THE NON-EXISTENCE OF CERTAIN AFFINE RESOLVABLE BALANCED INCOMPLETE BLOCK DESIGNS

S. S. SHRIKHANDE

1. Summary. A method of proving the impossibility of certain Affine Resolvable Balanced Incomplete Block Designs (A.R.B.I.B.D.) has been given by the author elsewhere [9]. More complete results in the same direction are obtained here using the ideas of a paper by Connor [4].
2. Preliminary results. A Balanced Incomplete Block Design (B.I.B.D.) with parameters v, b, r, k, and λ is said to be affine resolvable if the b blocks can be separated into r sets, each forming a complete replication such that any two blocks of different sets have the same number of treatments in common. It has been shown [1] that the parameters of such a design can be expressed in terms of two integers n and $t(n \geqslant 2, t \geqslant 0)$ in the following manner:
$2.00 \quad v=n k=n^{2}[(n-1) t+1], \quad b=n r=n\left(n^{2} t+n+1\right), \quad \lambda=n t+1$.
Further any two blocks of the same set have no treatment in common, whereas those from different sets have exactly

$$
\frac{k^{2}}{v}=(n-1) t+1
$$

treatments in common.
Let A be a symmetric matrix of order m with elements in the rational field. Then A is said to be rationally equivalent to $B, A \sim B$ if and only if there exists a non-singular matrix P with elements in the same field such that $B=P^{\prime} A P$, where P^{\prime} is the transpose of P. The equivalence of matrices satisfies the requirements of an "equals" relationship.

Consider the Hasse invariant

$$
c_{p}(A)=\left(-1,-D_{m}\right)_{p} \prod_{j=1}^{m-1}\left(D_{j},-D_{j+1}\right)_{p}
$$

where p is a prime, D_{j} is the leading principal minor determinant of order j in A and ($a, b)_{p}$ is Pall's [6] generalization of the Hilbert norm residue symbol. Let $i=$ index of A, and $d=$ the square free part of A. Then we have

Theorem A. Let A and B be two non-singular matrices of order m with elements in the rational field. Then $A \sim B$, if and only if A and B have the same values for the invariants i, d, and c_{p} for every prime p.

Received August 17, 1952.

The following useful properties of the Hilbert norm residue symbol are quoted from [3] for the sake of completeness. They have been used in the following section.

Theorem B. If m and m^{\prime} are integers not divisible by an odd prime p, then

$$
\begin{aligned}
\left(m, m^{\prime}\right)_{p} & =1 \\
(m, p)_{p} & =(p, m)_{p}=(m / p)
\end{aligned}
$$

where (m / p) is the Legendre symbol. Moreover, if $m \equiv m^{\prime} \neq 0(\bmod p)$, then

$$
(m, p)_{p}=\left(m^{\prime}, p\right)_{p}
$$

Theorem C. For arbitrary non-zero integers $m, m^{\prime}, n, n^{\prime}$ and for every prime p,

$$
\begin{aligned}
(-m, m)_{p} & =1 \\
(m, n)_{p} & =(n, m)_{p} \\
\left(m m^{\prime}, n\right)_{p} & =(m, n)_{p}\left(m^{\prime}, n\right)_{p}
\end{aligned}
$$

Further for p an odd prime and every positive integer m,

$$
(m, m+1)_{\nu}=(-1, m+1)_{p}
$$

The results in the remaining part of this section are due to Connor [4]. Let N be the incidence matrix of v rows and b volumns, i.e., the elements $n_{y u}$ in row j and column u is 1 or 0 according as treatment j does or does not occur in block u. Let the matrix N be augmented to the matrix N_{1} of $v+l$ rows and b columns where

$$
N_{1}=\left(\begin{array}{c|c}
& N \\
\hline I_{1} & 0
\end{array}\right)
$$

and I_{l} is the identity matrix of order l and 0 is a matrix with all elements zeto. Then
2.03

$$
N_{1} N_{1}^{\prime}=\left(\begin{array}{cc}
N N^{\prime} & N_{i} \\
N_{i}^{\prime} & I_{i}
\end{array}\right)
$$

where N_{l} is the submatrix of the first l columns of N. Obviously

$$
N N^{\prime}=\left(\begin{array}{ccc}
r & \lambda & \ldots \\
\lambda & r & \ldots \\
& \ldots \\
\lambda & \lambda & \ldots
\end{array}\right)
$$

and hence
2.05

$$
\left|N N^{\prime}\right|=k r(r-\lambda)^{r-1}
$$

From 2.03 is it easy to show that

$$
\left|N_{1} N_{1}\right|=k r^{-l+1}(r-\lambda)^{b-l-1}\left|C_{l}\right|
$$

where
2.07

$$
c_{i j}=(r-k)(r-\lambda)
$$

and
2.08

$$
c_{j u}=\lambda k-r d_{j u},
$$

for $j \neq u=1,2, \ldots, l ; d_{j u}$ is the number of treatments common to blocks j and u.

Let N_{2} be the square matrix of side b :
2.09

$$
N_{2}=\left(\begin{array}{c|c}
& \\
\hline & \\
\hline I_{b-v} & 0
\end{array}\right)
$$

Then

$$
N_{2} N_{2}^{\prime}=\left(\begin{array}{ll}
N N^{\prime} & N_{b-v} \\
N_{b-v}^{\prime} & I_{b-0}
\end{array}\right)
$$

where N_{b-v} is the submatrix of the first $b-v$ columns of N. The principal minor determinants of $N_{2} N_{2}{ }^{\prime}$ of order up to v are the same as those of $N N^{\prime}$ and those of higher orders can be calculated from 2.06 .

Let P be matrix

$$
P=\left(\begin{array}{cc}
N N^{\prime} & 0 \\
0 & C_{b-v} E_{b-v}
\end{array}\right)
$$

where
2.12

$$
E_{b-v}=[r(r-\lambda)]^{-1} I_{b-v}
$$

Then it is easily verified that the corresponding principal minor determinants of $N_{2} N_{2}{ }^{\prime}$ and P are equal. Hence

$$
c_{p}(P)=c_{p}\left(N_{2} N_{2}^{\prime}\right)
$$

But we know from [5] that

$$
c_{p}(P)=c_{p}\left(N N^{\prime}\right) c_{p}\left(C_{b-v} E_{b-v}\right)\left(\left|N N^{\prime}\right|,\left|C_{b-v} E_{b-v}\right|\right)_{p}
$$

for every odd prime p. Hence we have for any odd prime p,

$$
c_{p}\left(N_{\mathbf{2}} N_{2}{ }^{\prime}\right)=c_{p}\left(N N^{\prime}\right) c_{p}\left(C_{b-v} E_{b-v}\right)\left(\left|N N^{\prime}\right|,\left|C_{b-v} E_{b-v}\right|\right)_{p}
$$

The value of $c_{p}\left(N N^{\prime}\right)$ can be calculated as in [3] and is given by
$2.14 c_{p}\left(N N^{\prime}\right)=(-1, r k)_{p}(-1, r-\lambda)_{p}^{\frac{1}{\frac{1}{v}}(v-1)}(r-\lambda, r k)_{p}^{p-1}(v, r k)_{p}(v, r-\lambda)_{p}$.
3. Impossibility of some A.R.B.I.B. designs.

Theorem 1. An A.R.B.I.B.D. with parameters 2.00 does not exist when n and t are odd and
(i) $n[(n-1) t+1]$ is not a perfect square, or
(ii) $n[(n-1) t+1]$ is a perfect square and $n t \equiv 1(\bmod 4)$ and the squarefree part of n contains a prime $\equiv 3(\bmod 4)$.

Theorem 2. An A.R.B.I.B.D. with parameters 2.00 does not exist when n is odd and t is even and
(i) $(n-1) t+1$ is not a perfect square, or
(ii) $(n-1) t+1$ is a perfect square and $n+t \equiv 1(\bmod 4)$ and the square-free part of n contains a prime $\equiv 3(\bmod 4)$.

Theorem 3. An A.R.B.I.B.D. with parameters 2.00 does not exist for any value of t, if $n \equiv 2(\bmod 4)$ and the square-free part of n contains a prime $\equiv 3$ $(\bmod 4)$.

Proofs. Suppose the A.R.B.I.B.D. actually exists, then there are r sets of n blocks each so that any two blocks of different sets have exactly $(n-1) t+1$ treatments in common. Since $b-v=n^{2} t+n<n^{2} t+n+1=r$, we can pick out $b-v$ blocks one from each of the $b-v$ sets so that from 2.07 and 2.08 the matrix C_{b-0} for these blocks is given by ($c_{j u}$) where

$$
c_{f j}=n(n t+1)[(n-1) t+1]
$$

and
3.01

$$
c_{j u}=-[(n-1) t+1]
$$

for $j \neq u=1,2, \ldots, n^{2} t+n$. It is easily verified that
3.02

$$
C_{b-v}=[(n-1) t+1]^{n^{2} t+n}\left(n^{2} t+n+1\right)^{n^{n} t+n-1} .
$$

Let the blocks of the design be permuted so that these are the first $n^{2} t+n$ blocks of the design. Taking N_{2} as in 2.09 we get from 2.06 that
3.03

$$
\left|N_{2} N_{2}^{\prime}\right|=n^{n^{2} t-2 n^{2} t+n^{2}-n}[(n-1) t+1]^{n^{2}[(n-1) t+1]} .
$$

But $\left|N_{2} N_{2}{ }^{\prime}\right|=\left|N_{2}\right|^{2}$. Hence the right-hand side of 3.03 must be a perfect square. Hence we get the following results.
A necessary condition for the existence of the design is that
(a) $n[(n-1) t+1]$ should be a perfect square if both n and t are odd, and
(b) $(n-1) t+1$ should be a perfect square if n is odd and t is even.

In the rest of the paper p stands for an odd prime and will be suppressed in the symbol $(a, b)_{p}$ whenever no confusion is likely to arise.

Using Theorems B and C it is easily verified that

$$
3.04
$$

$$
\begin{gathered}
c_{p}\left(N N^{\prime}\right)=\left(-1, n^{2} t+n+1\right)(-1, n)^{\frac{1}{2} v(v+1)}(-1,(n-1) t+1)^{\frac{1}{2} v(0+1)} \\
\cdot\left(n, n^{2} t+n+1\right)^{v-1}\left((n-1) t+1, n^{2} t+n+1\right)^{0} .
\end{gathered}
$$

From 2.12, 3.00, and 3.01 it is seen that for the matrix $C_{b-v} E_{b-v}$, the diagonal elements are $(n t+1) /\left(n^{2} t+n+1\right)$ whereas the non-diagonal elements are $-1 / n\left(n^{2} t+n+1\right)$. Obviously $C_{b-v} E_{b-v} \sim Q$, where $Q=\left(q_{j u}\right)$ with

$$
q_{j j}=n^{2}\left(n^{2} t+n+1\right)(n t+1)
$$

and

$$
q_{j u}=-n\left(n^{2} t+n+1\right) .
$$

It is easily proved that:
3.05

$$
|Q|=n^{n^{2} t+n}\left(n^{2} t+n+1\right)^{2 n^{2} t+2 n-1}, \quad c_{p}\left(C_{b-v} E_{b-v}\right)=c_{p}(Q)
$$

and

$$
\left(\left|N N^{\prime}\right|,\left|C_{b-v} E_{b-v}\right|\right)=\left(\left|N N^{\prime}\right|,|Q|\right)
$$

where, from 2.05,
3.06

$$
\left|N N^{\prime}\right|=\left(n^{2} t+n+1\right)[n(n-1) t+1]^{n^{2}[(n-1) t+1]}
$$

Hence
3.07

$$
c_{p}\left(N_{2} N_{2}^{\prime}\right)=c_{p}\left(N N^{\prime}\right) c_{p}(Q)\left(\left|N N^{\prime}\right|,|Q|\right)
$$

The value of $c_{p}(Q)$ can be calculated in exactly the same way as $c_{p}\left(N N^{\prime}\right)$ and is given by

$$
3.08
$$

$$
c_{p}(Q)=(-1, n)^{\frac{1}{2}\left(n^{2} t+n\right)\left(n^{2} t+n+1\right)}\left(n, n^{2} t+n+1\right)^{n^{2} t+n-1} .
$$

With these general results we now proceed to consider the various cases. First take the case where both n and t are odd. If $n[(n-1) t+1]$ is not a perfect square the design is impossible. Hence we consider only those values for which $n[(n-1) t+1]$ is a perfect square. From 3.04 to 3.08 ,

$$
\begin{gathered}
c_{p}\left(N N^{\prime}\right)=\left(-1, n^{2} t+n+1\right)\left((n-1) t+1, n^{2} t+n+1\right), \\
c_{p}(Q)=(-1, n)^{\frac{3}{2}\left(n^{2} t+n\right)\left(n^{\prime} t+n+1\right)}\left(n, n^{2} t+n+1\right), \\
\left(\left|N N^{\prime}\right|,|Q|\right)=\left(-1, n^{2} t+n+1\right)
\end{gathered}
$$

Hence

$$
c_{p}\left(N_{2} N_{2}^{\prime}\right)=(-1, n)^{\frac{1}{2}\left(n^{2} t+n\right)\left(n^{2} t+n+1\right)}=(-1, n)^{\frac{1}{2}(n t+1)} .
$$

Hence $c_{p}\left(N_{2} N_{2}{ }^{\prime}\right)=1$ for those values of n and t for which $n t+1 \equiv 0(\bmod 4)$. If however $n t \equiv 1(\bmod 4)$ then

$$
c_{p}\left(N_{2} N_{2}^{\prime}\right)=(-1, n)_{p}=(-1, p)_{p}=(-1 / p)
$$

if p is a factor of the square-free part of n. Hence if $p \equiv 3(\bmod 4)$.

$$
c_{p}\left(N_{2} N_{2}^{\prime}\right)=-1 .
$$

But $N_{2} N_{2}{ }^{\prime} \sim I_{b}$ and hence $c_{p}\left(N_{2} N_{2}{ }^{\prime}\right)=c_{p}\left(I_{b}\right)=1$, which is a contradiction. Hence the design 2.00 is impossible. This proves Theorem 1.

Now consider the case when n is odd and t is even. We only consider those values of n and t for which $(n-1) t+1$ is a perfect square. For these values of n and t, from 3.04 to 3.08 we have

$$
\begin{gathered}
c_{p}\left(N N^{\prime}\right)=\left(-1, n^{2} t+n+1\right)(-1, n) \\
c_{p}(Q)=(-1, n)^{\frac{1}{2}\left(n^{2} t+n+1\right)} \\
\left(\left|N N^{\prime}\right|,|Q|\right)=(-1, n)\left(-1, n^{2} t+n+1\right)
\end{gathered}
$$

Hence

$$
c_{p}\left(N_{2} N_{2}^{\prime}\right)=(-1, n)^{\frac{1}{2}\left(n^{2} t+n+1\right)}=(-1, n)^{\frac{1}{2}(n+t+1)} .
$$

Obviously the right-hand side is always 1 except possibly when $n+t \equiv 1$ $(\bmod 4)$, in which case

$$
c_{\mathcal{p}}\left(N_{2} N_{2}{ }^{\prime}\right)=(-1, n) .
$$

Hence, as before, if the square-free part of n contains a prime $\equiv 3(\bmod 4)$ the design is impossible. This proves Theorem 2.

Lastly, consider the case when n is even. Then

$$
\begin{aligned}
& c_{p}\left(N N^{\prime}\right)=\left(-1, n^{2} t+n+1\right)\left(n, n^{2} t+n+1\right), \\
& c_{p}(Q)=(-1, n)^{\frac{1 n}{n}}\left(n, n^{2} t+n+1\right), \\
& \left(\left|N N^{\prime}\right|,|Q|\right)=\left(-1, n^{2} t+n+1\right) \text {. }
\end{aligned}
$$

Hence

$$
c_{p}\left(N_{2} N_{2}^{\prime}\right)=(-1, n)^{\frac{1 n}{n}} .
$$

The value of the right-hand side is always 1 except possible when $n \equiv 2(\bmod 4)$ in which case

$$
c_{p}\left(N_{2} N_{2}^{\prime}\right)=(-1, n) .
$$

Hence, as before, if the square-free part of n contains a prime $\equiv 3(\bmod 4)$ then the design is impossible. This completes the proof of Theorem 3.

It is obvious that the above results are the best possible using this particular method.

Corollary. Putting $t=0$ in Theorems 2 and 3 above we get that the A.R.B. II.B.C. with parameter:

$$
v=n^{2}, b=n^{2}+n, r=n+1, k=n, \lambda=1
$$

is impossible when $n \equiv 1$ or $2(\bmod 4)$ and the square-free part of n contains a prime $\equiv 3(\bmod 4)$. This is equivalent to the result given by Bruck and Ryser [3].
4. Improvement of an inequality for orthogonal arrays of strength 2. Consider a matrix $A=\left(a_{i j}\right)$ with m rows and N columns where each element $a_{i j}$ represents one of the integers $0,1,2, \ldots, n-1$. Consider all the d-rowed submatrices that can be formed $(d \leqslant m)$. Each column of any d-rowed submatrix gives an ordered d-plet. There are n^{d} possible d-plets. If in the $N d$-plets obtained from every submatrix each of the n^{d} possible d-plets occurs exactly μ times ($N=\mu n^{d}$), then the matrix is called an orthogonal array (N, m, n, d) of size N, m constraints, n levels, and strength d. The idea of orthogonal arrays which is very useful in certain combinatorial problems is due to Rao [8]. The multifactorial designs considered by Plackett and Burman [7] are orthogonal arrays of strength 2 . Give the values of n, d, and $N\left(=\mu n^{d}\right)$, let $f(N, n, d)$ represent the maximum number of constraints possible. Then it is known [7] that
4.1

$$
f\left(\mu n^{2}, n, 2\right) \leqslant I\left(\frac{\mu n^{2}-1}{n-1}\right)
$$

where $I(x)$ is the integral part of x. In some cases this inequality can be improved. When $\mu-1$ is not divisible by $n-1$, Bose [2] has given the following

Theorem D. If $\mu-1=a(n-1)+b, 0<b<n-1$ and l is the largest non-negative integer consistent with

$$
n(b-2 l) \geqslant(b-l)(b-l+1)
$$

then

$$
f\left(\mu n^{2}, n, 2\right) \leqslant I\left(\frac{\mu n^{2}-1}{n-1}\right)-l-1 .
$$

The results of the previous section can be used to improve the inequality 4.1 in some cases when $\mu-1$ is actually divisible by $n-1$.

If $\left(\mu n^{2}-1\right) /(n-1)$ is an integer (which implies that $(\mu n-1) /(n-1)$ is also an integer) and further if an orthogonal array exists with the maximum possible number of constraints which is $\left(\mu n^{2}-1\right) /(n-1)$, then such an array is said to be complete. It has been shown [7] that the existence of a complete orthogonal array

$$
\left(\mu n^{2}, \frac{\mu n^{2}-1}{n-1}, n, 2\right)
$$

implies the existence of an A.R.B.I.B.D. with parameters

$$
y=n k=\mu n^{2}, \quad b=n r=n\left(\frac{\mu n^{2}-1}{n-1}\right), \quad \lambda=\frac{\mu n-1}{n-1}
$$

and conversely. Hence, in particular, a complete orthogonal array $\left(n^{2}[(n-1) t\right.$ $\left.+1], n^{2} t+n+1, n, 2\right)$ and an A.R.B.I.B.D. with parameters 2.00 are coexistent. The theorems of the previous section can, therefore, be expressed in terms of the non-existence of the corresponding complete orthogonal arrays. Hence

$$
f\left(n^{2}[(n-1) t+1], n, 2\right) \leqslant n^{2} t+n,
$$

for the values of n and t given in the theorems of the last section.

References

1. R. C. Bose, A note on the resolvability of balanced incomplete block designs, Sankhyā, 6 (1942), 105-110.
2. -_, Mathematics of factorial designs, Proceedings of the International Congress of Mathematics, 1 (1950), 543-548.
3. R. H. Bruck and H. J. Ryser, Non-existence of certain finite projective planes, Can. J. Math., 1 (1949), 88-93.
4. W. S. Connor, Jr., On the structure of balanced incomplete block designs, Annals of Mathematical Statistics, 23 (1952), 57-71.
5. B. W. Jones, The arithmetic theory of quadratic forms (New York, 1950).
6. Gordon Pall, The arithmetic invariants of quadratic forms, Bull. Amer. Math. Soc., 51 (1945), 185-197.
7. R. L. Plackett and J. P. Burman, The design of optimum multifactorial experiments, Biometrika, 33 (1943-46), 305-325.
8. C. R. Rao, Factorial experiments derivable from combinatorial arrangements of arrays, J. Royal Statistical Society Suppl., 9 (1947), 128-139.
9. S. S. Shrikhande, Impossibility of some affine resolvable balanced incomplete block designs, Sankhyā, 11 (1951), 185-186.

University of Kansas

