j2, js) € A(w,v) and let £ =vos;,;,. Then ¢ < w. By (1) and (2) we
have the inequalities i, < j, < j3 < i3, hence

if Swg/2 ={n,a,...,0,-1,0,}, then Sk/ {0, 03, ..., 0y, 1},

if Sw_, = {m By By Byl then Se =By, s, By 1.

Assume that oy > -+ > oy, and f, > --- > f;,. Since w > v and ' > 7 it follows
thatao, = f, = o, for 2 <r < j, hence o, = f§, for2 < r < j, and S = S,/__.Since

&=w, for 1<r<jp—1 and ¢, =w, >w, =w, it follows that 39 >

SW = Sw . This implies that ¢ £ w, which is a cofltradiction

It remalns to prove that |A(w, 7')] > dim X,, when w and 7’ satisfy condition (2) in
Conjecture 1.3. The proof is similar to the one for condition (1).

First, we can assume that w;, = n and w;, = 1. The fact that w > w/, v’ > 7, and

w;, = n implies that:

W<,

i <jp and iy > jy. “4)
The fact that w > w/, v > 7, and w;, = 1 implies that:

i3 = j3 and i] < jj. ®)
For example, the permutations

w=65872143 and 7 =51763284

satisfy condition (2) in Conjecture 1.3 with iy =1, =3,i3=6,is =8,/ =2,
j»=4,j3=25, and j; = 7. Indeed, in this example

w =56781234, 1=15672348,

Wi, Wi, Wiy Wi, = w/l wlzwh w]4 =6813 has the same relative order as 3412, and
<7 <w <w

Let v € S, be the permutation obtained from 7’ by interchanging 7: and r/ as
elements in 7/, i.e., v=1"0s;;,. Then w' > v > 7. As in the case of condltlon 1),

to prove that |4(w, 7')| > dim X, it will be enough to show that |A(w, T')| > |A(w, V)|.
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In the example above

v=56713284,
B(w, ) ={(1,4),(2,4),(2,5),(2,6), (3,7, (4. 7)., (5. 7). (5, 8),
and

Bw,v)=1{(1,2),4,5),4,6),3,7),(57),(5,8)}.

Therefore in this example we have that |A(w, )| = [(7') + |B(w, 7)) = 13 + 8 = 21
and |A(w, v)| = I(v) + |B(w, v)] = 14 + 6 = 20, hence [A(w, T')| > |A(w, v)|.

We have that (j,, j4) € A(w, 7). We will prove that |A(w, v)| < |4(w, 7')| by showing
that (j2, ja) ¢ ¢, where ¢ = ¢, ; is the monomorphism from Lemma 2.2 applied to the
triple T < v < w. Since j; # ji, J», it follows from the definition of ¢ that if (j2, j4) € ¢,
then ¢~'(j, js) is either (j1, ja) or (j,js). We will prove that this is impossible by
showing that (ji, ja), (j2,j4) & A(w, v).

In our example

vosj, =vosy =58713264 £w
and

VoS, =vossr =56783214 £w,
hence (2,7),(4,7) ¢ A(w, v).

Assume first that (ji, js) € A(w, v) and let £ = v o 5;,;,. Then & < w, so in particular
i» <ji1. By (5) we also have that i3 > j3. Therefore,
if S

W<

if Sé</l = {n, ﬁz, ey ﬁj]*l’ ﬂj]}’ then ST,<j1 = {ﬁz, ﬁ:;, ey ﬁjl’ 1}

Since w = ¢ and 7' > 7 it follows that o, > f8, = o, for 2 < r < jj, hence SW</‘1 =S8,
But w;, € S‘kn’ whereas w; = ¢, ¢ Sggl.], which is a contradiction. Therefore
(1.Ja) & A(w, v).

Now assume that (j», js) € A(w, v) and let § = v o 5;,;,. Then # < w, so in particular
i3 = j4. By (4) we also have that i, < j,. This implies that

:{n$a21'--aaj|717aj1}s then T<j :{a2sa31"'7aj171}7

i S,
lf S’7<j3 = {I’l, ﬁz, ey ﬁj3—1’ ﬁ/?}’ then Sr/</3 = {ﬁ27 ﬁ}’ IR ﬁjy 1}

Z{H,OCZ,...,aj}_],OCj}}, then ’C<j3 :{OCZaOC?)a-"vaj}’l}v

Since w = nand v’ > tit follows that o, > f8, = o, for 2 < r < j3, hence S, =S

W< M<jy*

But w;, ¢ S, i while w;, = nj, € Sy < which is a contradiction. Therefore
(2.J4) & A(w, v).
This completes the proof of Proposition 2.1. O
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