
Proceedings of the Edinburgh Mathematical Society (1991) 34, 271-293 (

HILBERT SPACES OF TEMPERED DISTRIBUTIONS, HERMITE
EXPANSIONS AND SEQUENCE SPACES

by RAINER H. PICARD

(Received 9th August 1989)

Although it is well-known that tempered distributions on R" can be expanded into series of Hermite functions,
it does not seem to be known, however, that expansions of this type are accessible through the elementary
concept of orthonormal expansions in Hilbert space. This approach is developed here complementing previous
work on a Hilbert space approach to distributions. The basis of the development is the observation that the
Hermite functions are a complete orthogonal set in each space of a certain scale of Sobolev type Hilbert
spaces associated with the family of differential operators defined by

(®,<D)(x) = (27ii)~lexp(jtxx)^-(exp(-7ixx)<I>(x)), k=l,2 n, xeR".

Here <t> denotes a smooth function with compact support. The setting is first developed in the one-dimensional
case. By use of the usual multi-index notation this can be extended to the higher-dimensional case. As
applications various imbedding results are derived. The paper concludes with a characterization of tempered
distributions by convergent Hermite expansions.

1980 Mathematics subject classification (1985 Revision): 46A12, 46E35, 42C10, 46FO5.

Introduction

In a previous study, [7], it has been demonstrated that distributions can be discussed
comfortably in a Sobolev space setting. Because of the simplicity and richness of Hilbert
space as a functional analytical concept it appears to facilitate the approach to
distributions. This intention is common with the so-called sequential approach to
distributions as developed in [3]. In fact, the above mentioned ideas complement the
sequential approach by providing further insight into the structure of distributions. The
basis of the investigation of distributions in [6,7] is the observation that tempered
distributions can be considered as elements of certain Sobolev type spaces. These are
part of a chain of Hilbert spaces of which the inductive limit can be identified as the
space of tempered distributions. It has been noted, [7], that Hermite functions are
orthogonal in each space of the chain. The present investigation is initiated by this
observation. There is a close relationship with the latter parts of [3, Chapter 8] and
later, which rely heavily on Hermite expansions. We shall, however, not have to make
use of the extended Kothe space theory, although interesting in its own right, developed
in [3], but shall rather employ the elementary ideas of expansions with respect to

271

https://doi.org/10.1017/S0013091500007173 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500007173


272 R. H. PICARD

orthonormal systems in a Hilbert space. The Hilbert space environment also provides a
tight control of the relationship between elements of a Hilbert space and the sequence
space of its coefficients with respect to a complete orthonormal system by an explicit
unitary mapping (Parseval's equality). As a general reference for the functional
analytical concepts used see e.g. [1,2], [4]. As a general reference for more classical
material on the Fourier transform we mention [8].

1. Sobolev type Hilbert spaces of tempered distributions

We shall define a chain of Sobolev type Hilbert spaces based not on the usual
concept of a derivative but on a modified differentiation operator related to the
tempered derivative, (see [3, p. 161]. As a brief introduction into chains of Hilbert
spaces see [5, Chapter VI]). For convenience we shall initially consider only the one-
dimensional case and comment on the higher-dimensional analogues in a later section.
In the definition of these Sobolev type spaces the Gaussian distribution function

is involved. We shall follow basically the approach, outlined in [6, 1.1.2.2].
We define for <I>6(?0O(IR) ((^(R) denotes the set of arbitrarily often continuously

differentiable (complex-valued) functions with compact support in U),

for tPe^JIR). (1.1)

Here

-HVlM), xeU,

for

where the "d" indicates ordinary differentiation with respect to the argument. Denoting
the Fourier transform by !F with the convention that

= j e-nto<i>(t) dt for all 0> e CX(U),
R

we have that !F is a spectral representation for the operator D, where D denotes the
closure of D, i.e.

(x) = x( J^O) (x), x € U.
If we represent the self-adjoint extension of the "rnultiplication-by-the-argument' opera-
tor in L2(U) by m, then we write this as

on
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Making use of the knowledge that the inverse Fourier transform $F* is very similar to
SF we also have

^ on Cm{U).

Noting that

@> = D + ion,

this implies

i3F9 = 33F on djR). (1.2)

Clearly, the adjoint 3* of 3 satisfies

The operator 3* is known as the tempered derivative (see [3, p. 161]).
To develop a proper setting for the operator 3 we start with the observation that for

<& 6(^(53) we have

f ||»eO||2 + 2 Re(i(D<&, »?O)),

= ||£>cD||2 + ||»*<I>||2 - - Re (d<&, *n<b\
Tt

n J 2 dt

(1.13)

where ||-|| denotes the L2(R)-norm induced by the L2{U) inner product (•, •) (assumed to
be linear in the second factor). We proceed by defining Sobolev type spaces £fk by
completing C^U) with respect to the norm ||• ||̂ -.jt induced by the inner product

(;-)y.k = ($k-,9k-). (1.4)

Here k can be any non-negative integer, i.e. /ceN = {0,1,2,...), and by convention we
have ©°$ = $ for <j>eL2(U). In particular we have

yo=L2(n). (1.5)

We note that (see [6, p. 27])
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274 R. H. PICARD

where £(„,„,) denotes the domain of »*. We shall now define the Hermite functions Hs by

Hs = 3sy, ssN. (1.6)

As can be easily seen by induction

Hs=(2ifPsy, (1.7)

where Ps is a polynomial of degree s with leading coefficient 1. We note that

<|>*y = 0. (1.8)

The connection between the functions Hs and the Hermite polynomials 3^s or
alternative Hermite polynomials 3tifes is

Y exp {x

and

The operators ® and ̂ * satisfy the following commutator relation

®*®-9®* = n-i on <f2. (1.9)

From (1.2), (1.8) and (1.9) we obtain our first lemma.

Lemma 1.1. We have

r,, (l.io)

and

s = {-ifHs, ®*Hs+1=(s+l)n-lHs, $HM = H,+ l, (1.11)

for all k,s e N.

Proof. The first equality of (1.11) is an immediate consequence of (1.2). The last
equality in (1.11) follows directly from the definition of Hs. To see the remaining
equality we only have to make use of (1.8) and (1.9). By induction we obtain
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HILBERT SPACES 275

7c-1^Y (1.12)

Indeed,

where the induction hypothesis has been used for the third equality sign. Equality (1.10)
now follows by another induction with respect to k from (1.9) and (1.12).

•
Remark 1. Noting that yeS?k for all keN we see that the last lemma shows that the

Hermite functions are eigenfunctions of the L2(R)-selfadjoint operators (3)*)s@s for any
SGN, and also for the Fourier transform ^:L2(R)->L2(R). Moreover, we know that
(Hs)seN is complete in L2(U).

From the completeness of (Hs)seN in L2(R) we obtain its completeness in Sfk, fceN.

Lemma 1.2. Let p, meN and p^m. Then we have that the Hilbert space !7m is
continuously imbedded into £fp, i.e. £Pm c+ Sft. In particular, we have

| |4>||J,,p^(27tr-' ' | |(p||^m for ®eym. (1.13)

The family (Hs)seN is complete and orthogonal in 6^kfor any keN. We have

\\Hs\\%,k = 2-1/2(k + s)\n-{k+s\ • (1.14)

for s,ksM.

Proof. The imbedding result follows by induction, [6, Lemma 1.7]. We have

= \\D®k<b\\2 + \\*!t®k<b\\2 + Y \\®k<S>f. (1.15)

Thus the continuous imbedding is clear by induction. The orthogonality of {Hs)seN in
follows by a similarly elementary calculation. Let s g t , s,teN, then
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276 R. H. PICARD

=((&*)'-%®*)s+ky,y),

where the last equality is a consequence of Lemma 1.1. By (1.8) the orthogonality now
follows and for s = t using

we also get (1.14). To see completeness let us assume there is an fe£fk, keN fixed, such
that

(f,Hs)^,k=0 for all seN.

Then we have to show that / can only be the zero element. We have

(/, Hs)y,k = ( $ 7 &HM) = (f, {®*)k®kHs)

~l^{f'HS)- {U6)

From (1.16) we see that indeed / = 0 now follows from the completeness of the Hermite
functions in L2(U). •

We are now ready to establish the corresponding expansions with respect to (Hs)seN.
For this we normalize (Hs)seN for each particular Sfk, we define in accordance with
Lemma 1.1

(1.17)

for s,keN.
Note in particular, that

(1.18)
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For any fe£fk we have now an expansion w.r.t. the orthonormal system

/= I

277

S E N

such that

seN

Since, however, ^ k is continuously imbedded into Sfk-j for j=0,l,2,...,k, we also have
expansions in these other spaces for feSfk. We shall now establish the relationship
between the respective coefficients.

Lemma 1.3. For the coefficient <x{(f), seN, j — 0,1,2,...,k, of a given element
we have the following relationship

Proof. The result follows straightforwardly. We have

= 21 / 47tu + s ) / 2 /N / ( ;

, f)

(1.20)

D

Defining now sequence Hilbert spaces ok as the completion of eventually vanishing
sequences (cts)seN (i.e. a ,=0 for all sufficiently large s) relative to the norm ||"||B,t induced
by the inner product
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278 R. H. PICARD

seN

we can formulate our first theorem. For convenience we shall assume from now on that
<xs = 0 for s < 0.

Theorem 1. The spaces £fk and ck are unitarily equivalent. The unitary mapping, <&
between them is given by

(1.21)
/ - ( ( •*? , / ) ) , = («?(/)),•

In particular, we have

f)\\ (1.22)

for all fe^k,keN. The inverse <%* of<& is given by

<y*:<>k-+Sfk

(1.23)

« = ( « . ) . - 1 «.^.°.
selM

The operations @, & and their adjoints are transferred by %/ to corresponding operations
inok,ksN. We have for all ae[Jk^iok

v = (7t-1 / 2
N/7+TaJ + 1)s ) (1.24)

and

<&3F<&*a = ({-i)X)s, <&S?*<&*a = {i%)s, (1.25)

for all ae\JkeN<)k.

Proof. The mapping <& associates with any / e Sfk its sequence of coefficients in the
expansion of / with respect to (JV°)S in £f0. That <& is an isometry should be clear
according to Lemma 1.3. To see that 9 is also onto we notice that ok is obviously
continuously imbedded in o0, in fact,

||a||<,-O^7r*/2||a||<;-k for all aeak, (1.26)

so that f:=Y,seNas^'s is a well-defined element in S^0 = L2{U) with
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HILBERT SPACES 279

Since aeok we also have by the isometry property of <& that Y.se\as^° converges in Sfk.
The limit in £fk must coincide with / by the continuity of the imbedding of Sfk in L2(U),
i . e . / e ^ .

This proves that <& is onto and that <&* has the form (1.23). To establish the transfer
rules (1.24), (1.25) we note that by (1.18)

SEN SEN

and

I I J
SEN SEN

Equalities (1.25) follow immediately from (1.11):

SEN SEN SEN SEN

Remark 2. It is interesting to note that <3f is actually independent of keN, a fact
that has already been expressed by not indicating to what domain <3f is applied. So, we
may consider 19 as acting on Sfa and the criterion for / being in Sfk is if <3/f is "a
sequence of coefficients that is bounded in the norm of ok.

We shall now extend our considerations to the space 5^_t of distributions over £fk

equipped with the usual functional norm

_fc:= sup

for ge£/'_k, ksH. The Riesz representation theorem yields the existence of an isometric
isomorphism

with f{<t>)={Rkf,<t>)<r,k for all (f>eSfk, fe£f-k. Rk can be used to introduce a Hilbert
space structure in Sf_k by letting

(1-27)

Thus Rk becomes a unitary map between y _ t and £fk. In particular,

'.*= SUP irfn—'= SUP
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280 R. H. PICARD

Since Ro is the identity it seems suggestive to introduce as a notation

(/,</>)•• = fit), (1.28)
and

(4>,f)- = (f,<t>) for feSf.k, <t>eSPk. (1.29)

We can now extend the meaning of

initially defined for fee M to negative indices in the usual way. Let

for fe£f_k and all

and all
(1.30)

", «): = (/, #•*<&) for / e ^ _ t and all

for / e y _ t and all

for keN. As an immediate consequence of these definitions we obtain by duality
arguments the following extension of Lemma 1.2.

Lemma 1.4. Let p,meZ and p^m. Then we have that the Hilbert space Sfm is
continuously imbedded into £fp, i.e. £fm c* Sfp. In particular, we have

for <De^m (1.31)

The family (Jfk
s)seN, with jek

s = nk~ 2
>/s!/(|fc| + s)!I|BW.#'J> is complete and orthonormal in

£fk for any k e Z. We have in particular

sin1*' J ' ( }

for seN, keZ. For fceN the Riesz map Rk:^k-^S^k is the inverse

Proof. We shall only indicate the reasoning since all statements follow by standard
duality arguments. To see (1.31) we may w.l.o.g. assume that m^O and argue as follows.
Let ^ e ^ , then by using Lemma 1.2 ( — p ^ - m ^

,= sup J ^ U ( 2 , ) - - sup
\\<P\\

For the remainder of the Lemma we observe that by Lemma 1.1 and the above
definitions (fceN)
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(k + s)\

for all 0e €„($%), and therefore

From this we obtain immediately (1.32) as well as the completeness and orthonormality
statement. The last statement of the lemma is clear from the following sequence of
equalities utilizing the above definitions and has been included for later reference:

(/, <P) = (Rkf, <t>)y.k = [&RJ, ®k4>) = ((0*)*®%/, 0). D

The mapping <3t can now also be extended in a natural way to distributions by
associating

f-*ii^lf))s- (1-33)

where now k can be any integer, i.e. k e Z. We still have to determine a suitable sequence
space to maintain the isometric character of <&. Using the Riesz map we see that by
repeated application of (1.18) (fcel̂ J)

from which it follows that {{JP°,f))s is a sequence coming from an element in S?-k iff

* £ ((s + ky./siy'K^JfKoo. (1.34)
seN

Moreover, we have

SEN 5EN

= \\f\\y.-k. (1-35)
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for all fe£f_k. This suggests the definition of o-k as the completion of the linear space
of all eventually vanishing sequences a=(as)s with respect to the norm ||-||a, _t induced
by the inner product

Thus we obtain that the statements of Theorem 1 carry over to the case of general k e Z.

Theorem 2. The spaces £fk and ok are unitarily equivalent for arbitrary keZ. The
unitary mapping <& between them is given by

(1.36)

In particular, we have

- - • " •- ff, (1.37)

for all feSfk,keZ. The inverse <&* of W is given by

(1.38)

seN

The operations <&, & and their adjoints are transferred by <3I to corresponding operations
in ak, keZ. We have

s/s+Aas + 1)s, (1.39)

s)s, (1-40)

and in particular

((^Ql\ (1.41)3W<x n (

for all cce\JkeZ<ik. For a.eo_k, keN, we have
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Proof. The first part of the theorem is clear from the previous considerations leading
to (1.34), (1.35). It remains to establish (1.39)—(1-41) for keZ'. Letting / =

. , we observe that

Therefore,

and similarly for 2*. This proves (1.39). Because of the similarity of the proof we may
now leave (1.40) to the proverbial interested reader. Equations (1.41) follow directly
from (1.10) and the fact that Rk is the inverse of (2*)k2k (Lemma 1.4). •

To illustrate the use of the above findings it might be entertaining to consider a few
examples.

1. The exponential function u(x) = e\p(2nizx) y(x), zeU.
We notice that weL2(IR). In calculating the coefficients of the expansion we obtain

°, u) = 2 1 / V / 7 v / ^ s y , u) = 21/V/2/v
/s!(y, (@*)su)

= 2ltAT?l2ls/7\{y, yD° exp (2niZ •))

l z V , exp {2niz •)).

The term (y2,exp(27riz-)) is apparently the Fourier transform of y2 evaluated at — z, i.e.
2"1/2exp(-7rz2/2). Thus,

(•#?,«) = 2 - w V / 2 A/s ! zs exp ( - TCZ2/2),

and therefore

w = 2-1/4exp(-7tz2/2) f

= exp(-;Iz
2/2) | (nzY/s\H,, (1.42)

convergence being initially in £f0. Since, however, also

| |
j=0 s=O
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284 R. H. PICARD

for any keZ, we see that in fact uef}JeZSPj and convergence of (1.42) is in any £fk, keZ.

2. The Dirac <5 distribution.
The Dirac 5 distribution is defined by (d,<f>) = <p(0), ( ^ e ^ (Note that any 0 e ^ , is

continuous by the Sobolev imbedding theorem, see e.g. Theorem 4 below). Therefore its
expansion with respect to Hermite functions is given by

<5= Z *
s=0 s=0

Since 22 = @* + 2ini2 we obtain the following recursion formula for Hs:

tfs+2=—Ht + 2UeH1+1. (1.43)
71

In particular at the origin we obtain

tfs+2(0)=—tfs(0). (1.44)

71

Noting that H^O) = 0, Ho(0) = 1, we have

#2j+1(0)=0, ; eN,

y 1 , jelM, (1.45)

Thus, we see that

6 = 21'2i(n/2y±H2J,

compare [3, p. 191].

3. The sampling distribution IE.
The sampling distribution IH is given by

(111,0)= Z <Hj) f°r
 0G5^3, see [6, p. 45]).

JeZ

Since in is reproduced by the Fourier transform ([6, p. 85]), i.e.
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we know already by (1.37) that

= 0 for r = l,2,3
JsZ

Since Hs is odd for s odd and even for s even, we are (using (1.17)) led to the interesting
relation

or

p ^ (1.46)
j g Z+ Z(ZS+1J!

The remaining coefficients of III are given by the obviously converging series expression

JeZ

Using the knowledge that tempered distributions are in fact elements of \Jkez&k> see
[7], the last example leads to the more general question: Which tempered distributions
are reproduced by the Fourier transform, i.e. are self-reciprocal, [8]? The above
discussion provides a complete answer to this question in terms of Hermite expansions.
In fact, we see that such distributions have to be expandable with respect to Hermite
functions of order 4j, jeN.

Remark 3. Another way of stating the last observation is that the range of the
orthogonal projection 2"1 ( l + ^ s y m , with sym = 2~1 (1+J*2), i.e. the nullspace of
(J5"- 1) is spanned by Hermite functions of order 4/, jeN. The characterization to be in
the range of 2~l(\ + J^sym is the one used in [8]. Similar results hold of course for the
other 3 eigenvalues of the Fourier transform. In fact, we have that !F has the spectral
decomposition

where P l = 2"1(l+i r )sym, P_,. = 2-1(l+J5 ') (1-sym), P _ , = 2 - 1 ( l - ^ ) s y m ,
2"1(1+Jr) (1-sym) are (L2(R)-orthogonal) projections on N(^-l),
N{3^ +1), N(^ — i), respectively, adding up to the identity. Moreover, it is,
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- 1) = span {3^\s = 4j, j e

i) = span {tf °\s= 4 /+1 , ;e I

- i) = span {jf s° \s = 4/ + 3 , ; e IVi},

where the closure is to be taken in the sense of the underlying Sobolev type space (as
introduced above) or in the sense of Sf = f)keZSfk or &" = [jkeZS^k. Note that the
projections are indeed acting in yk, fceZ. Since {<2)*)S9)S commutes with the Fourier
transform J*\ it can be seen that orthogonality is also preserved with respect to all these
spaces.

We shall conclude this presentation by a brief discussion of the generalization to
higher dimensions.

2. Extension to the higher-dimensional case

The results of the previous section can be easily extended to the higher-dimensional
case by adopting a suitable multi-index and multi-argument notation. The tempered
derivative and its adjoint have now to be interpreted as partial derivatives.

The Gaussian distribution function now goes over into

y(x) = e~nx\ xeU", n a fixed positive integer,

where x2 = xx in the sense of the Cartesian inner product of W.
For 3>e(?00(R")(d'00(IR

11) denotes the set of arbitrarily often continuously differentiable
(complex-valued) functions with compact support in W) we define now

&k<S>: = (y-lDky)<b for j)

Here

y-l(x): = l/y(x), xeW,

Dk® = (2ni)-1dk® for Oed1
00(R

n),

where the "dk" indicates ordinary partial differentiation with respect to the Acth
argument. Denoting the Fourier transform again by !F with the convention that

(JMD)(X)= J e-
2l"'x'<D(t)dt for all QeCjW),

we have that $F is a spectral representation for the family of commuting operators
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(Dk)k=l„, where Dk denotes the closure of Dk. Denoting the self-adjoint extension of
the "multiplication-by-the fcth-argument" operator by mk we may express this by

on

The relationship between $F and ©, ^* carry over almost literally from the one-
dimensional case. The announced multi-index notation is introduced by letting

and

where s = (s1,s2,...,sn)eftJn and x=(x,,x2,...,xn)elRn. In the following we also shall
make use of the following multi-index conventions:

s^t iff sk^tk for k=l,2,...,n.

= r iff sk + tk = rk for k= l,2,...,n, s,teZ",

st = r iff sktk = rk for k=l,2,...,n, s,teZ", (2.1)

ct — c | p I p 1 C' — c ' l o'2 p'n
i . — i i . » 2 . . . . i n . , A — i j » 2 . . . i n ,

l/s! = l/s!ls2!....l/sB! for seW.teZ",

and
n

Zs= X sk for seZ", (2.2)

sgn(s)=(sgn (sj , sgn (s2),..., sgn (sj). (2.4)

To simplify formulae we shall write as for aLs = a"a"...aSn, and use occasionally 0, /
meaning the multi-index (0,0,..., 0) and (1,1,..., 1), respectively.

We proceed by defining Sobolev type spaces Sf, for seZ" as the tensor product
Hilbert space
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with inner product (•, -)y%, induced by the product of the inner products of the factor
spaces. The corresponding norm will be denoted by | | | | i - , s . The transition to these
spaces lead to a straightforward generalization of the previous considerations. In
particular, if s ̂  0 then we have

(-, •)<,,,=(&;&•)•

We shall also consider Hilbert spaces Sfk, k e Z, defined by

"̂ fc = ( I ^sgn(t)s' k££.,
Is=|k|

with norm ||||^,ic induced by the inner product

('iJ^.k— Z-i ( ' ' ')y,sgn(k)s- (2-5)
Zs=\k\

In particular we have

^ 0 = ^ = L2(R"). (2.6)

The next lemma summarizes some of the analogues to the results in the previous
section:

Lemma 2.1. Let p, meZ (or p, mei") and p^m then we have that ifm<^,£^p. In
particular, we have

\\<t^,p^(2nr-'\\<b^m for <De<C (2.7)

Moreover, the Hermite functions Jf°, seN", form a complete, orthogonal family of
eigenfunctions of (S>*)'3>' and IF, teN", in any of the spaces Sfrre~L (or reZ"), and we
have

(2.8)

(2.9)

®'jrf
0=K-"V(s+oys!jr,0

+,,

for alls, teN".
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Proof. The results of this lemma are easily obtained as straightforward transcrip-
tions of the one-dimensional proofs into multi-index notation. For sake of brevity we
shall not give the details. •

We need to define suitable sequence spaces ok and os, keZ, seZ". The sequences are
now conveniently enumerated using non-negative multi-indices, i.e. elements of M". The
space os may be introduced as the completion of eventually vanishing sequences (ar),
with respect to the norm || | |0,s induced by the inner product

| | (s)a,j?,, (2.10)
reN"

with a = (a,),, /? = (/?,),eos. The appropriate spaces ok, keZ, can be defined as the Hilbert
space of sequences

with inner product

felM"
s>0

I (s+ty./ti
sgn(*)

(2.11)

with a=(a,)(, /?=(/?,),sok. Clearly we have that the spaces ok, as, keZ, seZ", are Hilbert
spaces.

With the above definitions we are now ready to formulate the higher-dimensional
analogue of Theorem 2.

Theorem 3. The spaces 9's and as are unitarily equivalent for arbitrary s e Z". The
unitary mapping <W between them is given by

(2.12)

In particular, we have

- - " " f)\\ (2.13)
reN"

for all feSf,, seZ". The inverse <&* of <& is given by
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= («,),- I «,<•
(2.14)

leN"

By the same association <& now considered as a mapping between yk and ok, keZ, a
unitary equivalence is furnished between these spaces. The isometry is given explicitly by

— •n-k/2

r<=N"
I (s+ty./t\

sgn(fc)

|«,/)|2, (2.15)

for all fe£fk, keZ. The operations ®, 9" and their adjoints are transferred by <& to
corresponding operations in os, s e Z", and ok, keZ. We have (<xs = 0 if not s ̂  0)

ffr«'*a=()i"r/2
v/(!/(t-r)!c(r_r),,

/or a// /n particular for aed. s , seZ", s^0, we

(2.16)

(2.17)

(2.18)

t (5+ t)!A!

where Rk denotes the Riesz map associated with £fk.

(2.19)

w/iere Rs denotes the Riesz map associated with ^_ s , and similarly for <xeo_k, keN,

(2.20)

Proof. The theorem for ^-spaces, seZ", follows by merely transcribing the arguments
used in Theorem 2 into multi-index notation. The result can also be seen in this case
directly from the tensor product structure of £PS and os, seZ". Formulae (2.16)—(2.18)
remain unchanged if we discuss the spaces £fk and ok with feeZ. As in Theorem 1 it
follows that <& is also onto in both cases. The rest of the theorem can be obtained as in
the one-dimensional case using the analogous multi-index results compiled in the
previous lemma. Note in particular that (fceN)
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Z {s + t)\/tl (2.21)

D

3. Some consequences

As an interesting application of the results of Chapter 2 we record in our final chapter
some easily established imbedding properties.

Theorem 4. For the spaces £fk, ok and Sfs, os. keZ, ssZ", we have the following
imbedding results

(a) SfkI c, <fWnV, okI c+ ok c» <,WnV for fe^O,

and

(b) the imbeddings £fk + 1 c» Sfk, Sfs+l c» <fs, ok+l c+ ^ , : 3 S + / c*. os, are compact, i.e.

<>k,

Proof. We first notice that it suffices to show the imbedding results for the sequence
spaces. The remaining results follow via the use of 9. For sake of brevity we only
consider the case /c^O, the other case being analogous. It is clear that for any s^0,

lelM" l e N "
Z (r + t)l/t\

where a.=((xt),eok. Now replacing s by a multi-index with equal entries given by the
integer value [/c/n] of k/n, i.e. s = [/c/n]/, we obtain

(s + t)\/t\\oLt\
2£n-kl2

telM" relM"

which in turn proves

https://doi.org/10.1017/S0013091500007173 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500007173


292 R. H. PICARD

The remaining imbedding follows since for s = kl we have

reN"
+ t)\/t\

£> = *

To show (b) let (am)meN> am=(a™)sedk + 1, be a uniformly bounded sequence in ok+1 i.e.

for all m e RJ and some C > 0. Now,

KSAf T.t>M

+ t)\/tl \<*?\2-

The second term on the right-hand side can be estimated uniformly w.r.t. m e N by

7T Wi 2_,

since
- 1

(r + 5 + t)\/t\
L8=l Zr = k

- 1

- l r n "i-i

On the basis of this uniform estimate the existence of a convergent subsequence of (am)m

in ok can be shown by a standard diagonal argument choosing consecutive
subsequences.

The compactness of the imbedding os+, c* c+ os follows by similar arguments. •

Remark 4. The compact imbedding property stated as part (b) of the previous
theorem has been shown for the two types of ^"-spaces in [7]. The above considerations
provide an independent proof of this important result.

Given that the tempered distributions 9" can in fact be identified as elements of
{JkeZyk> [7], with the natural induced convergence concept (inductive limit), it can be
seen from the imbedding results of the above theorem that

keZ
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In fact, it would be sufficient (according to Theorem 4) to choose any sequence of
indices fc->— oo or multi-indices s->( — oo, — oo,..., — oo) to perform the union. In
particular, we have the characterization of tempered distributions given in our final
theorem.

Theorem 5. Any tempered distribution can be expanded with respect to Hermite
functions in a series converging in £fkfor some keZ (or in £fsfor some seZ"). We have

feST iff £ £ (s + t)\/t\\ | « , / ) | 2 < o > for some ksZ,
relM" \_Zs = \k\ J

iff Z ((|s| + 0!/f!)sgn(s)|pC,/)|2<oo for some seZn.
t e N"

Proof. The result is clear from the above admissions on the relationship between the
tempered distributions and ^-spaces. •

Remark 5. The last theorem reproduces in the context developed here a result
previously obtained in [3, Chapter 8]. The difference is that the concept of convergence
is in our approach specified as a particular Sobolev space convergence. The additional
structure provided by this allows for an isometric control over the type of convergence
in the sequence spaces.
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