

DEVELOPMENTS

Book Review – Fixing the System: A Review of Philip
Leith, Software Patents in Europe (2007)

By James Gannon∗

[Philip Leith, Software and Patents in Europe, Cambridge University Press, UK,
(2007), ISBN 9780521868396, pp. 212]

Professor Philip Leith’s new book on software patents can be distinguished from
the growing collection of works already written on the subject in two significant
ways. First, unlike the majority of books on the subject, Leith starts with and
vigorously defends a position in favour of software patenting in general. Certainly,
the author is not restrained in pointing out the many failings of the current regime
of intellectual property protection for software inventions; however, contrary to the
majority of academic commentators,1 Leith sees software patenting as an inherent
good, a system with flaws rather than a flawed system. This perspective positions
the author well to provide constructive criticism of the software patent regime
without engaging in the calls for an entirely new protection scheme for computer
software inventions. The second aspect of Leith’s Software and Patents in Europe that
provides a valuable contribution to the software patent debate is the book’s
European focus. For some time at the turn of the century, Europe was a focal point
of the debate as the European Parliament was considering adoption of the,
“Directive on the patentability of computer-implemented inventions”2 (the “EU
Software Patent Directive”). However, since the European Parliament rejected the
proposed Directive by an overwhelming majority,3 software patent law observers

� Senior Student Editor, German Law Journal. LL.B. 2008, Osgoode Hall Law School. Email:
jamesgannon@osgoode.yorku.ca

1 See, for instance, BEN CLEMENS, MATH YOU CAN'T USE: PATENTS, COPYRIGHT, AND SOFTWARE (2005),
ERIC STASIK, NOT SO PATENTLY OBVIOUS, THE BRIEF HISTORY OF PATENTING SOFTWARE IN THE U.S. AND
EUROPE AND THE TROUBLE WITH PATENTS IN THE DIGITAL AGE (2007), or KENNETH NICHOLS, INVENTING
SOFTWARE: THE RISE OF "COMPUTER-RELATED" PATENTS (1998).

2 2002/0047/COD.

3 In her statement, the Commissioner stated that the Directive’s proposed software patent model should
be rejected and the EU should adopt “a non-sector-specific instrument and that it should seek the
adoption of the Community patent.” For the legislative history of the Directive, see
http://ec.europa.eu/internal_market/indprop/comp/index_en.htm, last accessed 28 July 2008.

https://doi.org/10.1017/S2071832200000298 Published online by Cambridge University Press

https://doi.org/10.1017/S2071832200000298

1058 [Vol. 09 No. 08

 G E R M A N L A W J O U R N A L

have returned their focus to the US.4 While Leith certainly makes frequent reference
to the American Patent and Trademark Office’s practice of allowing software
patents (ignoring the US model in any book on software patents would be akin to
ignoring the role of the United Nations in a book on International Law), the focus
here remains on the British software patenting regime in the aftermath of the Vicom5
patent. Additionally, the author also deals with software patent applications in
Germany, France and Italy, as well as the European Patent Office’s (EPO) handling
of software patent applications following the adoption of the European Patent
Convention. Leith’s European focus, along with the author’s evident experience in
computer programming and intellectual property law, and a refreshing optimism in
the power of software patents to benefit the industry create a powerful combination
that should be both informative and interesting to anybody with an interest in
software patents from both the legal and technical worlds.

The first two chapters of the book are titled “Software as machine” and “Software
as software.” Here, Leith describes the current climate for software patents: that
although both US and European laws expressly forbid awarding patents to what are
purely software program or algorithmic inventions, the practice has emerged first
in the US and later in Europe to obtain such patents under the guise of a machine
invention. The author argues that this practice, which he amusingly refers to as
“hardware dressing”, is the root cause of many of the hardships faced by software
patents since it creates a significant disconnect between the invention’s core
innovation and its accompanying protection. The now widespread practice of
describing an inventive software program in terms of the machine on which it is
run is characterized as a “legal fiction – that software and hardware become a new
machine.”6 As a former programmer himself, Leith often takes the perspective of an
everyday programmer in assessing the effectiveness and even sometimes the
underlying rationality of awarding such patents. As he charts the history of
software patents in Europe from computing’s early days up to the rejection of the
EU Software Patent Directive, he finds that this perspective was consistently
ignored:

“It is as though the programmer’s view of technology were
considered irrelevant. This is true – it was not relevant. In the

4 The years leading up to the EU vote on software patents saw a flurry of analysis from high-profile
intellectual property academics who normally focus on American IP law. See, for instance, Richard
Stallman, Saving Europe From Software Patents, in Lessig et. al., FREE SOFTWARE, FREE SOCIETY 106, 108
(2002).

5 EP0005954. “Method and apparatus for improved digital image processing”, filed 1979. T0208/84.

6 PHILIP LEITH, SOFTWARE AND PATENTS IN EUROPE 20 (2007).

https://doi.org/10.1017/S2071832200000298 Published online by Cambridge University Press

https://doi.org/10.1017/S2071832200000298

2008] 1059

Software Patents in Europe

attempt to fit the new computing technology into an appropriate
and patentable classification, his voice was ignored and the
model which was used was that of the classical ‘machine’.”7

In the next chapter, “Software as software”, the author attempts to distill a
computer program invention down to its innovative core. This is perhaps the most
technical chapter of the book as Leith provides several real-world examples from
patent applications by companies such as IBM and AT&T. The technical details of
these examples are discussed, followed by an analysis of the inventive step offered
by the invention and how the application was handled (or more often mishandled)
by the respective patent office. The author further develops the argument from the
previous chapter that the “creative enterprise” of computer software does not lie in
its attachment to a particular hardware embodiment, and that this view distracts
from the true innovation that the invention provides: “the idea is not to fix any
concept in concrete, but to view it as malleable, since this is where the power of
programming arises.”8

Although Leith comes out in favour of retaining patents as the primary conduit of
intellectual property protection for software inventions, he takes a balanced
approach in discussing policy reasons for and against the basic notion of protecting
software inventions in the first place. While such debates appear in one form or
another in most software patent publications, Leith is to be commended for
providing a concise and balanced overview of the issues backed with relevant
European examples. In short, patenting software inventions is said to promote
investment in research and development, educates the public by disclosing
previously unknown or non-obvious software inventions, and the production of
patentable ideas can increase the valuation of smaller enterprises (SMEs). 9
Conversely, the author duly recognizes the negative aspects: that the cost of
patenting takes investment away from research and development, that copyright
protection alone of software inventions has often proven to be sufficient, and the
practical reality that most patent offices are either incapable or have great difficulty
examining software patent applications. Looking at the software patent debate from
the point of view of the patent examiner is another unique perspective that
underscores Leith’s pragmatic approach in assessing the role of software patents,
undoubtedly formed from his years of experience as both a programmer and patent

7 Id. at 35.

8 Id. at 68.

9 Id. at 79. For more arguments in favour of software and business method patents, see “WIPO: Ways in
Which Patents can Help Your E-Commerce Business”, available at:
http://www.wipo.int/sme/en/e_commerce/pat_help.htm, last accessed 28 July 2008.

https://doi.org/10.1017/S2071832200000298 Published online by Cambridge University Press

https://doi.org/10.1017/S2071832200000298

1060 [Vol. 09 No. 08

 G E R M A N L A W J O U R N A L

attorney. Indeed, he makes a convincing argument that it is not the patents
themselves that should be blamed for the constricting effects on software
development for which they have become infamous, but rather it is the mishandling
of applications and lack of expertise in software design that prevails in patent
offices such as the EPO.

The discussion of software patents broadens to other computer-related innovations
that have also been the subject of patentability debates. Leith addresses these in a
chapter titled “Algorithms, business methods and other computing ogres.” As the
central chapter in the book, it is here that the author is at his most convincing in
attacking the “technical effect” requirement of software inventions post-Vicom, yet
still defending the virtues of software patents in general. Leith adeptly argues that
by making the “technical effect” or “hardware dressing” the focal requirement for
patentability of software code, many innovative and worthwhile inventions will fall
outside the scope of this requirement, while entities that would be undesirable for
patenting will be considered, such as algorithms (which is tantamount to obtaining
a patent on a mathematical formula) or business methods (the patenting of which
serves no other purpose than stifling competition without any benefit to the public).
He also defends the virtues of the EU Software Patent Directive by arguing that the
small enterprises and open source communities that worked together in vigorous
opposition to the Directive were working against their own interests, calling their
victory “a success of form rather than substance”10 by retaining the old Vicom model
while stalling any real progress with the EPO vis-à-vis computer program patents.
While Leith admits that ratifying the Directive would not fall into the best interest
of these groups, he maintains that it would still be an improvement over the post-
Vicom status-quo.

Throughout many parts of his book, Leith points out the numerous flaws in the way
software patents are awarded at both the EPO and in individual European
countries, while still extolling the benefits of computer program patentability to the
industry. This critical yet optimistic approach to the subject positions him well to
make recommendations for improvement and to assess whether it is either possible
or desirable to build a patenting system that would allow for the patenting of “mere
data processing inventions”. Such forms of hybrid patent-copyright systems have
been proposed in the past;11 once again, however, it seems that Leith’s proposals
involve making pragmatic adjustments to the existing system rather than a
complete overhaul that would result in billions of dollars in wasted efforts from the

10 Id. at 155.

11 See, for instance, P. Samuelson, R. Davis, M.D. Kapor and J.H. Reichman, A Manifesto concerning the
legal protection of computer programs, , 94 COLUM. L. REV. 2308 (1994).

https://doi.org/10.1017/S2071832200000298 Published online by Cambridge University Press

https://doi.org/10.1017/S2071832200000298

2008] 1061

Software Patents in Europe

major software outfits. Leith first reviews many of the proposed alternative
methods for protection of software inventions12 and proceeds to then contrast them
to his own solution to the software patent debate, which he calls the European
Utility Model.13 While any proposed alternative method for software protection
would be easy to criticize, Leith makes a convincing argument for the move to a
utility model for such protections in Europe, while still recognizing some practical
limitations of such a “higher-level” protection method system, particularly at the
application stage of the patenting process, by noting that, “the problems which
have generally been highlighted as problematical in the granting of software
patents will be more so in the granting of utility model protections.”14 However, he
still maintains that such a system would be beneficial to the European software
industry and would counter the undesirable effects of the current lower-level
software protections, which the author argues, “simply retard European
innovations, particularly in the SME field.”15

There is something very wrong with the way property rights are granted to
software inventions. This much is agreed upon by almost all commentators on the
subject, both in Europe and the US. This is perhaps why the subject has attracted so
much attention in the last decade from many in the legal community with
engineering and programming backgrounds.16 We see a broken system, and we
design solutions to fix it. However, as plainly obvious as some of the flaws with
current methods for software patenting may seem, it is not necessarily the design of
the solution that has problems, but rather it is the implementation of that design
where roadblocks undoubtedly arise. The main obstacle to efficient reform in
software patenting is undoubtedly that of many competing interests. The
pharmaceutical industry, dominated by a few large firms, who profit greatly from
the existing patent system lobby extensively against any change to the status quo,
even if such changes have little effect on their own patents. Software development,
especially in Europe, has more traditionally been the realm of SMEs, who see the
growing patent portfolios of a few large companies such as Microsoft, IBM and SAP
as a threat to their own ability to innovate. Up until recently, these players were

12 In addition to the Manifesto at supra note 9, Leith also reviews the EU Software Patent Directive and
the Software Petite Patent Act. See M.A. Paley, A Model Software Petite Patent Act, COMPUTER AND HIGH
TECH LAW JOURNAL 12 (1996).

13 See P. Leith, Utility Models and SMEs, 2 JOURNAL OF INFORMATION, LAW AND TECHNOLOGY (2000).

14 LEITH, supra note 4, 178.

15 LEITH, supra note 4, 178.

16 For an excellent, recent review of the subject by programmers-turned-legal academics, see JAMES
BESSEN & MICHAEL MEURER, PATENT FAILURE: HOW JUDGES, BUREAUCRATS, AND LAWYERS PUT
INNOVATORS AT RISK (2008).

https://doi.org/10.1017/S2071832200000298 Published online by Cambridge University Press

https://doi.org/10.1017/S2071832200000298

1062 [Vol. 09 No. 08

 G E R M A N L A W J O U R N A L

often powerless in high-level reform debates. But as was seen during the
deliberations over the EU Software Patent Directive, with help from the internet
and the open source communities, these smaller firms have been very successful
recently in combining their resources to form an effective counter-lobby. With so
many interested parties vigorously pursuing their own vision for reform, as well as
considerable international pressure primarily from the US, it is without a doubt that
any progress on software patent reform in Europe will be hard-fought. It is thus a
shame that having taken such a practical, programmer-centric approach to crafting
a suitable fix to the software-patenting dilemma, Software and Patents in Europe is
silent on how such a remedy could be implemented, either in individual European
states or at the EPO. However, given the author’s excellent treatment of the
software patent debate in the book and evident expertise with the issues at stake, I
would certainly be interested in reading any thoughts he may have on the subject.

https://doi.org/10.1017/S2071832200000298 Published online by Cambridge University Press

https://doi.org/10.1017/S2071832200000298

