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The probability density function (PDF) for the free surface elevation in an irregular sea
has an integral formulation when based on the cumulant generating function. To leading
order, the result is Gaussian, whereas nonlinear extensions have long been limited to
Gram–Charlier series approximations. As shown recently by Fuhrman et al. (J. Fluid
Mech., vol. 970, 2023, A38), however, the second-order integral can be represented exactly
in closed form. The present work extends this further, enabling determination of this
PDF to even higher orders. Towards this end, a new ordinary differential equation (ODE)
governing the PDF is first derived. Asymptotic solutions in the limit of large surface
elevation are then found, utilizing the method of dominant balance. These provide new
analytical forms for the positive tail of the PDF beyond second order. These likewise
clarify how high-order cumulants (involving statistical moments such as the kurtosis)
govern the tail, which is shown to get heavier with each successive order. The asymptotic
solutions are finally utilized to generate boundary conditions, such that the governing
ODE may be solved numerically, enabling novel determination of the PDF at third and
higher order. Successful comparisons with challenging data sets confirm accuracy. The
methodology thus enables the PDF of the surface elevation to be determined numerically,
and the asymptotic tail analytically, to any desired order. Results are worked out explicitly
up to fifth order. The theoretical probability of extreme surface elevations (typical of rogue
waves) may thus be assessed quantitatively for highly nonlinear irregular seas, requiring
only relevant statistical quantities as input.
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1. Introduction

Perhaps the most fundamentally important statistical description of an irregular sea is
the probability density function (PDF) for the surface elevation itself. The positive tail
of the PDF is of special importance, as it governs the likelihood of extreme positive
surface elevations, typical of rogue waves. In his classical work, Longuet-Higgins (1963)
showed that this PDF could be formulated in terms of an integral arising from the cumulant
generating function. His formulation is free of assumptions involving narrow-bandedness
of the spectrum or small directionality of the wave field. To leading order, the result is
Gaussian, whereas Longuet-Higgins (1963) derived approximate Gram–Charlier series
solutions for this PDF to second and third order. Recently, the present authors (henceforth
referred to as FKZ, Fuhrman, Klahn & Zhai 2023) have shown that, to second order,
the integral of Longuet-Higgins (1963) can be solved exactly in terms of the Airy
function. Notably, the FKZ distribution includes an inherently heavy tail, i.e. slower
exponential decay in the probability density of large surface elevations, relative to the
Gram–Charlier series solutions of Longuet-Higgins (1963). Through asymptotic analysis,
FKZ showed that to second order, this tail is theoretically governed by the skewness
(equivalently, the third cumulant). FKZ likewise showed that their exact second-order
theory is more accurate than both second- and third-order approximate solutions provided
by Longuet-Higgins (1963), especially in the heavy-tailed region. However, in the most
nonlinear cases considered, it was also evident that even the tail of the second-order FKZ
distribution is not sufficiently heavy to match those from the data sets considered. Heavy
positive tails are likewise apparent in PDFs stemming from numerous other numerical
(e.g. Klahn, Madsen & Fuhrman 2021b; Liu et al. 2022), experimental (see e.g. Onorato
et al. 2009; Trulsen et al. 2020; Zhang & Benoit 2021; Zhang, Ma & Benoit 2024) and
field measured (see e.g. Tayfun & Alkhalidi 2020) data sets involving nonlinear irregular
wave fields. Hence it seems clear that heavy positive tails are indeed representative of
real ocean waves, and in highly nonlinear conditions, PDFs properly accounting for the
additional effects of kurtosis (and potentially even higher-order statistical moments) are
required.

Motivated by this need, in the present work we further our efforts to determine the
PDF for the surface elevation in nonlinear, irregular seas to even higher order. Towards
this end, the remainder of this paper is organized as follows. In § 2, we will derive a
new ordinary differential equation (ODE), theoretically governing the PDF to any order
in nonlinearity. Section 3 will present exact solutions to this ODE at first and second
order, which will be shown to be consistent with previously obtained results. At third and
higher order, no known exact solutions to the ODE exist. Hence in § 4, we will derive
new asymptotic solutions to the ODE, in the limit of large surface elevation, employing
the method of dominant balance. These will be derived explicitly up to fifth order
in nonlinearity, and will demonstrate precisely how higher-order cumulants (involving
statistical moments such as the kurtosis, hyperskewness and hyperkurtosis) govern the
tail at third, fourth and fifth order, respectively. Moreover, in § 5, we will show how the
asymptotic solutions may be utilized to derive necessary boundary conditions for the ODE,
such that it may be solved numerically. This methodology, for the first time, enables the
theoretical PDF to be determined, effectively to any desired order in nonlinearity. Section
6 will compare the new high-order PDFs with those based on challenging, highly nonlinear
data sets involving irregular waves in finite water depth. Conclusions will finally be drawn
in § 7.
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Heavy-tailed probability density functions in irregular seas

2. An ODE governing p(ζ )

Consider a nonlinear, irregular wave field having surface elevation η, with standard
deviation σ . We define the non-dimensional surface elevation as ζ ≡ η/σ , and assume
that it can be expressed in terms of a classical Stokes-type perturbation series, i.e.

ζ = ζ1 + ζ2 + ζ3 + · · · , (2.1)

such that the nth term in the series is O(εn−1), where ε is a characteristic wave steepness.
As first discussed by Longuet-Higgins (1963), in this perturbative setting, the PDF of ζ is
most conveniently expressed in terms of its cumulants κn, since these are ordered in powers
of ε for n ≥ 3. In fact, choosing the coordinate system such that η has zero mean, we have
κ1 = 0, the normalization implies that κ2 = 1, and κn = O(εn−2) for n ≥ 3; see e.g. (2.18)
of Longuet-Higgins (1963). For completeness, we mention that κ3 equals the skewness
S ≡ 〈ζ 3〉 of η, and that κ4 equals the excess kurtosis K − 3, where K ≡ 〈ζ 4〉 is the kurtosis
of η. Expressions for higher cumulants in terms of the statistical moments are provided in
table 2 below. For clarity, we emphasize that the nth-order nonlinear approximation of
the full system will refer to that in which the first n terms in (2.1), and the first n + 1
cumulants, are retained.

Using the cumulant generating function, Longuet-Higgins (1963) has shown that the
PDF of ζ can be expressed as

p(ζ ) = 1
2π

∫ ∞

−∞
exp

(
−1

2
s2 − iζ s + 1

6
κ3(is)3 + 1

24
κ4(is)4 + · · ·

)
ds. (2.2)

In the following, we will show how this integral representation may be used to find an ODE
of infinite order, which governs the behaviour of p(ζ ). To that end, we start by rewriting
the integral as

p(ζ ) = 1
π

∫ ∞

0
exp

(
−1

2
s2 +

∞∑
n=2

(−1)n

(2n)!
κ2ns2n

)

× cos

(
ζ s −

∞∑
n=1

(−1)n

(2n + 1)!
κ2n+1s2n+1

)
ds, (2.3)

where the trigonometric representation of the complex exponential function is utilized. If
we differentiate this expression an odd number of times, say 2m − 1, then we find that

d2m−1p
dζ 2m−1 = 1

π

∫ ∞

0
(−1)ms2m−1 exp

(
−1

2
s2 +

∞∑
n=2

(−1)n

(2n)!
κ2ns2n

)

× sin

(
ζ s −

∞∑
n=1

(−1)n

(2n + 1)!
κ2n+1s2n+1

)
ds. (2.4)

Likewise, if we differentiate the expression an even number of times, say 2m, then we
find that

d2mp
dζ 2m = 1

π

∫ ∞

0
(−1)ms2m exp

(
−1

2
s2 +

∞∑
n=2

(−1)n

(2n)!
κ2ns2n

)

× cos

(
ζ s −

∞∑
n=1

(−1)n

(2n + 1)!
κ2n+1s2n+1

)
ds. (2.5)
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Moreover, we must have

0 = 1
π

∫ ∞

0

∂

∂s

(
exp

(
−1

2
s2 +

∞∑
n=2

(−1)n

(2n)!
κ2ns2n

)

× sin

(
ζ s −

∞∑
n=1

(−1)n

(2n + 1)!
κ2n+1s2n+1

))
ds, (2.6)

since the sine function containing the odd powers of s vanishes at s = 0, and the
exponential function must vanish at infinity; if it did not, then the integral (2.2) would
not be convergent. If we now combine this identity with the product rule and the results
(2.4) and (2.5), then we find that

0 = ζp +
∞∑

n=1

(−1)n+1 κn+1

n!
dnp
dζ n , (2.7)

which is the desired ODE governing p(ζ ).
Equation (2.7) is new. In what follows, we will truncate the summation in the ODE at

various orders. We will denote the equation that arises when truncating the sum at the nth
term as the nth-order equation, consistent with the nth-order approximation defined above.

3. Exact solutions of the ODE

To first and second order, (2.7) admits exact analytical solutions, and we briefly review
these here for the sake of completeness and to demonstrate consistency with previously
known solutions. In addition, we discuss an important property of solutions of the ODE
for order greater than two, which may be derived without knowing the exact solution.

3.1. Exact first-order solution
To first order, the ODE (2.7) is simply

0 = ζp + dp
dζ

, (3.1)

where it has been invoked that κ2 = 1, again by definition of ζ . This equation has the
general solution

p(ζ ) = B exp
(

−ζ 2

2

)
, (3.2)

where B is an arbitrary constant. Requiring the PDF to have unit integral yields B =
1/

√
2π, such that the solution becomes the standard normal (Gaussian) distribution

p(ζ ) = 1√
2π

exp
(

−ζ 2

2

)
, (3.3)

which is well known to be the correct linear result.

985 A35-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

30
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.304


Heavy-tailed probability density functions in irregular seas

3.2. Exact second-order solution
To second order, the ODE (2.7) is

0 = ζp + dp
dζ

− κ3

2
d2p
dζ 2 . (3.4)

Being a linear, second-order differential equation, its solutions are, in general, a linear
combination of two linearly independent solutions. By insertion, it may be shown
that these linearly independent solutions are exp(ζ/κ3) Ai(χ) and exp(ζ/κ3) Bi(χ),
respectively, where Ai(χ ) and Bi(χ ) are Airy functions of the first and second kind, and

χ =
(

2
κ3

)1/3 ( 1
2κ3

+ ζ

)
. (3.5)

Now, Bi(χ), grows exponentially as ζ becomes large, and can therefore not be part of
the solution of present interest. Hence p(ζ ) must be of the form B exp(ζ/κ3) Ai(χ), and
choosing B such that p has unit integral then finally gives

p(ζ ) =
(

2
κ3

)1/3

exp

(
1

3κ2
3

+ ζ

κ3

)
Ai(χ). (3.6)

This result was first derived very recently by FKZ, who evaluated the integral (2.2) directly
using a novel change of coordinates. We note that the above derivation represents an
alternative (arguably simpler) way in which it may be derived, newly enabled by the
governing ODE (2.7).

3.3. A property of third- and higher-order solutions
To Nth order, the ODE reads

0 = ζp +
N∑

n=1

(−1)n+1 κn+1

n!
dnp
dζ n . (3.7)

To the best of our knowledge, no analytical solution of this equation has yet been found
for N ≥ 3. However, N linearly independent solutions must exist, since the equation is
linear and of Nth order. Moreover, since the coefficients of p and its derivatives in (3.7)
are all entire (i.e. everywhere analytic) functions in the complex ζ -plane, these linearly
independent solutions must all be entire functions themselves (see e.g. § 3.1 of Bender
& Orszag 1999). This result, which holds for arbitrary, finite N, is remarkable when
considering that the integral (2.2) does not even converge when truncated at orders 4m and
4m + 1 (m being a positive integer), i.e. when the highest even power is evenly divisible
by 4. Thus while it is seemingly not possible to obtain e.g. the third-order distribution by
evaluating the integral (2.2) directly, either analytically or numerically, the ODE approach
provides a novel vehicle for obtaining this distribution.

4. Asymptotic solutions of the ODE in the limit ζ → ∞
In this section, we will solve the ODE (2.7) analytically in the limit of large ζ . To do so,
we make use of the method of dominant balance (see e.g. § 3.4 of Bender & Orszag 1999),
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which assumes that the asymptotic form of the solution is

p(ζ ) ∼ B exp(A(ζ )) (4.1)

as ζ → ∞. Here, A(ζ ) is a function to be determined, and B is a constant. In the following,
we present a detailed derivation to find the form of A(ζ ) for the case where (2.7) is
truncated at second order, and leave the determination of B to § 5. As the method is
conceptually easily generalized to higher order, but involves algebra of rapidly increasing
complexity with each order, we give a less detailed derivation for the third-order case, and
merely present the key points and results for the general order case. Finally, we discuss the
asymptotic behaviour of A(ζ ) in the limit where the nonlinear order becomes large.

4.1. Asymptotic solution to second order
When truncated at second order, (2.7) becomes

0 = ζp + dp
dζ

− κ3

2
d2p
dζ 2 , (4.2)

and on insertion of the asymptotic form (4.1), it turns into the asymptotic relation

ζ ∼ κ3

2

(
dA
dζ

)2

− dA
dζ

+ κ3

2
d2A
dζ 2 (4.3)

after cancellation of factors B exp(A(ζ )). To find the leading behaviour of A(ζ ) when
ζ becomes large, we now assume that one of the three terms on the right-hand side is
much larger than the other two in this limit. If we keep either the term −dA/dζ or the
term (κ3/2) d2A/dζ 2 and solve the resulting asymptotic relation, it is easily seen that the
assumption is violated; in both cases, the term proportional to (dA/dζ )2 will be much
larger than the other two terms. Hence to find the leading behaviour of A(ζ ), we assume

ζ ∼ κ3

2

(
dA
dζ

)2

, (4.4)

which is readily solved to give

A(ζ ) ∼ −2
3

(
2
κ3

)1/2

ζ 3/2 (4.5)

after taking the negative square root. We note that the positive square root in this case
would not make sense, as a PDF must have a decreasing tail. To proceed from here, we
define A1(ζ ) ≡ −(2/3)(2/κ3)

1/2ζ 3/2 and write A(ζ ) = A1(ζ ) + A2(ζ ), with A2 being the
remainder, which is much smaller than A1 when ζ is large. To find the leading behaviour
of A2, we insert the new form of A into (4.3), which gives the asymptotic relation

κ3
dA1

dζ

dA2

dζ
∼ dA1

dζ
− κ3

2

(
dA2

dζ

)2

. (4.6)

We now again assume that one of the terms on the right-hand side is much larger than the
other. It is clear that assuming the second term to be largest leads to A2(ζ ) ∼ −2A1(ζ ),
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Heavy-tailed probability density functions in irregular seas

and this contradicts the assumption that A2 is much smaller than A1. For that reason, we
keep the term dA1/dζ , and upon solving the resulting asymptotic relation, we find that

A2(ζ ) ∼ ζ

κ3
. (4.7)

The next step of the method is to define A2 ≡ ζ/κ3 and write A(ζ ) = A1(ζ ) + A2(ζ ) +
A3(ζ ), with A3 assumed small relative to A1 and A2 in the limit of large ζ . Inserting this
form of A into (4.3) and making assumptions similar to those above then gives

A3(ζ ) ∼ − 2
(2κ3)3/2 ζ 1/2. (4.8)

Doing this once more, now with A(ζ ) = A1(ζ ) + A2(ζ ) + A3(ζ ) + A4(ζ ), yields

A4(ζ ) ∼ −1
4 log(ζ ), (4.9)

where log(·) denotes the natural logarithm. At this stage, we could keep on finding more
terms in the asymptotic expansion of A, but as it turns out, the next term in the series is
proportional to ζ−1/2, and is thus irrelevant for the asymptotic behaviour of p(ζ ), since it
goes to zero in the limit ζ → ∞. We have thus shown that the asymptotic form is

p(ζ ) ∼ B
ζ 1/4 exp

(
−2

3

(
2
κ3

)1/2

ζ 3/2 + 1
κ3

ζ − 2
(2κ3)3/2 ζ 1/2

)
. (4.10)

Note that the present asymptotic solution provides independent confirmation of (4.1) of
FKZ. As also pointed out by FKZ, at second order, the highest-power ζ term in the
exponential has power 3/2. This is less than the power 2 in the exponential of the Gaussian
distribution (3.3), which defines the first-order asymptotics. Additionally, FKZ showed
that the asymptotic forms of the Gram–Charlier series approximations of Longuet-Higgins
(1963) likewise had power 2 on ζ in the exponential. As a result, the second-order FKZ
distribution has an inherent heavy positive tail, as discussed in detail therein.

4.2. Asymptotic solution to third order
To third order, the ODE (2.7) is

0 = ζp + dp
dζ

− κ3

2
d2p
dζ 2 + κ4

6
d3p
dζ 3 . (4.11)

Inserting (4.1) into this equation and cancelling factors of B exp(A(ζ )) yields the
asymptotic relation

ζ ∼ −κ4

6

((
dA
dζ

)3

+ 3
dA
dζ

d2A
dζ 2 + d3A

dζ 3

)
+ κ3

2

((
dA
dζ

)2

+ d2A
dζ 2

)
− dA

dζ
. (4.12)

To find the leading behaviour of A(ζ ), we neglect all but a single term on the right-hand
side. Guessing that the leading behaviour is a constant times ζ α , where α > 1, it is
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clear that the dominant term must be (−κ4/6)(dA/dζ )3. Solving the resulting asymptotic
relation, we find that

A(ζ ) ∼ a1ζ
4/3, a1 = −3

2

(
3

4κ4

)1/3

, (4.13a,b)

in the limit of large ζ . Proceeding as in the previous subsection, one may show that the
full asymptotic form of A(ζ ) is

A(ζ ) ∼ −a0 log(ζ ) + a1ζ
4/3 + a2ζ + a3ζ

2/3 + a4ζ
1/3, (4.14)

where a0 = 1/3, and the remaining coefficients are

a2 = κ3

κ4
, a3 = 32/3(2κ4 − κ2

3 )

2 × 21/3κ
5/3
4

, a4 = −21/3(3κ3κ4 − κ3
3 )

32/3κ
7/3
4

. (4.15a–c)

The final third-order result is thus

p(ζ ) ∼ B
ζ 1/3 exp(a1ζ

4/3 + a2ζ + a3ζ
2/3 + a4ζ

1/3), (4.16)

where the ai coefficients are as given above, and a0 is invoked directly as the power of ζ

in the denominator of the leading factor.
This form (4.16) of the positive tail to third order is new. We note that for sufficiently

large ζ , it will be dominated by the largest power term in the exponential, i.e. a1ζ
4/3, where

it is noted that a1 involves only the kurtosis and no other statistical moments. As the 4/3
power is even less than the 3/2 power dominating the tail for large ζ to second order, this
implies that in cases where third-order effects (i.e. kurtosis) are significant, the positive
tail of the PDF will be even heavier than that at second order. Moreover, we note that the
form of the positive tail is in stark contrast to the third-order Gram–Charlier approximation
derived by Longuet-Higgins (1963), which for large ζ is dominated by the skewness, and
not the excess kurtosis, as shown by FKZ; see their (4.3).

4.3. Asymptotic solution to higher order
Inserting the asymptotic form (4.1) into the general, Nth-order ODE (3.7) leads to the
asymptotic relation

ζ ∼
N∑

n=1

(−1)n κn+1

n!
Dn, (4.17)

after factors B exp(A(ζ )) have been cancelled. Here, Dn is the factor in front of the
exponential function after having differentiated (4.1) n times with respect to ζ , and D1
is therefore simply dA/dζ . For n ≥ 2, Dn is determined by the recurrence relation

Dn = dDn−1

dζ
+ Dn−1

dA
dζ

, (4.18)

from which it follows that Dn must contain the term (dA/dζ )n. If A grows asymptotically
as ζ α , where α > 1, then the only way the asymptotic balance in (4.17) can hold is if
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Dn ∼ (dA/dζ )n, hence from (4.17),

(
dA
dζ

)N

∼ (−1)N N!
κN+1

ζ. (4.19)

Taking the Nth root such that the right-hand side is negative, and solving the resulting
relation for A, then gives the leading behaviour of A, which is

A(ζ ) ∼ − N
N + 1

(
N!

κN+1

)1/N

ζ (N+1)/N . (4.20)

To find the next term in the asymptotic expansion of A, we define A1 to be the right-hand
side of (4.20), and write A(ζ ) = A1(ζ ) + A2(ζ ). Having removed the largest terms of
the asymptotic relation (4.17), we now seek its second largest terms. These turn out
to be the terms N(dA1/dζ )N−1(dA2/dζ ) and (dA1/dζ )N−1, which originate from the
term (dA/dζ )N of DN and the term (dA/dζ )N−1 of DN−1, respectively. Balancing these
terms scaled with the coefficients of the right-hand side sum of (4.17) gives the relation
dA2/dζ ∼ κN/κN+1, which is readily solved to give

A2(ζ ) ∼ κN

κN+1
ζ. (4.21)

At this stage, the number of terms that must be considered in order to find more terms in
the expansion of A quickly increases, and we therefore stop our detailed derivation here.
What one finds by continuing the procedure is that the general asymptotic form of A is

A(ζ ) ∼ −a0 log(ζ ) + a1ζ
(N+1)/N + a2ζ

N/N + a3ζ
(N−1)/N + · · · + aN+1ζ

1/N, (4.22)

i.e. a power series in ζ 1/N plus a logarithmic term. The general, Nth-order asymptotic form
of p is therefore

p(ζ ) ∼ B
ζ a0

exp(a1ζ
(N+1)/N + a2ζ

N/N + a3ζ
(N−1)/N + · · · + aN+1ζ

1/N), (4.23)

where the expressions for the coefficients a0, a1, . . . , aN+1 are listed in table 1 for the
orders N = 2, 3, 4, 5. This result is new, and we note that it implies that the tail of
p(ζ ) is dominated by the highest-order cumulant retained in the approximation, since
the coefficient a1 depends only on κN+1. The first six cumulants, as required up to order
N = 5, are likewise presented in terms of the statistical moments in table 2.

Moreover, we note that the leading power of ζ , i.e. (N + 1)/N, decreases with N, hence
p(ζ ) becomes increasingly heavy tailed with each nonlinear order. In this connection,
an interesting observation is that the leading power approaches unity in the limit of
large N, and one may therefore conjecture that the fully nonlinear tail of p(ζ ) (that is,
when all cumulants are retained) behaves like exp(a1ζ + · · · ) for large ζ . However, one
should be careful in this connection as the coefficients in the series (4.22) may become
arbitrarily large when N is large; for example, using Stirling’s approximation for the
factorial function, one may show that a1 ∼ −N/(e κ

1/N
N+1) in this limit, where e is Euler’s

number. Since κN+1 = O(εN−1), it is expected that a1 grows asymptotically linearly in
magnitude with N, and as such, there is no guarantee that the series (4.22) converges for
the fully nonlinear case.
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Heavy-tailed probability density functions in irregular seas

κ1 κ2 κ3 κ4 κ5 κ6

0 1 S K − 3 Sh − 10S 30 − 15K − 10S2 + Kh

Table 2. The first six cumulants expressed in terms of the skewness S , kurtosis K, hyperskewness Sh ≡ 〈ζ 5〉
and hyperkurtosis Kh ≡ 〈ζ 6〉.

5. Numerical solution of the ODE to yield p(ζ ) to any order

In the previous section, we derived the form of the positive tail of p(ζ ) for general order N,
up to a multiplicative constant B. Combining this result with numerical integration of the
ODE (3.7), p(ζ ) may be determined for all values of ζ . In fact, an algorithm to determine
p(ζ ) as well as its asymptotic tail with the correct value of B is as follows:

(i) Assume a value for B.
(ii) Use the asymptotic tail solution to establish boundary conditions for p(ζ ) and its

first N − 1 derivatives at some large positive ζ = ζmax.
(iii) Solve the ODE numerically, integrating backwards from ζmax to some negative ζmin.
(iv) Compute numerically the integral ∫ ζmax

ζmin

p(ζ ) dζ. (5.1)

(v) Adjust the assumed value for B accordingly, and repeat the procedure until (5.1) is
sufficiently close to unity.

We find that this process may be performed manually without great difficulty, though
it is even more conveniently automated. To hopefully encourage use by others, Matlab
functions automating the process described above are freely provided to third, fourth
and fifth order, as indicated in the supplementary material available at https://doi.org/
10.11583/DTU.24720564. These solutions use Matlab’s zero finder (fzero) to obtain B,
such that the integral (5.1) is exactly equal to unity. Backward integration of the ODE
is performed numerically, utilizing Matlab’s fourth-order Runge–Kutta scheme (ode45),
with built in error control. Utilizing these, the tail (determined analytically, with correct
B) and p(ζ ) (determined numerically) may be obtained to the desired order, requiring only
the necessary cumulants (determined from statistical moments; see again table 2) as input,
in addition to an appropriately chosen range of ζ . From our own testing, the method is
quite robust, as will be demonstrated. (Note that analogous implementations written in
Python are likewise freely provided in the supplementary material.)

Example solutions to third, fourth and fifth order are depicted in figure 1. Parameters
utilized in these examples are as indicated in table 3. We emphasize that these parameters
are made up and not based on any experiment or simulation. However, their magnitudes
are definitely reasonable, as is illustrated e.g. by table 4. Dashed lines depict the analytical
tail solutions, whereas solid lines depict the numerical solutions for the full PDF. It is
seen that in all cases, the asymptotic tail closely matches the full PDF for large ζ . It is
likewise seen that for negative ζ , the numerical solutions eventually turn oscillatory. This
behaviour is similar to the theoretical second-order solution of FKZ based on the Airy
function; see (3.6). The oscillatory part of the solutions (sometimes yielding negative
p(ζ )) is obviously unphysical. In the present cases, they are sometimes even divergent;
see e.g. the exponential growth in oscillation amplitude for ζ < 0 in figures 1(b,c).
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PDF (computed)

Tail (analytical)
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(b)

(a)

(c)

Figure 1. Example solutions depicting numerical p(ζ ) (solid lines) and analytic asymptotic tail solutions
(dashed lines) to (a) third, (b) fourth and (c) fifth order. Parameters utilized are as indicated in table 3.

Therefore, we choose to avoid this unphysical region altogether, and in all subsequent
applications, the oscillatory parts of the solution will be removed. This is easily achieved
simply by replacing the oscillatory part (taken as where ζ is less than the first zero crossing
during the backward integration in ζ ) with zeros after the solution is found, such that this
part of the solution does not contribute to (5.1). Note that this is equivalent to taking ζmin
as equal to the zero closest to ζ = 0, which is our general recommendation for practical
use.
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Heavy-tailed probability density functions in irregular seas

N κ3 κ4 κ5 κ6 ζmin ζmax Figure

3 0.3 0.2 — — −8 8 1(a)
4 0.4 0.3 0.2 — −6 8 1(b)
5 0.5 0.4 0.3 0.2 −6 8 1(c)

Table 3. Summary of parameters utilized in the example PDFs presented in figure 1.

kph ε κ3 κ4 κ5 κ6 Figures Source of data

1.2 0.2057 0.3355 0.190 0.0585 0.0644 2 Madsen & Fuhrman (2012)
0.6 0.0727 0.3974 0.2120 0.1185 0.0816 5 Klahn, Madsen & Fuhrman (2021c)
0.644 0.0507 0.7888 1.194 2.459 5.429 7, 8 Trulsen et al. (2020)

Table 4. Summary of cases considered in the present work.

6. Comparisons

In this section, we will validate the new high-order PDFs through comparisons with those
based on various data sets. As the novelty of the present work begins at third order, we
will focus exclusively on challenging data sets involving highly nonlinear irregular waves
in finite water depth, where the second-order FKZ distribution is not sufficiently accurate.
As discussed in the forthcoming subsections, the data sets to be considered have been
generated through a variety of means, i.e. theoretically, numerically or experimentally.
Results will be shown up to the minimum order required. All cases considered utilize ζmin
equal to the zero crossing closest to ζ = 0, such that the (unphysical) oscillatory part of
the solution is omitted naturally, as described in the previous section.

6.1. Comparison with data from irregular wave theory
As a first means of validation, we will compare against a data set generated from the
multi-directional irregular wave theory of Madsen & Fuhrman (2012), carried out to
second order, as considered previously by FKZ in their figure 9. For the present purpose,
we will compare against the most nonlinear (i.e. challenging) of those considered by FKZ,
from their figure 9(c). The data for this case consist of numerous time series, generated
based on directionally spread irregular waves having characteristic dimensionless depth
kph = 1.2 and resulting characteristic steepness ε = kpHm0/2 = 2kpσ = 0.2057, where
kp is the peak wavenumber, h is the water depth, and Hm0 is the spectral significant wave
height. The irregular waves were generated based on a JONSWAP (Hasselmann 1973)
spectrum

S(ω) = S0

(
ω

ωp

)−5

exp

(
−5

4

(
ω

ωp

)−4
)

γ
exp(−(ω/ωp−1)2/(2σ 2

s ))
s , (6.1)

where ω is the angular frequency, ωp is the peak angular frequency, γs = 3.3, and σs =
0.07 if ω < ωp and 0.09 otherwise. A cutoff frequency ωc = 3ωp is utilized, such that
S(ω > ωc) = 0. The constant S0 is defined such that the first-order spectrum (6.1) satisfies∫ ∞

0
S(ω) dω = σ 2, (6.2)
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MF12, irregular waves
Linear theory (Gaussian)

FKZ, 2nd order
Present, 3rd order
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Figure 2. Comparison of the PDF computed from the second-order directionally spread irregular wave theory
of Madsen & Fuhrman (2012, referred to as MF12) (circles, with error bars) with linear theory (blue dotted
line), second-order theory of FKZ (green dashed line), and the present third-order solution (solid line).

with second-order components added afterwards. The waves are directionally spread based
on

D(θ) =
⎧⎨
⎩

Γ (ND/2 + 1)√
π(Γ (ND + 1)/2)

cosND(θ) if |θ | ≤ π

2
,

0 otherwise,
(6.3)

where Γ (·) denotes the gamma function, and ND = 50 is the directional spreading
parameter, which governs the width of the directional spectrum. Other details are as
described in § 6.1 of FKZ. The data set has e.g. S = 0.3355 and K = 3.190, leading to
the cumulants listed in table 4 (top row).

Comparison of the data-based PDF with those based on theory are depicted in figure 2.
The numerically determined (third-order) PDF has utilized ζmax = 8. The PDF from the
data has utilized bin size Δζ = 0.2. Error bars are estimated as ±p(ζ )/

√
Nb, where Nb

is the number of samples in each bin, following Onorato et al. (2009). It is clear from
this figure that the case is sufficiently nonlinear that neither the first-order (Gaussian,
blue dotted line) nor second-order (FKZ, green dashed line) distribution matches e.g. the
probability density of the extreme positive tail. It is, however, very clear from figure 2 that
the present third-order result (solid line) matches the extreme tail, and the PDF in general,
very well for, say, ζ > −3. Results utilizing the present fourth-order PDF essentially
overlay that at third-order, and are thus not shown for brevity. This case confirms accuracy
of the new PDFs developed in the present work to third order in nonlinearity.

It should be mentioned that comparison utilizing a third-order statistical distribution
with data generated from a second-order irregular wave theory is legitimate. This is
because the surface elevations stemming from second-order Stokes-type wave theories do
contain kurtosis, such that third-order effects from the statistical perspective are present.
The comparison made in figure 2 thus demonstrates that the under-prediction of the
positive tail by the second-order FKZ distribution is due to third-order effects associated
with kurtosis, confirming the speculation of FKZ.
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–2

0

2
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ζ

Figure 3. Snapshot of the surface elevation in the vicinity of the largest surface elevation generated by the
fully nonlinear model of Klahn et al. (2021c). The horizontal axes are to scale, whereas the vertical axis is
exaggerated by a factor of two. The horizontal area shown is 4λp × 4λp.

6.2. Comparison with data from a fully nonlinear wave model
As a second means of comparison, we will consider data generated by the fully nonlinear,
spectrally accurate wave model of Klahn et al. (2021c), as previously utilized and validated
in e.g. Klahn et al. (2021b) and Klahn, Madsen & Fuhrman (2021a), and FKZ. The
comparisons with data generated from this model within FKZ utilized directionally spread
irregular wave fields with 1.0 ≤ kph ≤ ∞, and all were quite closely matched by their
second-order distribution. Thus for the present purpose we have performed additional
simulations with this model in reduced water depth, to generate an even more nonlinear
and challenging data set. The simulations are again based on a JONSWAP spectrum,
utilizing kph = 0.6 and ND = 2. Simulations have been performed on large 2048 × 2048
horizontal grids, with 11 points distributed in the vertical direction. Following Klahn
et al. (2021b), the computational domain has horizontal lengths Lx = 100λp and Ly =
100(1 + ND)1/2λp, where λp = 2π/kp is the peak wavelength, which provides similar
resolution in both horizontal directions. Simulations are initialized with linearized initial
conditions, with nonlinear terms ramped to fully on over a duration 10Tp, where Tp is the
peak wave period, utilizing time step Δt = Tp/50. Simulations have been considered up to
time 100Tp. Five different simulations have been performed, each of which requires several
months on a single processor. We have found that in this case, the free surface statistics
become reasonably stable for t > 20Tp, and results have been sampled at t = 50Tp for the
present purposes. Note that the characteristic Ursell number in this case corresponds to
Ur = Hm0λ

2
p/h3 = 2(2π)2ε/(kph)3 ≈ 26.6, which indicates that the case is indeed quite

nonlinear for an irregular wave field. Collectively, the simulations result in a steepness
ε = 2kpσ = 0.0727, and the statistical moments S = 0.3974, K = 3.212, hyperskewness
Sh = 4.092 and hyperkurtosis Kh = 19.84, leading to the cumulants listed in table 4
(second row). An example of a zoomed-in region of the computed free surface (spanning
4λp × 4λp) containing multiple rogue waves is depicted in figure 3. A longer space series
spanning 100λp along the line containing the largest crest elevation is likewise provided in
figure 4.

The resulting PDF from this data set is depicted in figure 5 (circles, utilizing bin size
and error bars calculated as before). For comparison, also shown are the PDFs from
linear theory (Gaussian) and the second-order FKZ distribution, as well as the present
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Figure 4. Example free surface elevation along the line containing the largest crest generated by the fully
nonlinear wave model. The inset depicts a zoomed-in region immediately surrounding the largest crest. The
variable xp denotes the x-position of the largest value of ζ .
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Fully nonlinear simulation

Linear theory (Gaussian)
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Present, 3rd order
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Figure 5. Comparison of the PDF computed from the fully nonlinear model (circles, with error bars) with
linear theory (blue dotted line), second-order theory of FKZ (green dashed line), and the present third-order
(red dash-dotted line) and fourth-order solutions (solid line).

distributions carried out to third and fourth order (computed utilizing ζmax = 9). It is
seen that while the second-order FKZ distribution is a significant improvement over
the Gaussian, it fails to capture the extreme positive tail adequately. Conversely, the
extension to third or even fourth order, as newly enabled by the present work, captures
the positive tail much more convincingly, such that they could seemingly be utilized
reliably to predict the probability of e.g. extreme wave crests arising from rogue waves.
Note that there are only minor differences between the present third- and fourth-order
results, indicating convergence at fourth order. We have confirmed that fifth-order results
are visually indistinguishable from those at fourth order, and are thus not shown for brevity.
This case can be taken as validation of the present method for determining the PDF up to
fourth order.
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Figure 6. Example time series involving the largest crests (occurring at time t = tp) from experiments of
Trulsen et al. (2020). The inset depicts the region immediately surrounding the largest crest.

6.3. Comparison with experimental data
As a final means of validation, we will compare with measured results of Trulsen
et al. (2020), who performed wave flume experiments of long-crested irregular waves
propagating over a trapezoidal bar. These experiments resulted in extremely nonlinear
surface elevations on top of the bar, and hence present an appropriately challenging case
to compare with the higher-order PDFs developed in the present work. For the present
purpose, we will focus exclusively on their run 3 data. This case utilized JONSWAP
irregular waves with peak period Tp = 1.1 s and significant wave height Hm0 = 2.5 cm at
the wave maker (water depth h = 53 cm). The waves were shoaled to the top of the bar with
water depth h = 11 cm, again resulting locally in an extremely nonlinear wave field. Here,
we will focus exclusively on the surface elevation data from the most nonlinear position
x = 2.2 m; see e.g. figures 4 and 5 of Trulsen et al. (2020). The measured surface elevation
time series at this position has S = 0.7888, K = 4.193, Sh = 10.35 and Kh = 44.56.
These lead to the cumulants listed in table 4 (final row), which are seen to be extremely
large relative to the cases considered previously. An example time series segment spanning
100Tp is provided in figure 6, which is seen to contain several rogue waves.

The PDF from this data set is compared with the present higher-order (third to
fifth order, computed utilizing ζmax = 9) distributions in figure 7. Also included for
completeness are the first-order Gaussian and second-order FKZ distributions. It is clear
in this case that the surface elevation is strongly non-Gaussian. Even though the surface
elevation in this case stems from a non-uniform water depth, the PDF is predicted quite
reasonably by both the present new fourth-order and (especially) fifth-order distributions.
This is especially true for the heavy positive tail, which is likely of most practical interest
e.g. for predicting the exceedance probability of extreme wave crests.

Let us utilize the present case to emphasize the potential importance of the higher-order
PDFs made possible in the present work, regarding e.g. the probability of rogue waves with
surface elevation exceeding a given threshold ζ0. The exceedance probability is defined by

P(ζ ≥ ζ0) =
∫ ∞

ζ0

p(ζ ) dζ. (6.4)

Results are shown in table 5 for several exceedance thresholds, ranging from ζ0 = 3
to ζ0 = 6, i.e. surface elevations exceeding 3–6 standard deviations above the mean.
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Trulsen et al. (2020, Run 3)
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Figure 7. Comparison of the PDF from the experiments of Trulsen et al. (2020) (circles with error bars) with
linear theory (blue dotted line) and second-order FKZ distribution (green dashed line), as well as the present
third- (red dash-dotted line), fourth- and fifth-order (solid lines) solutions.

Order P(ζ ≥ 3) P(ζ ≥ 4) P(ζ ≥ 5) P(ζ ≥ 6)

1 0.00135 3.17 × 10−5 2.87 × 10−7 9.87 × 10−10

2 0.00624 7.03 × 10−4 5.70 × 10−5 3.39 × 10−6

3 0.00805 0.00130 1.72 × 10−4 1.91 × 10−5

4 0.00841 0.00156 2.51 × 10−4 3.53 × 10−5

5 0.00828 0.00163 2.83 × 10−4 4.43 × 10−5

Table 5. Exceedance probabilities for the case considered of Trulsen et al. (2020).

Convergence to the precision shown has been confirmed by varying ζmax. For the sake
of discussion, we will focus on the results with threshold ζ0 = 6. It is seen that the present
fifth-order result predicts a probability of rogue waves with surface elevation exceeding
6σ that is more than 4000 times greater than would be expected from linear theory, and
12.8 times greater than would be expected based on the second-order theory of FKZ. Only
starting at third order is the exceedance probability the correct order of magnitude, which
is still approximately half that predicted at fifth order.

We finally compare the present results for this case with other previously proposed
nonlinear distributions in figure 8. This figure specifically compares the data of
Trulsen et al. (2020) and the present fifth-order PDF with (i) the third-order PDF of
Longuet-Higgins (1963),

p(ζ ) = 1√
2π

exp
(

−ζ 2

2

)[
1 + S

6
H3 +

{K − 3
24

H4 + S2

72
H6

}]
, (6.5)
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Figure 8. Comparison of the PDF from the experiments of Trulsen et al. (2020) (circles with error bars) with
the present fifth-order solution (solid line), the Tayfun (1980) second-order distribution (6.7) (red dashed line)
and the Longuet-Higgins (1963, referred to as LH63) third-order distribution (6.5) (blue dotted line).

where

H3 = ζ 3 − 3ζ, (6.6a)

H4 = ζ 4 − 6ζ 2 + 3, (6.6b)

H6 = ζ 6 − 15ζ 4 + 45ζ 2 − 15, (6.6c)

and (ii) the second-order Tayfun (1980) distribution,

p(ζ ) = 2
πε

∫ ∞

0

(
exp

(
−2x2 + 2(1 − C)2

ε2

)
+ exp

(
−2x2 + 2(1 + C)2

ε2

))
dx
C

, (6.7)

where

C =
√

1 + εζ + x2. (6.8)

Note that the Tayfun (1980) distribution assumes both narrow-bandedness of the spectrum
as well as unidirectionality of the wave field. Note also that the integral in (6.7)
is computed numerically, rather than utilizing e.g. the asymptotic approximation of
Socquet-Juglard et al. (2005). Figure 8 clearly demonstrates that these previously
proposed theoretical PDFs do not accurately describe the heavy positive tail inherent
in this data set, which is again quite well predicted by the present fifth-order theory.
It is emphasized that the present PDF requires only the relevant statistical moments
(alternatively, the relevant cumulants) as input. Accurate reproduction of this challenging
PDF has previously required detailed numerical simulations with fully nonlinear wave
models; see e.g. figure 13(c) of Zhang & Benoit (2021).

7. Conclusions

In this work, we have revisited the probability density function (PDF) for the free
surface elevation in nonlinear irregular seas, based on the integral found originally
by Longuet-Higgins (1963), stemming from the cumulant generating function. A new
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ordinary differential equation (ODE) has been derived, which governs this PDF to any
desired order in nonlinearity, presented as (2.7). We emphasize that this ODE is free of
any assumptions regarding narrow-bandedness of the spectrum or the directionality of the
wave field. It has been confirmed that exact solutions of this ODE lead to the Gaussian
distribution at first order, and the recently found Fuhrman et al. (2023) distribution at
second order.

Asymptotic solutions of this governing ODE have been derived analytically in the
limit of large surface elevation, making use of the method of dominant balance. Up to
a multiplicative constant, these provide the theoretical form of the positive tail of the PDF,
thus newly clarifying how high-order cumulants (involving statistical moments such as
the kurtosis, hyperskewness and hyperkurtosis) theoretically govern the positive tail. It
is shown that the positive tail gets heavier at each successive order, implying increased
probability of large surface elevations typical of rogue waves.

The asymptotic solutions have been utilized to generate boundary conditions, enabling
backward numerical integration of the governing ODE. By ensuring a unit integral, this
enables determination of the multiplicative constant, and hence the full theoretical PDF.
The present work thus enables novel determination of the PDF to third order and above.
Results up to fifth order have been derived explicitly, but the methodology can be extended
trivially to any desired order in nonlinearity.

The new higher-order PDFs have been compared against those from data sets generated
from irregular wave theory and fully nonlinear numerical simulations, as well as laboratory
experiments. Focus has been exclusively on highly nonlinear cases in finite water depth,
where second order is demonstrably inadequate. Generally excellent results have been
found, even in the most challenging cases, confirming accuracy of the new high-order
PDFs. In such highly nonlinear circumstances, the new PDFs have been shown to be far
superior to previously existing theoretical methods.

Matlab and Python functions returning the new PDFs up to fifth order in nonlinearity
are freely provided in the supplementary material. The authors sincerely hope that these
may be useful for others wishing to utilize the new high-order PDFs in practice.

Supplementary material. Supplementary material for the present paper is available at https://doi.org/10.
11583/DTU.24720564. This includes both Matlab and Python functions for computing PDFs (and tails) up to
fifth order, as described in § 5. Additionally, the computed surface elevation data from § 6.2 are provided at
https://doi.org/10.11583/DTU.25486948.
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