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A SIMPLE PROOF OF ARAZY'S THEOREM

by J. A. ERDOS

(Received 23rd July 1992)

Arazy has characterized the isometries of •<?,„ ( 0 < p g o o , p / 2 ) onto itself as all maps of the form X>-+UXV
where U and V are either both unitary or both anti-unitary. A simple proof of this result is given.

1991 Mathematics subject classification: 47B10, 47D25.

A new proof of the following characterization of the isometries of # p onto itself is
presented.

Arazy's theorem. Let <fi be a linear isometry of^p onto itself (0<p^oo, p¥"2). Then
either

(i) (p(X)-UXVfor some unitary operators U and V on the underlying Hilbert space,
or

(ii) <p(X) = SX*T for some anti-unitary operators S and T on the underlying Hilbert
space.

The above result is proved in [1]. (See also [5]). The present proof shows clearly why
the two cases arise and why p = 2 is exceptional. An earlier version of this paper
influenced a study of isometries of the intersections of nest algebras with c€p [2].

Here <€9 denotes the von Neumann-Schatten p-class and anti-unitary operator means
a conjugate-linear isometry on the Hilbert space onto itself. The underlying Hilbert
space will be denoted by J f and ^ and !F will denote the rank 1 and finite rank
operators on 2>f respectively. The rank 1 operator XH-KX,C>/ will be written as e®f.
We shall repeatedly use the following elementary fact: if the sum of two rank one
operators has rank one, the summands have either the same range or the same
co-range.

The proof is based on two lemmas.

Lemma 1. Let <p be a linear map from 3F to 3F which preserves rank and is isometric
on 31 (with respect to the operator norm). Then (p has one of the forms (i) or (ii) in the
statement of Arazy's theorem.

Lemma 2. / / 0 < p < oo and p # 2 then every linear isometry of ^p onto itself preserves
rank.

239

https://doi.org/10.1017/S0013091500006040 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006040


240 J. A. ERDOS

Arazy's theorem is an immediate consequence; one simply notes that the operator
norm and the #p norm (or metric when 0<p< 1) coincide on 91 and that & is dense in
•<?„. The case p = oo follows from the case p = 1 by a simple duality argument.

Proof of Lemma 1. Let e be any unit vector. Then (p(e ® e) can be written as / ® g
with | | / | | = ||^|| = 1. For any x in H, f®g + <p(e®x) = <t>{e®(e + x))e3t and hence
either

<p(e® x)=f®£x for some £xeH (1)

or

(t>(e ® x) = t]x ® g for some r\x e H. (2)

Either (1) or (2) must hold simultaneously for all vectors since, if (2) is false for x and
(1) is false for y then both {£,x,g} and {/, rjy} are linearly independent pairs of vectors.
This is impossible, since / ® £,x + r\y ® g = <t>{e ® x + e ® y) has rank 1.

Suppose (1) holds for all x. We show that the map xi-»^x is a linear isometry of H
onto H. Clearly ||x|| = | |e® x|| = | | / ® ^ | | = | |^ | | . Also, since # # ) = <%, for each hsH,
f<2)h = (p(p<g)q) for some p,qeH. Now / ® (£x + h) = (p(e® x+p® q) and so e®x +
p®qe&# for all x. Hence p is a scalar multiple of e and so h = £, where t is some
multiple of q. Therefore

(j)(e® x)=f® Ux for some unitary operator U. (la)

If (2) holds for all x, then </>(e® kx) = k(£,x®g)={l£x) ®g, and so xt->£x is conjugate
linear. It now follows exactly as above that for some anti-unitary operator W,
<t>(e ® x) = Wx ® g. Since W* is also anti-unitary (adjoint being defined in the obvious
way), we may write this as

<p(e ®x) = T*x ® g for some anti-unitary operator T. (2a)

Now consider <p(y ® e) as y varies. It follows that either

<t>(y ®e) = V*y ® g for some unitary operator V. (lb)

or

<p{y ®e)=f® S*y for some anti-unitary operator U. (2b)

Conditions (la) and (2b) cannot hold simultaneously since this would imply that
e ® x + y ® e has rank 1 for all x and y. Similarly (lb) and (2a) are incompatible.

Suppose that (la) and (lb) hold. If <p(s ® t) = v ® u and neither s nor t is a multiple of
e, then <t>{e®e + s®i)$& and (p(e® t+s® t)e3t. That is, f®g + v®u$® and
f®Ut + v®ue(%. Therefore u is a multiple of Ut. Similarly v is a multiple of V*s. It
follows that for arbitrary s, t
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where /i(M) is some complex number, possibly depending on s and t. But, for fixed s,
<p(s ® t) is linear in t, so

tis,h + h) IVs ® Ufa + t2)]=/i(s, ti) [^*s ® l / f j + As,t2

From the case when t, and t2 are independent, it follows that n(s,t1) = fi(s,t1 + t2) =
/4s, t2) and so /* is independent of t. Similarly // is independent of s and so n is constant.
Since fi(e, e) = 1, we have

<t>{s <g) t)= K*s ® Ut = U(s ® t)K

and <}> satisfies (i). If (2a) and (2b) hold, it follows in the same way that <p satisfies (ii).

Proof of Lemma 2. It is clearly sufficient to show that <$>{0l)e9t for each ^ e ^ . We
use the conditions for equality in the Clarkson-McCarthy inequality. The result is: for

||5) H
if and only if Y*X = YX* = 0 (see [4]). Note that for p = 2 equality always holds. For
the present purpose, we only need the observation that, since the condition is that
ran(X) 1 ran(y) and ran(.Y*)±ran(y*), equality cannot hold if X+Y has rank 1
(unless A-=0 or Y=0).

Suppose A has rank 1 and 4>(A) = T has rank>l. Using the standard Schmidt
decomposition (see e.g. [3]), T=Z/i,(Xj® y.) where {xj and {>>,•} are orthonormal. Thus,
T=X+ Y where X=/i1(x1 ® yJ^O and y=Z1>1/ii(x1® y,)#0. It follows that

and so (*) holds. Applying the isometric transformation inverse to <f> gives a similar
decomposition of A, and this contradiction shows that <p(A) has rank 1, thus completing
the proof.

Remarks. 1. In [1], case (ii) of the Theorem is stated as:

(»)' <f>(X) = UXTVfor some unitary operators U and V.

where XT is the transpose of X with respect to some orthonormal basis {e,} of
the underlying Hilbert space.

To see that (ii) and (ii)' are the same, consider the conjugation C:H\-*H by
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Clearly C2 = C and C is anti-unitary. Thus if XT is the transpose of X with respect to
the basis {c,}, then CXTC = X* and, if U and V are anti-unitary, UC and CV are
anti-unitary. The equivalence now follows.
2. Arazy's original proof also uses the condition for equality in the Clarkson-
McCarthy inequality to show that rank is preserved. However, the argument is more
involved.
3. The result is also proved by Sourour [5] using quite different methods which also
cover more general symmetrically normed ideals.
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