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What Are Bayesian Filtering and Smoothing?

The term optimal filtering traditionally refers to a class of methods that
can be used for estimating the state of a time-varying system that is indi-
rectly observed through noisy measurements. The term optimal in this con-
text refers to statistical optimality. Bayesian filtering refers to the Bayesian
way of formulating optimal filtering. In this book we use these terms inter-
changeably and always mean Bayesian filtering.

In optimal, Bayesian, and Bayesian optimal filtering, the state of the
system refers to the collection of dynamic variables, such as position, ve-
locity, orientation, and angular velocity, which fully describe the system.
The noise in the measurements means that they are uncertain; even if we
knew the true system state, the measurements would not be deterministic
functions of the state but would have a distribution of possible values. The
time evolution of the state is modeled as a dynamic system that is perturbed
by a certain process noise. This noise is used for modeling the uncertainties
in the system dynamics. In most cases the system is not truly stochastic, but
stochasticity is used to represent the model uncertainties.

Bayesian smoothing (or optimal smoothing) is often considered to be
a class of methods within the field of Bayesian filtering. While Bayesian
filters in their basic form only compute estimates of the current state of
the system given the history of measurements, Bayesian smoothers can be
used to reconstruct states that happened before the current time. Although
the term smoothing is sometimes used in a more general sense for methods
that generate a smooth (as opposed to rough) representation of data, in the
context of Bayesian filtering, the term (Bayesian) smoothing has this more
definite meaning.

1.1 Applications of Bayesian Filtering and Smoothing

Phenomena that can be modeled as time-varying systems of the above type
are very common in engineering applications. This kind of model can be
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2 What Are Bayesian Filtering and Smoothing?

found, for example, in navigation, aerospace engineering, space engineer-
ing, remote surveillance, telecommunications, physics, audio signal pro-
cessing, control engineering, finance, and many other fields. Examples of
such applications are the following.

� Global positioning system (GPS) (Kaplan, 1996) is a widely used satel-
lite navigation system, where the GPS receiver unit measures arrival
times of signals from several GPS satellites and computes its position
based on these measurements (see Figure 1.1). The GPS receiver typi-
cally uses an extended Kalman filter (EKF) or some other optimal filter-
ing algorithm1 for computing the current position and velocity such that
the measurements and the assumed dynamics (laws of physics) are taken
into account. Also, the ephemeris information, which is the satellite ref-
erence information transmitted from the satellites to the GPS receivers,
is typically generated using optimal filters.

Figure 1.1 In the GPS system, the measurements are time delays
of satellite signals, and the optimal filter (e.g., extended Kalman
filter, EKF) computes the position and the accurate time.

� Target tracking (Bar-Shalom et al., 2001; Crassidis and Junkins, 2004;
Challa et al., 2011) refers to the methodology where a set of sensors,

1 Strictly speaking, the EKF is only an approximate optimal filtering algorithm because it
uses a Taylor series-based Gaussian approximation to the non-Gaussian optimal filtering
solution.
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such as active or passive radars, radio frequency sensors, acoustic ar-
rays, infrared sensors, or other types of sensors, are used for determin-
ing the position and velocity of a remote target (see Figure 1.2). When
this tracking is done continuously in time, the dynamics of the target
and measurements from the different sensors are most naturally com-
bined using an optimal filter or smoother. The target in this (single) tar-
get tracking case can be, for example, a robot, a satellite, a car, or an
airplane.

Figure 1.2 In target tracking, a sensor (e.g., radar) generates
measurements (e.g., angle and distance measurements) of the
target, and the purpose is to determine the target trajectory.

� Multiple target tracking (Bar-Shalom and Li, 1995; Blackman and
Popoli, 1999; Mahler, 2014; Stone et al., 2014) systems are used for
remote surveillance in cases where there are multiple targets moving
at the same time in the same geographical area (see Figure 1.3). This
introduces the concept of data association (which measurement was
from which target?) and the problem of estimating the number of
targets. Multiple target tracking systems are typically used in remote
surveillance for military purposes, but their civil applications are, for
example, monitoring of car tunnels, automatic alarm systems, and
people tracking in buildings.
� Inertial navigation (Titterton and Weston, 1997; Grewal et al., 2001)

uses inertial sensors, such as accelerometers and gyroscopes, for com-
puting the position and velocity of a device, such as a car, an airplane,
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Figure 1.3 In multiple target tracking, the data association
problem has to be solved because it is impossible to know without
any additional information which target produced which
measurement.

or a missile. When the inaccuracies in sensor measurements are taken
into account, the natural way of computing the estimates is by using an
optimal filter or smoother. Also, in sensor calibration, which is typically
done in a time-varying environment, optimal filters and smoothers can
be applied.
� Integrated inertial navigation (Bar-Shalom et al., 2001; Grewal et al.,

2001) combines the good sides of unbiased but inaccurate sensors, such
as altimeters and landmark trackers, and biased but locally accurate in-
ertial sensors. Combination of these different sources of information is
most naturally performed using an optimal filter, such as the extended
Kalman filter. This kind of approach was used, for example, in the guid-
ance system of the Apollo 11 lunar module (Eagle), which landed on the
moon in 1969.
� GPS/INS navigation (Bar-Shalom et al., 2001; Grewal et al., 2001) is a

form of integrated inertial navigation where the inertial navigation sys-
tem (INS) is combined with a GPS receiver unit. In a GPS/INS naviga-
tion system, the short-term fluctuations of the GPS can be compensated
by the inertial sensors, and the inertial sensor biases can be compensated
by the GPS receiver. An additional advantage of this approach is that it is
possible to temporarily switch to pure inertial navigation when the GPS
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receiver is unable to compute its position (i.e., has no fix) for some rea-
son. This happens, for example, indoors, in tunnels, and in other cases
when there is no direct line-of-sight between the GPS receiver and the
satellites.
� Robotics and autonomous systems (Thrun et al., 2005; Barfoot, 2017)

typically use combinations of tracking and inertial navigation methods,
along with sensors that measure the characteristics of the environment in
one way or another. Examples of characteristics of the environment are
radio signals or the locations of obstacles or landmarks detected from
camera images. As the environment of the robot or autonomous system
is typically unknown, the map of the environment also needs to be gener-
ated during the localization process. This concept is called simultaneous
localization and mapping (SLAM), and the methodology for this pur-
pose includes, for example, extended Kalman filters and particle filters.
� Brain imaging methods, such as electroencephalography (EEG),

magnetoencephalography (MEG), parallel functional magnetic reso-
nance imaging (fMRI), and diffuse optical tomography (DOT) (see
Figure 1.4), are based on reconstruction of the source field in the brain
from noisy sensor data by using the minimum norm estimates (MNE)
technique and its variants (Hauk, 2004; Tarantola, 2004; Kaipio and
Somersalo, 2005; Lin et al., 2006). The minimum norm solution can
also be interpreted in the Bayesian sense as a problem of estimating
the field with certain prior structure from Gaussian observations.
With that interpretation, the estimation problem becomes equivalent
to a statistical inversion or generalized Gaussian process regression
problem (Tarantola, 2004; Kaipio and Somersalo, 2005; Rasmussen and
Williams, 2006; Särkkä, 2011). Including dynamical priors then leads
to a linear or non-linear spatio-temporal estimation problem, which
can be solved with Kalman filters and smoothers (cf. Hiltunen et al.,
2011; Särkkä et al., 2012b). The same can be done in inversion-based
approaches to parallel fMRI, such as inverse imaging (InI) (Lin et al.,
2006).
� Spread of infectious diseases (Keeling and Rohani, 2007) can often

be modeled as differential equations for the number of susceptible,
infected, recovered, and dead individuals. When uncertainties are
introduced into the dynamic equations, and when the measurements are
not perfect, the estimation of the spread of the disease can be formulated
as an optimal filtering problem (see, e.g., Särkkä and Sottinen, 2008).
� Biological processes (Murray, 1993), such as population growth,

predator–prey models, and several other dynamic processes in biology,
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Figure 1.4 Brain imaging methods such as EEG and MEG are
based on estimating the state of the brain from sensor readings. In
the dynamic case, the related inversion problem can be solved
with an optimal filter or smoother.

can also be modeled as (stochastic) differential equations. Estimation
of the states of these processes from inaccurate measurements can be
formulated as an optimal filtering and smoothing problem.
� Telecommunications is also a field where optimal filters are tradition-

ally used. For example, optimal receivers, signal detectors, and phase
locked loops can be interpreted to contain optimal filters (Van Trees,
1968, 1971; Proakis, 2001) as components. Also, the celebrated Viterbi
algorithm (Viterbi, 1967) can be seen as a method for computing the
maximum a posteriori (MAP) Bayesian smoothing solution for the un-
derlying hidden Markov model (HMM).
� Audio signal processing applications, such as audio restoration (Godsill

and Rayner, 1998) and audio signal enhancement (Fong et al., 2002),
often use time-varying autoregressive (TVAR) models as the underlying
audio signal models. These kinds of models can be efficiently estimated
using optimal filters and smoothers.
� Stochastic optimal control (Aoki, 1967; Maybeck, 1982a; Stengel, 1994)

considers control of time-varying stochastic systems. Stochastic con-
trollers can typically be found in, for example, airplanes, cars, and rock-
ets. Optimal, in addition to statistical optimality, means that the control
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signal is constructed to minimize a performance cost, such as the ex-
pected time to reach a predefined state, the amount of fuel consumed, or
the average distance from a desired position trajectory. When the state of
the system is observed through a set of sensors, as it usually is, optimal
filters are needed for reconstructing the state from them.
� Learning systems or adaptive systems can often be mathematically

formulated in terms of optimal filters and smoothers (Haykin, 2001),
and they have a close relationship to Bayesian non-parametric model-
ing, machine learning, and neural network modeling (Bishop, 2006).
Methods similar to the data association methods in multiple target
tracking are also applicable to on-line adaptive classification (Andrieu
et al., 2002). The connection between Gaussian process regression
(Rasmussen and Williams, 2006) and optimal filtering has also been
discussed, for example, in Särkkä et al. (2007a), Hartikainen and Särkkä
(2010), Särkkä et al. (2013), and Särkkä and Solin (2019).
� Physical systems that are time-varying and measured through non-ideal

sensors can sometimes be formulated as stochastic state space models,
and the time evolution of the system can be estimated using optimal
filters (Kaipio and Somersalo, 2005). These kinds of problem are of-
ten called inverse problems (Tarantola, 2004), and optimal filters and
smoothers can be seen as the Bayesian solutions to time-varying inverse
problems.

1.2 Origins of Bayesian Filtering and Smoothing

The roots of Bayesian analysis of time-dependent behavior are in the field
of optimal linear filtering. The idea of constructing mathematically opti-
mal recursive estimators was first presented for linear systems due to their
mathematical simplicity, and the most natural optimality criterion from
both the mathematical and modeling points of view was least squares op-
timality. For linear systems, the optimal Bayesian solution (with minimum
mean squared error, MMSE, loss) coincides with the least squares solution,
that is, the optimal least squares solution is exactly the posterior mean.

The history of optimal filtering starts from the Wiener filter (Wiener,
1950), which is a frequency-domain solution to the problem of least
squares optimal filtering of stationary Gaussian signals. The Wiener filter
is still important in communication applications (Proakis, 2001), digital
signal processing (Hayes, 1996), and image processing (Gonzalez and
Woods, 2008). The disadvantage of the Wiener filter is that it can only be
applied to stationary signals.
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The success of optimal linear filtering in engineering applications is
mostly due to the seminal article of Kalman (1960b), which describes the
recursive solution to the optimal discrete-time (sampled) linear filtering
problem. One reason for its success is that the Kalman filter can be un-
derstood and applied with very much lighter mathematical machinery than
the Wiener filter. Also, despite its mathematical simplicity and generality,
the Kalman filter (or actually the Kalman–Bucy filter (Kalman and Bucy,
1961)) contains the Wiener filter as its limiting special case.

In the early stages of its history, the Kalman filter was soon discovered
to belong to the class of Bayesian filters (Ho and Lee, 1964; Lee, 1964;
Jazwinski, 1966, 1970). The corresponding Bayesian smoothers (Rauch,
1963; Rauch et al., 1965; Leondes et al., 1970) were also developed soon
after the invention of the Kalman filter. An interesting historical detail is
that while Kalman and Bucy were formulating the linear theory in the
United States, Stratonovich was doing the pioneering work on the prob-
abilistic (Bayesian) approach in Russia (Stratonovich, 1968; Jazwinski,
1970).

As discussed in the book of West and Harrison (1997), in the 1960s,
Kalman filter-like recursive estimators were also used in the Bayesian com-
munity, and it is not clear whether the theory of Kalman filtering or the
theory of dynamic linear models (DLM) came first. Although these theo-
ries were originally derived from slightly different starting points, they are
equivalent. Because of the Kalman filter’s useful connection to the the-
ory and history of stochastic optimal control, this book approaches the
Bayesian filtering problem from the Kalman filtering point of view.

Although the original derivation of the Kalman filter was based on the
least squares approach, the same equations can be derived from pure prob-
abilistic Bayesian analysis. The Bayesian analysis of Kalman filtering is
well covered in the classical book of Jazwinski (1970) and a bit more re-
cently in the book of Bar-Shalom et al. (2001). Kalman filtering, mostly
because of its least squares interpretation, has been widely used in stochas-
tic optimal control. A practical reason for this is that the inventor of the
Kalman filter, Rudolph E. Kalman, has also made several contributions
to the theory of linear quadratic Gaussian (LQG) regulators (Kalman,
1960a), which are fundamental tools of stochastic optimal control (Sten-
gel, 1994; Maybeck, 1982a).
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Figure 1.5 In optimal filtering and smoothing problems a
sequence of hidden states xk is indirectly observed through noisy
measurements yk :

0 5 10 15

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time step k

R
e
s
o
n
a
to

r 
p
o
s
it
io

n
 x

k

 

 

Signal

Measurement

Figure 1.6 An example of a time series, which models a
discrete-time resonator. The actual resonator state (signal) is
hidden and only observed through the noisy measurements.

1.3 Optimal Filtering and Smoothing as Bayesian Inference

In mathematical terms, optimal filtering and smoothing are considered to
be statistical inversion problems, where the unknown quantity is a vector-
valued time series fx0; x1; x2; : : :g that is observed through a set of noisy
measurements fy1; y2; : : :g, as illustrated in Figure 1.5. An example of this
kind of time series is shown in Figure 1.6. The process shown is a noisy
resonator with a known angular velocity. The state xk D .xk Pxk/T is two
dimensional (2D) and consists of the position of the resonator xk and its
time derivative Pxk . The measurements yk are scalar observations of the
resonator position (signal), and they are corrupted by measurement noise.
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10 What Are Bayesian Filtering and Smoothing?

The purpose of the statistical inversion at hand is to estimate the hid-
den states x0WT D fx0; : : : ; xT g from the observed measurements y1WT D
fy1; : : : ; yT g, which means that in the Bayesian sense we want to compute
the joint posterior distribution of all the states given all the measurements.
In principle, this can be done by a straightforward application of Bayes’
rule

p.x0WT j y1WT / D p.y1WT j x0WT / p.x0WT /

p.y1WT /
; (1.1)

where

� p.x0WT / is the prior distribution defined by the dynamic model,
� p.y1WT j x0WT / is the likelihood model for the measurements,
� p.y1WT / is the normalization constant defined as

p.y1WT / D
Z

p.y1WT j x0WT / p.x0WT / dx0WT : (1.2)

Unfortunately, this full posterior formulation has the serious disadvantage
that each time we obtain a new measurement, the full posterior distribution
would have to be recomputed. This is particularly a problem in dynamic
estimation (which is exactly the problem we are solving here!), where mea-
surements are typically obtained one at a time, and we would want to com-
pute the best possible estimate after each measurement. When the number
of time steps increases, the dimensionality of the full posterior distribu-
tion also increases, which means that the computational complexity of a
single time step increases. Thus eventually the computations will become
intractable, no matter how much computational power is available. With-
out additional information or restrictive approximations, there is no way of
getting over this problem in the full posterior computation.

However, the above problem only arises when we want to compute the
full posterior distribution of the states at each time step. If we are willing to
relax this a bit and be satisfied with selected marginal distributions of the
states, the computations become an order of magnitude lighter. To achieve
this, we also need to restrict the class of dynamic models to probabilis-
tic Markov sequences, which is not as restrictive as it may at first seem.
The model for the states and measurements will be assumed to be of the
following type.

� An initial distribution specifies the prior probability distribution p.x0/

of the hidden state x0 at the initial time step k D 0.
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� A dynamic model describes the system dynamics and its uncertainties
as a Markov sequence, defined in terms of the transition probability dis-
tribution p.xk j xk�1/.
� A measurement model describes how the measurement yk depends

on the current state xk . This dependence is modeled by specifying the
conditional probability distribution of the measurement given the state,
which is denoted as p.yk j xk/.

Thus a general probabilistic state space model is usually written in the
following form:

x0 � p.x0/;

xk � p.xk j xk�1/;

yk � p.yk j xk/:

(1.3)

Because computing the full joint distribution of the states at all time steps is
computationally very inefficient and unnecessary in real-time applications,
in Bayesian filtering and smoothing the following marginal distributions
are considered instead (see Figure 1.7).

� Filtering distributions computed by the Bayesian filter are the marginal
distributions of the current state xk given the current and previous mea-
surements y1Wk D fy1; : : : ; ykg:

p.xk j y1Wk/; k D 1; : : : ; T: (1.4)

The result of applying the Bayesian filter to the resonator time series in
Figure 1.6 is shown in Figure 1.8.
� Prediction distributions, which can be computed with the prediction step

of the Bayesian filter, are the marginal distributions of the future state
xkCn, n steps after the current time step:

p.xkCn j y1Wk/; k D 1; : : : ; T; n D 1; 2; : : : : (1.5)

� Smoothing distributions computed by the Bayesian smoother are the
marginal distributions of the state xk given a certain interval y1WT D
fy1; : : : ; yT g of measurements with T > k:

p.xk j y1WT /; k D 1; : : : ; T: (1.6)

The result of applying the Bayesian smoother to the resonator time series
is shown in Figure 1.9.

Computing filtering, prediction, and smoothing distributions require only
a constant number of computations per time step, and thus the problem of
processing arbitrarily long time series is solved.
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Figure 1.7 State estimation problems can be divided into optimal
prediction, filtering, and smoothing, depending on the time span
of the measurements available with respect to the time of the
estimated state.
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Figure 1.8 The result of computing the filtering distributions for
the discrete-time resonator model. The estimates are the means of
the filtering distributions, and the quantiles are the 95% quantiles
of the filtering distributions.

1.4 Algorithms for Bayesian Filtering and Smoothing

There exist a few classes of filtering and smoothing problems that have
closed form solutions.
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Figure 1.9 The result of computing the smoothing distributions
for the discrete-time resonator model. The estimates are the
means of the smoothing distributions, and the quantiles are the
95% quantiles of the smoothing distributions.

� The Kalman filter (KF) is a closed form solution to the linear Gaussian
filtering problem. Due to linear Gaussian model assumptions, the poste-
rior distribution is exactly Gaussian, and no numerical approximations
are needed.
� The Rauch–Tung–Striebel smoother (RTSS) is the corresponding closed

form smoother for linear Gaussian state space models.
� Finite-state filters and smoothers are solutions for hidden Markov mod-

els (HMMs) with finite state spaces.

But because the Bayesian optimal filtering and smoothing equations are
generally computationally intractable, many kinds of numerical approxi-
mation methods have been developed, for example:

� The extended Kalman filter (EKF) approximates the non-linear and non-
Gaussian measurement and dynamic models by linearization, that is,
by forming a Taylor series expansion at the nominal (or maximum a
posteriori, MAP) solution. This results in a Gaussian approximation to
the filtering distribution.
� The extended Rauch–Tung–Striebel smoother (ERTSS) is the approxi-

mate non-linear smoothing algorithm corresponding to the EKF.
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� The unscented Kalman filter (UKF) approximates the propagation
of densities through the non-linearities of measurement and noise
processes using the unscented transform. This also results in a Gaussian
approximation.
� The unscented Rauch–Tung–Striebel smoother (URTSS) is the approxi-

mate non-linear smoothing algorithm corresponding to the UKF.
� Sequential Monte Carlo methods or particle filters and smoothers repre-

sent the posterior distribution as a weighted set of Monte Carlo samples.
� The unscented particle filter (UPF) and local linearization-based parti-

cle filtering methods use UKFs and EKFs, respectively, for approximat-
ing the optimal importance distributions in particle filters.
� Rao–Blackwellized particle filters and smoothers use closed form inte-

gration (e.g., Kalman filters and RTS smoothers) for some of the state
variables and Monte Carlo integration for others.
� Grid-based approximation methods approximate the filtering and

smoothing distributions as discrete distributions on a finite grid.
� Other methods also exist, for example, based on Gaussian mixtures, se-

ries expansions, describing functions, basis function expansions, expo-
nential family of distributions, variational Bayesian methods, and batch
Monte Carlo (e.g., Markov chain Monte Carlo, MCMC, methods).

1.5 Parameter Estimation

In state space models of dynamic systems, there are often unknown or un-
certain parameters � , which should be estimated along with the state itself.
For example, in a stochastic resonator model, the frequency of the resonator
might be unknown. Also, the noise variances might be only known approx-
imately, or they can be completely unknown. Although, formally, we can
always augment unknown parameters as part of the state, in practice it is
often useful to consider parameter estimation separately.

In a Bayesian setting, the proper way to estimate the parameters is by
setting a prior distribution on the parameters p.�/ and treating them as
additional random variables in the model. When unknown parameters are
present, the state space model in Equation (1.3) becomes

� � p.�/;

x0 � p.x0 j �/;

xk � p.xk j xk�1; �/;

yk � p.yk j xk; �/:

(1.7)
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The full Bayesian solution to this problem would require the computation
of the full joint posterior distribution of states and parameters p.x0WT ; � j
y1WT /. Unfortunately, computing this joint posterior of the states and pa-
rameters is even harder than computation of the joint distribution of states
alone, and thus this task is intractable.

Fortunately, when run with fixed parameters � , the Bayesian filter al-
gorithm produces the sequence of distributions p.yk j y1Wk�1; �/ for k D
1; : : : ; T as side products. Once we have these, we can form the marginal
posterior distribution of parameters as follows:

p.� j y1WT / / p.�/

TY
kD1

p.yk j y1Wk�1; �/; (1.8)

where we have denoted p.y1 j y1W0; �/ , p.y1 j �/ for notational conve-
nience. When combined with the smoothing distributions, we can form all
the marginal joint distributions of states and parameters as follows:

p.xk; � j y1WT / D p.xk j y1WT ; �/ p.� j y1WT / (1.9)

for k D 1; : : : ; T , where p.xk j y1WT ; �/ is the smoothing distribution of
the states with fixed model parameters � . However, we cannot compute the
full joint posterior distribution of states and parameters, which is the price
of only using a constant number of computations per time step.

Although here we use the term parameter estimation, it might some-
times be the case that we are not actually interested in the values of the
parameters as such, but we just do not know their values. In that case the
proper Bayesian approach is to integrate out the parameters. For example,
to compute the smoothing distributions in the presence of unknown pa-
rameters we can integrate out the parameters from the joint distribution in
Equation (1.9):

p.xk j y1WT / D
Z

p.xk; � j y1WT / d�

D
Z

p.xk j y1WT ; �/ p.� j y1WT / d�:

(1.10)

Many of the Bayesian methods for parameter estimation indeed allow this
to be done (approximately). For example, by using the parameter samples
produced by a Markov chain Monte Carlo (MCMC) method, it is possible
to form a Monte Carlo approximation to the above integral.
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1.6 Exercises

1.1 Find the seminal article of Kalman (1960b) from the internet (or from a
library) and investigate the orthogonal projections approach that is taken in
the article. How would you generalize the approach to the non-linear/non-
Gaussian case? Is it possible?

1.2 An alternative to Bayesian estimation would be to formulate the state estima-
tion problem as maximum likelihood (ML) estimation. This would amount
to estimating the state sequence as the ML-estimate

Ox0WT D arg max
x0WT

p.y1WT j x0WT /: (1.11)

Do you see any problem with this approach? Hint: Where is the dynamic
model?

1.3 Assume that in an electronics shop, the salesperson decides to give you a
chance to win a brand new GPS receiver. He lets you choose one of three
packages of which one contains the GPS receiver and two others are empty.
After you have chosen the package, the salesperson opens one of the pack-
ages that you have not chosen – and that package turns out to be empty.
He gives you a chance to switch to the other yet unopened package. Is it
advantageous for you to do that?
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