A NOTE ON A PAIR OF INTEGRAL OPERATORS INVOLVING WHITTAKER FUNCTIONS

by G. M. HABIBULLAH

(Received 2 October, 1975; revised 17 February, 1976)
In recent years various authors have studied integral operators involving confluent hypergeometric functions $M_{\kappa, \mu}$ and $W_{\kappa, \mu}$. Using the method devised by Fox [2], Saxena [5] obtained the inverse of an integral operator with kernel $(x t)^{\mu-\frac{1}{2}} e^{-\frac{1}{2} x t} W_{\kappa, \mu}(x t)$. Singh [6] derived the solution of an integral equation of convolution type with kernel

$$
(t-x)^{\mu-\frac{1}{2}} W_{\kappa, \mu}(t-x)
$$

In this note we show that the transforms defined by

$$
\begin{align*}
\mathscr{H}_{\kappa, \mu} f(x) & =\int_{0}^{\infty}(x t)^{\kappa-\frac{1}{2}} e^{-\frac{1}{2} x t} M_{\kappa, \mu}(x t) f(t) d t \tag{1}\\
\mathscr{G}_{\kappa, \mu} f(x) & =\int_{0}^{\infty}(x t)^{\kappa-\frac{1}{2}} e^{-\frac{1}{2} x t} W_{\kappa, \mu}(x t) f(t) d t \tag{2}
\end{align*}
$$

in which $M_{\kappa, \mu}$ and $W_{\kappa, \mu}$ denote Whittaker's confluent hypergeometric functions can be represented as the composition of two operators, one of which

$$
\begin{equation*}
T^{\alpha} f(x)=x^{\alpha-1} \int_{0}^{\infty} t^{\alpha-1} e^{-x t} f(t) d t, \quad(\alpha>0, x>0) \tag{3}
\end{equation*}
$$

is a modification of the Laplace transform. The second operator, defined by

$$
\begin{equation*}
I_{\eta, \alpha} f(x)=\frac{x^{-\eta-\alpha}}{\Gamma(\alpha)} \int_{0}^{x}(x-t)^{\alpha-1} t^{\eta} f(t) d t \quad(\alpha>0, \eta>-1, x \geqq 0), \tag{4}
\end{equation*}
$$

was introduced by Kober [3].
It is easily shown [4] that T^{α} and $I_{\eta, \alpha}$ map $L^{2}(0, \infty)$ onto itself and that, in terms of the usual inner product in that space, the operator T^{α} is self-adjoint while the operator $I_{\eta, \alpha}$ has adjoint $K_{\eta, x}$ where

$$
\begin{equation*}
K_{\eta, \alpha} f(x)=\frac{x^{\eta}}{\Gamma(\alpha)} \int_{x}^{\infty}(t-x)^{\alpha-1} t^{-\eta-\alpha} f(t) d t, \quad(\alpha>0, \eta>-1, x \geqq 0) . \tag{5}
\end{equation*}
$$

It follows immediately from these definitions and the result

$$
t^{\kappa+\mu} I_{-\frac{1}{2}, t-\kappa+\mu}\left[y^{\kappa+\mu} e^{-y t} ; y \rightarrow x\right]=\gamma_{\kappa, \mu}(x t)^{\kappa-\frac{1}{2}} e^{-\frac{1}{2} x t} M_{\kappa, \mu}(x t),
$$

where $\gamma_{\kappa, \mu}=\Gamma\left(\mu+\kappa+\frac{1}{2}\right) / \Gamma(2 \mu+1)(c f$. (14) on p. 187 of [1]), that

$$
\begin{equation*}
I_{-\frac{1}{2}, \frac{1}{2}-\kappa+\mu} T^{\kappa+\mu+1} f(x)=\gamma_{\kappa, \mu} \mathscr{H}_{\kappa, \mu} f(x), \tag{6}
\end{equation*}
$$

Glasgow Math. J. 18 (1977) 99-100.
where $\mathscr{H}_{\kappa, \mu}$ is defined by equation (1). Similarly the relation

$$
\begin{equation*}
K_{\kappa-\mu, \frac{1}{2}-\kappa+\mu} T^{\kappa+\mu+1} f(x)=\mathscr{G}_{\kappa, \mu} f(x) \tag{7}
\end{equation*}
$$

follows immediately from the definitions (3), (5) and formula (13) on p. 202 of [1], $\mathscr{G}_{\kappa, \mu}$ being defined by equation (2).

To obtain the inversion theorems for $\mathscr{H}_{\kappa, \mu}$ and $\mathscr{G}_{\kappa, \mu}$ we need the formulae

$$
\begin{gathered}
\left(T^{\alpha}\right)^{-1} f(x)=x^{1-\alpha} \mathscr{L}^{-1}\left[t^{1-\alpha} f(t) ; x\right], \\
I_{\eta, \alpha}^{-1}=I_{\eta+\alpha,-\alpha}, \quad K_{\eta, \alpha}^{-1}=K_{\eta+\alpha,-\alpha}
\end{gathered}
$$

where, for $\alpha<0, I_{\eta, \alpha}$ and $K_{\eta, \alpha}$ are defined by the equations

$$
\begin{aligned}
I_{\eta, \alpha} f(x) & =x^{-\eta-\alpha} \frac{d^{n}}{d x^{n}} x^{n+\alpha+\eta} I_{\eta, \alpha+n} f(x), \\
K_{n, \alpha} f(x) & =(-1)^{n} x^{\eta} \frac{d^{n}}{d x^{n}} x^{n-\alpha} K_{n-n, \alpha+n} f(x)
\end{aligned}
$$

with n a positive integer such that $0 \leqq \alpha+n<1$.
Now, if $\mathscr{H}_{\kappa, \mu} f=\hat{f}_{\kappa, \mu}$ it follows from (6) that

$$
T^{\kappa+\mu+1} f=\gamma_{\kappa, \mu} I_{-\kappa+\mu, \kappa-\mu-\frac{1}{2}} \hat{f}_{\kappa, \mu}
$$

and hence that

$$
\mathscr{H}_{\kappa, \mu}^{-1} \hat{f}_{\kappa, \mu}(x)=\gamma_{\kappa, \mu} x^{-\kappa-\mu} \mathscr{L}^{-1}\left[t^{-\kappa-\mu} I_{-\kappa+\mu, \kappa-\mu-\frac{1}{2}} \hat{f}_{\kappa, \mu}(t) ; x\right] .
$$

Similarly the equation $\mathscr{G}_{\kappa, \mu} f=f_{\kappa, \mu}^{*}$ implies that

$$
T^{\kappa+\mu+1} f=K_{\frac{1}{2}, \kappa-\mu-\frac{1}{2}} f_{\kappa, \mu}^{*}
$$

and hence that

$$
\mathscr{G}_{\kappa, \mu}^{-1} f_{\kappa, \mu}^{*}(x)=x^{-\kappa-\mu} \mathscr{L}^{-1}\left[t^{-\kappa-\mu} K_{\frac{1}{2}, \kappa-\mu-\frac{1}{2}} f_{\kappa, \mu}^{*}(t) ; x\right]
$$

REFERENCES

1. A. Erdélyi et al., Higher transcendental functions Vol. I (McGraw-Hill, 1953).
2. C. Fox, An inversion formula for the kernel $K_{v}(x)$, Proc. Cambridge Philos. Soc. 61 (1965), 457-467.
3. H. Kober, On fractional integrals and derivatives, Quart. J. Math. Oxford 11 (1940), 193-211.
4. G. O. Okikiolu, Aspects of the theory of bounded integral operators in L^{p}-space (Academic Press, 1971).
5. C. Singh, An inversion integral for a Whittaker transform, Riv. Mat. Univ. Parma (2) 11 (1970), 277-280.
6. R. K. Saxena, An inversion formula for Varma transform, Proc. Cambridge Philos. Soc. 62 (1966), 467-471.

Department of Mathematics

University of Jos
Jos, Nigeria

