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REGULARISATIONS OF CONVEX FUNCTIONS
AND SLICEWISE SUPREMA

S. SIMONS

For a number of years, there has been interest in the regularisation of a given
proper convex lower semicontinuous function on a Banach space, defined to be
the episum (=inf-convolution) of the function with a scalar multiple of the norm.
There is an obvious geometric way of characterising this regularisation as the lower
envelope of cones lying above the graph of the original function. In this paper, we
consider the more interesting problem of characterising the regularisation in terms
of approximations from below, expressing the regularisation as the upper envelope
of certain sub tangents to the graph of the original function. We shall show that
such an approximation is sometimes (but not always) valid. Further, we shall give
an extension of the whole procedure in which the scalar multiple of the norm is
replaced by a more general sublinear functional. As a by-product of our analysis,
we are led to the consideration of two senses stronger than the pointwise sense in
which a function on a Banach space can be expressed as the upper envelope of a
family of functions. These new senses of suprema lead to some questions in Banach
space theorey.

1. INTRODUCTION

Let E be a real Banach space with adjoint E* . If h, k : E —» K U {oo} are proper
and convex, we define the episum (or inf-convolution) of h and k by

(By saying that h is proper we mean that dom(h) := {x : x 6 E, h(x) 6 R} ^ 0.)
For a number of years, there has been some interest in the Baire-Wijsman- Hausdorff-
Pasch regularisation of a given proper convex lower semicontinuous function / : E —>
K U {oo}, defined for n ^ 1 to be / + n || ||. In more recent years, Hiriart-Urruty
conducted a systematic investigation of the regularisation in [7]. In [6], Fitzpatrick
and Phelps used the regularisation to motivate their approximation scheme for locally
maximal monotone operators which (by contrast with the Moreau-Yosida scheme) is
valid in non-reflexive spaces. They also gave a history of the regularisation. Finally,
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482 S. Simons [2]

Beer in [2] and Borwein and Vanderwerff in [3] discussed the connection between the
regularisation and epigraphical convergence. There is an obvious way of characterising
the regularisation in terms of cones lying above the graph of / , which we discuss later on
in this introduction. More interesting is the problem of characterising the regularisation
in terms of approximations from below, expressing / + n \\ || as the upper envelope of
certain subtangents to the graph of / . We shall see that such an approximation is
sometimes (but not always) valid. Further, we shall give an extension of the whole
procedure in which n \\ || is replaced by a more general sublinear functional. As a by-
product of our analysis, we are led to the consideration of two senses stronger than
the pointwise sense in which a function on E can be expressed as the upper envelope
of a family of functions. We call these senses "graphwise supremum" and "slicewise
supremum".

We shall suppose in the discussion that follows that there exists x £ E such that

( / + n II l l)(x) > - ° ° or> equivalently (see Lemma 6) that / + n || || : E -> R. It is

immediate from the definitions that / + n \\ || can be described in terms of its strict

epigraph as follows: let K be the open cone {(y, A) : y £ E, A £ R, n \\y\\ < A}. Then

= |J
z£dom(

that is to say, the strict epigraph of / + n || || is obtained by sliding the vertex of the
cone K along the graph of / and then taking the lower envelope. Another potential
way of visualising / + n \\ || is motivated by the fact that / itself is the upper envelope
of its subtangents. In order to explain this, we shall need to introduce some more
notation. If x £ E, the subdifferential of / at x is defined by

8f(x) := {x* : x* £ E*, for all y £ E,f(x) + (y - x, x") ^ /(y)}.

We write df := {(x,x*) : x <= E, x* £ df{x)} C E x E*. If (x,x*) £ df, we write
cr/(x,x*) for the subtangent to f at (x,f(x)) with slope x*,that is to say

for all y £ E, af{x, x*)(y) := f(x) + (y - x, x").

The "fact" referred to above is then that

(0.1) f = sup{*f(z,z*):(z,z*)edf}

and the corresponding way of visualising / + n || || is then that

(0.2) f+n\\\\=snp{af{z,zt):{z,z*)€df, | | z ' | | < n } .

We first give an example where the formula (0.2) fails.
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EXAMPLE 1. Let E := R and f(x) := ex + x. Then (f + || \\\{x) = x but, since

there exists no {z,z*) £ df such that \z*\ ^ 1, the supremum in (0.2) is - c o .

It will follow from Corollaries 9 and 14 that the formula (0.2) is true if / is bounded

below. The next example shows that (0.2) may be true even if / is not bounded below.

EXAMPLE 2. Let E : = R and f(x) := x. Then we have equality in (0.2).

2. G R A P H W I S E SUPREMA

The suprema in (0.1) and (0.2) are, of course, to be interpreted in the pointwise
sense. There are, however, stronger senses in which a given function j : £ - » R U {°°}
can be the "supremum" of a family {sw}wen where, for each u> £ fi, su : E —>RU {oo}
and su ^ g on E. We now discuss two of these senses. We say that an extended
real-valued function on E is boxed above if its domain is bounded and it is bounded
above by an element of R. We shall say that

g = sup sugraphwise
wen

if, for each proper, concave, boxed above function b : E —> R U {—oo} such that

inf E \.9 ~b\ > 0, there exists u> 6 fi such that inf E \SU — b] > 0. It follows easily that if
g = sup su graphwise then g = sup sw pointwise. There are trivial examples that show

wen wen
that the converse of this fails. Let E = R , s(x) := x and t(x) := —x. Then | | is the
pointwise but not the graphwise supremum of s and t. In Theorem 17, we characterise
(for E a general Banach space) those nonempty bounded convex subsets $7 of E* for
which the pointwise supremum is actually a graphwise supremum and, in Remark 18,
we consider which Banach spaces have the property that the pointwise supremum of
every bounded convex subset of E* is a graphwise supremum.

3. SLICEWISE SUPREMA

If A and B are nonempty subsets of E x R, we say that A is separated from B
if the distance between A and B (with respect to any norm on E x R that gives the
product topology) is strictly positive. We use " e p i ( / ) " to stand for the epigraph of / ,
the set of points in E x R that lie on or above the graph of / and " h y p o ( / ) " to stand
for the hypograph of / , the set of points in E x R that he on or below the graph of / .
Let g : E -> R U {oo} and, for each u E f i , « U : £ - » R U {oo} and su ^ g on E. We
shall say that

g = sup s^slicewise
wen
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if, for each proper, concave, boxed above function 6 : E —> K U {—oo} such that epi (g)

is separated from hypo (6), there exists w G 0 such that epi(su>) is separated from

hypo {b) . In Theorem 16, we give other characterisations of slicewise suprema.

The concepts of graphwise and slicewise supremum are related by the following

result.

LEMMA 3 . Let g : E -> E and, for eaci w £ fi, su : E -> R and s^ ^ g on E.

Suppose that g and all the sw are Lipschitz. Then

g = sup «„, graphwise <=> g — sup su slicewise.

PROOF: ( = > ) Suppose that b is as above, and epi (g) is separated from hypo (b) .
Then inf E [<7 — 6] > 0. By hypothesis, there exists w 6 fi such that 6 := inf g \su — 6] >
0. Let Af be strictly greater than the Lipschitz constant of su. If (x,A) £ epi(sw),
(y,fj.) e hypo(6) and ||x - y\\ ^ 6/2M then

|A - /x| > A - y. > 5w(x) - 6(y) > iw(y) - 6(3/) - M ||x - y|| ^ 6 - ^ = ^,

hence epi(sw) is separated from hypo (6). Thus g = sup su graphwise.

( < = ) The proof of this is similar to the proof of (=>) , only using the Lipschitz

property of g. D

4. REGULARISATION OF CONVEX FUNCTIONS AND SLICEWISE SUPREMA

The definition of "slicewise supremum" is motivated by a result of Beer (see [l ,
Lemma 4.10]) which implies that (0.1) holds slicewise. These observations leads natu-
rally to the question whether there is a corresponding strengthening of (0.2). We shall
prove in the separation form of Theorem 8 that there is such a strengthening which is,
in fact, true for sublinear functionals T more general than n\\ ||. (We refer the reader
to the statement of the episum form of Theorem 8 for the definition of -C •) Theorems 7
and 8 form the central part of the analysis of this paper. We have stated both of them in
an "episum form" and a "separation form". The separation form is the most convenient
for applications, while the somewhat more obscure episum form seems to be the most
convenient for computation, and enables us to exploit directly the associativity property
of + . (The computational device contained in the proof of Theorem 7 is motivated by
[10, Theorem 4.4]. In Theorem 11, we give a geometric form of the ideas of Theorem
7, which we phrase in terms of cones. In Theorem 12, we bootstrap Theorem 8 into the
following generalisation: let C* be a nonempty weak "-compact convex subset of E*

such that dom/* flint (C*) ^ 0. For all x 6 E, let U{x) := max(x, C*). Then

/ + U = supj <rf(z,z*) : (z,z*) £ df, z* £ int(C*) > slicewise and graphwise.
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5. RESULTS

Let g : E —> R U {oo} be a proper, convex, lower semicontinuous function. If
z £ dom [g) and v £ E then we write

d+g{z)(v) := ehm+

d+g(z)(v) is the directional derivative of g at z in the direction u. Since the above

limit can be replaced by an infimum, it follows that,

(3.1) for all z £ dom(5) and v £ E, g(z + v) ^ d+g(z)(v) + g(z).

LEMMA 4 . Let g be as above, /3 > 0 and g be bounded below. Then there exists

z £ dom (5) such that, for all v £ E, d+g(z)(v) > —j3 \\v\\.

PROOF: From Ekeland's variational principle, (see [5, Theorem 1, p.444]), there
exists z £ dom (g) such that, for all w £ E, g(w) ^ g(z) — /3\\z — w\\. The required
result follows from the definition of d+g(z)(v) by putting w := z + 6v and letting
0->O+. D

We now give two computational properties of + which do not depend on the

norm of E.

LEMMA 5 . Let g : E —* R U {oo} be proper, convex and bounded below, and

T : E -> [0,oo) be convex. Then

PROOF: Clearly g + T is real-valued and bounded below (by inf^^). Let 7r :=

( s + T ) ( 0 ) . For all r? £ (0,1), (g + T/T^O) ^ TT. Let n £ (-OO,TT). We shall

complete the proof of the Lemma by finding 77 £ (0,1) such that

(5.1)

If fi ^ inieg then (5.1) follows with any 77 e (0,1). Suppose, on the other hand, that

(j. > inf E g • Let
fi - infEg c / n ,x

77:= r-i £ (0,1).
7T — H U E g

For all y £ dom(5), 5(y) + T{-y) > (g + T)(0) = TT, hence

r?T(-y) )
hi
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(5.1) now follows by taking the infimum over y. U

LEMMA 6 . Let g : E -> R U {oo} be proper and convex, V : E -> R be sublinear,

and suppose that there exists x G E such that (g + Vj(x) > —oo. Tien g + V :

E —> R and,

for allu,veE, (5 + v)(u) - (g + F)(U) ^ V(u - v).

PROOF: Let y,z e E. Then

9{y) + V(z -y)> g(y) + V(x -y)- V(x - z) > (g + v)(x) - V(x - z).

Taking the infimum over y,

(g + V^z) > (g + F ) ( X ) - V{x -z)> - oo .

The results follows easily from this. D

We say that an extended real-valued function on E is boxed below if its domain is

bounded and it is bounded below by an element of K.

THEOREM 7 . (Episum form) Let l i : £ - t R U {°°} oe proper, convex and
lower semicontinuous, and k : E —» M U {oo} be proper, convex and boxed below. Let
T : E —* R be a sublinear functional such that,

(7.1) for some M > m > 0, m || || ̂  T ̂  M \\ \\ on E.

(That is to say, T is continuous and coercive.) Suppose, further, that

(h + jfc + r)(o)>i/>-oo

and 9 > 1. Then

(7.2) there exists z £ dom(/i) such that h(z) + ( d+h(z) + k + 0T\(-Z) > v

from which it follows that

(7.3) there exists z* G dh(z) such that z* ^ 0T on E and (<rh(z,z*) + k)(0) > v.

PROOF: Choose ct > 0 such that

(7.4)
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and 6 > 0 such that 1 + 26 ^ 6 and 6rn diam(dom(A;)) ^ a . Define

W(y):=(k+(l + S)T)(-y) (y E E).

From (7.1) and Lemma6 with g := Jfc and V := (1 + 6)T, W : E -> R, W is M(l + 6)-
Lipschitz, and thus W is continuous. Further, from (7.4),

= (h+k+ - o o .

Thus, from Lemma 4 with g := h + W and (3 := 6m > 0, there exists z 6
dom(/i + W) = dom(/i) such that,

(7.5) for all v 6 E, d+(h + W){z)(v) ^ -6m \\v\\.

Let y 6 E. Since 0 ̂  1 + 26, for all x G dom(ife),

Jb(x) + W(-y - x) > k{x) + (1 + tf)T(-y - x) + 6T{-y - x)

where D(y) stands for the distance from — y to dom(fc). Taking the infimum over
x G dom(fc) and using the definition of W, we obtain

(7.6) (fc + 0T)(-y) > W{y) + 6mD(y).

Using an exactly analogous argument, we can prove that

(7.7) W(z) :=

We now prove that (7.2) holds with the value of z chosen above. Let v £ E. From
(7.6) with y := z + v,

h{z) + d+h{z){v) +{k + OT) (-* - v) > h(z) + d+h(z)(v) + W{z + v)+ 6mD(z + v);

from (3.1) with g := W,

^h(z)+ d+h{z)(v)+ d+W(z)(v) + W{z)

= h(z) + d+(h + W){z)(v) + W(z) + 6mD(z + v);

from (7.5),

^ h(z) - 6m \\v\\ + W{z) + 6mD{z + v) = h(z) + W{z) + 6mD(z + v) - 6m \\v\\;
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from (7.7),

^ h(z) + (k + T\ (-Z) + SmD(z) + SmD(z +v)-6m \\v\\.

Thus we have proved that

(7.8) h(z)+ d+h{z)(v) + (k+ OT) (-z- v)

> [h(z) + (k + T)(-z)] + 6m[D(z) + D(Z + V ) - \\V\\].

From (7.4),

(7.9) h(z) + (jfe + r)(-z) > (h + k + r)(0) ^ v + a.

Furthermore, by direct computation,

(7.10) D(z) + D(z + v) - ||v|| ^ - diam(dom(fc)).

Thus, since 8m diam(dom(fc)) ^ a, we can substitute (7.9) and (7.10) into (7.8) and
obtain:

h(z) + d+h(z)(v) + (k + 6T){-z -v)^(v + a)-a = u.

Since this holds for all v £ E, this establishes that

h(z) + ( d+h(z) + k + 0r)(-*) ^ v,

which is (7.2). Consequently, for all x £ E,

)>v- h{z) - k(-x - z).

Since k is proper, from Lemma 6 with g :— d h(z) and V := 0T,

d+h{z) + BT : E -> R.

We write S := d+h(z) + 0T, and define / : E -> RU {-oo} by f(x) :-v - h(z) -
k(~x — z) . It now follows from a routine computation using infima that S is a sublinear
functional. Since / is concave, from the sandwich theorem (see Konig [8, Theorem 1.7,
p.112]), there exists a linear functional z* on E such that

/ ^ z* ^ S on E.
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(The existence of z* satisfying the above inequality can also be deduced from the
Eidelheit separation theorem in E x R.) Since z* ^ 5 on E we have both z* $J
0T on E and z* ^ d+h(z) on E. The first of these inequalities implies that z* is
continuous and, combining this with the second, we obtain that (2,2*) £ dh. Let
y £ E. Then, since / ^ z* on E, f(y — z) ^ (y — z, z*), which can be rewritten
ah(z,z*)(y) + k(—y) ^ i>. Taking the infimum over y £ E, we obtain that

(vh(z,z*) + fc)(0)^i/.

This establishes (7.3), and hence completes the proof of the theorem. D

THEOREM 7. (Separation form) Let h : E —* I U {00} be proper, convex,
and iower semicontinuous, T : -E —» K be a sublinear functional satisfying (7.1), and
0 > 1. Let b : E —* R U {—00} be proper, conca.ve and boxed above, and
infE[Y/i + T ) - &1 > 0. Tien tiere exists {z,z*) E dh such that z* < 0T on E
and iniE[<rh(z,z*) - b] > 0.

PROOF: We define k := E -> R U {00} by fc(z) := -b(-x). It follows that

f/i + k + T)(0) > 0. From the episum form of the theorem, there exists (z,z*) £

dh such that z* ^ 6T on E and (<rh(z,z*) + JfcVo) > 0. The result follows since

miE[crh{z,z*)-b}= (*h(z,z*)+e ib)(0). •

THEOREM 8. (Episum form) Let / c E - t R U {00} be proper, convex, lower
semicontinuous and bounded below, k : E —» K U {00} be proper, convex and boxed
below, and T : E —> K be a sub/inear functfonai satisfying (7Jj. Tien

(h +k +T\(0) = sup{(ah(z,z*) +fc)(0) = (2,2*) £ d/i, z* ^ T on

wiere "z* <^T onE" means that there exists ( G (0,1) suci t i a t z* ^ C.T on E.

PROOF: Let {z,z*) £ dh and z* ^ T on E. Let x,y £ E. Then

*h{z,z*)(x) + k{-x) = <xh(z, z*){y) + (x-y, z') + k(-x) ^ h{y) + T{x - y) + k[-

Taking the infimum over x and y, (<rh(z,z*) + k)(0) ^ (h + k + T ) ( 0 ) . Co

quently,

ife+ T)(0)^sup{(<r/i( .z,**) + t ) ( 0 ) :(«,«*)
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We complete the proof of the theorem by showing that

sup{ (crh(z,z*) + k)(0): {z,z*)edh, z* <C T on E} > (h + k + r)(0).

Let —oo < v < (h + k + TJ(O). From Lemma 5 with g :— h + k (which is bounded

below since h and k are), there exists 7/ G (0,1) such that (h + k + TJT)(0) > v.

The result follows from the episum form of Theorem 7 with T replaced by r)T and any

C e f o . i ) . (0-=Ch) D
THEOREM 8. (Separation form) Let h : E —> R U {oo} be proper, convex,

lower semicontinuous and bounded below, and T : E —> R fee a sublinear functional
satisfying (7.1). Then

h + T = sup< crh(z, z*) : (z, z*) £ dh, z* <C T on E > slicewise and graphwise.

PROOF: Let b : E —» M. U {—oo} be proper, concave and boxed above, and

infij[Y/i+ T) - b\ > 0. We define k := E -> R U {oo} by k(x) := -b(-x). It

follows that (h + k + TJ(O) > 0. From the episum form of the theorem, there exists

(z,z*) G dh such that z * « T o n £ and (crh(z,z*) + k)(0) > 0. The result foUows

since in{B[<rh(z,z*)-b] = (ah(z,z*) + Jb)(O). D

COROLLARY 9 . Let h : E —» R U {oo} be proper, convex, lower semicontinuous
and bounded below, and T : E —> R be a sublinear functional satisfying (7.1). Then

h+T = sup{crh(z,z*) : (z,z*) G dh, z* < T on

= sup{o7i(z,2*) : {z,z*) € dh, z* < T on

REMARK 10. Let E :- R,/i(x) := ex and T : - 0. Then h + T = 0, but (since
z* ^ T implies that z* = 0) there exists no (z,z*) £ 0/i such that z* ^ T on 22.
So Corollary 9 fails if T is only required to be continuous and we do not assume the
coercivity condition.

We now give a geometric version of the ideas of Theorem 7, which we shall phrase in
terms of cones. If 0 > 0, we write K$ for the open cone {(y, A) : y 6 E, X e R, 0T(y) <
A} (so that, if T — n \\ \\, then K\ is the set K defined in the introduction). There is
also a version in which (q, p) is replaced by a nonempty bounded closed convex subset
of E x R - the statement is somewhat more complicated since diam(dom(fc)) > 0 in
this case.
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THEOREM 1 1 . Let h : E —> 1R U {oo} be proper, convex and lower semicontinu-

ous, T : E -> R be a sublinear functional satisfying (7.1), (q,p) £ E x R, (q,p) - Ki

be disjoint from the graph of h, and 6 > 1. Tien there exists (z,z*) £ dh such that

z* ^ 9T on E and (q,p) — Kg is disjoint from epi(ah(z,z*)} .

PROOF: Our assumptions imply that, for all y £ E, (q—y, h(q — j/)) 0 (q, p)—K\ ,
that is,

(11.1) for ally 6 E, h{q - y) + T{y) - p > 0.

We define k by k(—q) := — p and k := oo otherwise. Then (11.1) can be rewritten

We now proceed as in the proof of the episum form of Theorem 7, but with a = 0.
This is permissible since diam(dom(fc)) = 0. From (7.3),

there exists z* £ dh{z) such that z* < BT on E and (<rh(z,z*) + fcVo) ^ 0,

from which ah(z,z*)(q) ^ p. If now (x,A) £ (q,p)-Ke then 9T(q - x) < p-X. Thus

A < p - 0T(q - sc) < ^ ( z . ^ X g ) - (q - x, x") = *h{z,z*){x),

as required. D

THEOREM 1 2 . Let / : £ —> MU{oo} be proper, convex and lower semicontinuous

and C* be a nonempty weak*-compact convex subset of E* . For all x £ E, let U(x) :=

max(x, C*). U is a continuous (but not necessarily positive) subhnear functional on

E.

(a) If there exists x £ E such that (f + u}(x) > -oo and

f + U = sup{<7-/(z,2*) : {z,z*) £ df, z* £ C*}

then dom(f*)r\C* ^ 0 .

(b) If there exists x £ E such that (f + Uj(x) > -oo and

f + U= Sup{af(z,z*) : (z, z*) £ 8f, z* £ int (C*)}

then dom(/*)nint(C*)^0.
(c) 1/ dom(/*) D int (C*) ^ 0 then

f + U = sup< <rf(z, z*) : (z, z*) £ 9/, z* £ int (C*) > sh'cewise and graphwise.
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(d) If dom (/*) n int (C*) ^ 0 then

f+U= suj>{*f(z,z') : (*,**) G df, z* £ C*

= SUP{<T/(Z,**) : (z,z») 6 a/, z* £ int (C*)}.

PROOF: (a) Here there exists (z,z*) £ df such that 3* £ C*. This gives the
required result since /*(**) = (z, z*) - f(z) £ R.

(b) The proof of this is similar to the proof of (a).

(c) Let x* £ dom(/*) nint(C*). Let a : £ - » R U {-°o} be proper, concave

and boxed above, and infE \(f + l/\ - a] > 0. We write h := / - x*, T := U - x*

and b := a - x*. Then inf E |Y/i + T\ - b\ = infE[Y/ + u) - a] > 0, and the
fact that a;* 6 dom(/*) imphes that h is bounded below. From the separation form of
Theorem 8, there exists (z,w*) G dh such that w* <C T on E and infE[<rh(z,w*) — b] >
0. We write z* := w* + x* . Then mfE[(rf(z,z*) - a] = iniE[crh{z,w*) - b] > 0.
Clearly, (z,z*) £ df. Finally, there exists ( e (0,1) such that z* - x* = w* ^
C,T = C(U - x*) on E. From the bipolar theorem, z* - x* £ £(C* - x*), that is,
z* £ x* + ((C* — x*). It follows that z* £ int (C*), which (modulo Lemma3) completes
the proof of (c).

(d) follows immediately from (c). D

The following result extends [2, Lemma 2.2] in that C* can be a subset of E* more
general than a multiple of a ball, (z,z*) is restricted to be in df, and the supremum
is valid slicewise and graphwise rather than pointwise.

COROLLARY 1 3 . Let f, C* and U be as in Theorem 12 and dom(/*) D
int (C*) ^ 0 . Tien

f + U — sup jz* - /*(«*) : (z,z*) £ df, z* £ int (C*)| slicewise and graphwise.

PROOF: This follows from Theorem 12(c) since, for all (z,z*) £ df, af(z,z*) =

z*-r{z*). D
The author is grateful to Professor J.-B. Hiriart-Urruty for providing him with a

proof of Corollary 14 below using totally different ideas. This result is also used by
Borwein and Vanderwerff in [3].

COROLLARY 14 . Let f : E —» R U {co} be proper, convex and lower semicon-
tinuous and suppose that there exists x* £ dom(/*) such that ||z*|| < n. Then

f + n|| || = sup{vf(z,z*): (z,z*) £ df, \\z'\\ ̂  n}

= sup{*f(z,z*) : (z,z') £ df, ||*1 < n}.
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In particular, (0.2) is true.

PROOF: This follows from Theorem 12(d) with C* the ball in E* with centre at
the origin and radius n. U

REMARK 15. Theorem 12(c)-(d) provide converses to Theorem 12(b). On the other
hand, the example in Remark 10 shows that the converse to Theorem 12(a) fails: we
may have dom(/*) DC* ^ 0, but there might still exist no (z,z*) 6 df such that

6. M O R E ON GRAPHWISE AND SLICEWISE SUPREMA

If F is a Banach space, we write C(F) (respectively BC(F)) for the set of all
nonempty closed convex (respectively nonempty bounded closed convex) subsets of F.

We now fix a norm on ExR that gives the product topology. For all A, B G C(E x l ) ,
let d(A, B) be the distance between A and B, measured by this norm.

Our next result is a characterisation of slicewise suprema. The possibility of the
implication ( d ) = > ( a ) was suggested by a comment of Jon Vanderwerff.

THEOREM 1 6 . Let g : E -> R U {oo} and, for all w e Cl, s^ : E -» R U {oo}
be proper and s& ^ </ on E. Then (a.)=> (£>)<=> (c)^=> (d). If g is convex then

(d)^=>(a), so all four conditions are equivalent.

(a) g = sup su slicewise.
wen

(b) If B G BC(E x R) and B is separated from epi (g) then there exists

w 6 fi such that B is separated from epi(sw) .
(c) If B e BC{E x R) tJjen

(16.1) d(B, epi (g)) = sup d{B, epi (au))

(d) If a : E -> R is continuous and affine, D G BC{E) and {(y, a(y)) :

y G D} is separated from epi (g) then there exists w G H such that

{(j/,a(y)) : y G Z)} is separated from epi(sw).

PROOF: ( (a )=>(b) ) If B E BC(E x R) and B is separated from epi (g) then the
function b : E -» RU {-oo} defined by

b{x) := sup A
( A ) B

(sup0 := —oo) is proper, concave and boxed above, and hypo (6) is separated from
epi(g). From (a), there exists w G 0 such that hypo (6) is separated from epi(5a,).
Since B C hypo (6), it follows that B is separated from epi(sw) . Thus (b) is satisfied.
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( ( b ) = * ( c ) ) Let B £ BC{E x K). If d(B,epi{g)) = 0 then

for all w £ SI, d(B, epi (su)) = 0,

and (16.1) is immediate. Suppose now that d(i?,epi (g)) > fi ^ 0. Write

B' := {(x,A) :(x,\)£Ex R, dist((x, A),B) <

Then B' £ BC{E x R) and d(B',epi (g)) ^ <i(E,epi(5)) - fi > 0. From (b), there

exists u; € Q such that rf(5',epi (5W)) > 0. In particular, B' (~lepi(sw) = 0, hence

d(5,epi (sw)) ^ fi. Thus (c) is satisfied. It is trivial that (c)^=>-(b).

((b)=>(d)) This is immediate since {(y,a{y)) : y £ D} E BC(E x R).

>(a)) Let 6 : E —•> R U { — oo} be proper, concave, and boxed above, and

epi (g) be separated from hypo (6). Let D := dom(6) £ BC(E). From the Eidelheit

separation theorem in £ x E , there exist x* E E*, and a,(3,j £ R such that (x*,a) ^

(0,0) , / 3 < 7

(16.2) (x, A) £ hypo(6) implies that (x, x*} + aX ^ /3

and

(16.3) (2!)^)e epi(g) implies that (x, x*) + aX ^ 7.

Since epi (g) recedes vertically, a ^ 0.

C A S E 1. a > 0. Here we can divide by a in (16.2) and (16.3). Writing y* := -x*/a,

•K :— PI a, and p :— ~f/a, we obtain:

(16.4) b ^ y* + n on E

and

(16.5) y * + p ^ f f o n £ .

We write a := y* + TT . Then a is continuous and affine. From (16.5), 6 := infE [9 — a] ^

p — 7r > 0. Let 5 := {(y,a(i/)) : y G D} and M be strictly greater than the Lipschitz

constant of a. If (a;, A) G epi(g), (y,fJ.) £ B and ||x - y\\ < 6/2M then

|A - M| ^ A - M ^ 5 (x) - a(y) ^ 5(x) - a(x) - Af ||x - y|| ^ tf - | = | .

(This argument is dual to that of Lemma 3.) Consequently, B is separated from epi (g).
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CASE 2. a = 0. Let B :— < (x,supbj : x 6 D\. In this case, x* ̂  0, and so it

follows from (16.2) and (16.3) that D is separated from dom(<7) in E, from which B

is separated from epi (g) in £ x E .

In both cases, B is separated from epi (g), and so it follows from (d) that there
exists w £ fi such that 5 is separated from epi(sa)). Since B lies above hypo (b) (in
case 1, this follows from (16.4) and, in case 2, it is obvious from the definition of B),

hypo (6) is also separated from epi(s u ) . Thus we have proved that (a) is satisfied. U

For the remainder of this paper, we consider the suprema of continuous linear

functionals on E.

THEOREM 1 7 . Let fi be a nonempty bounded convex subset of E* and

g = supu on E.

Then g = sup u; graphwise or slicewise <=> the norm and t i e weaic* closures of fi

are identical

PROOF: Write fi and fT" for the norm- and weak'-closures of f2.

(=$•) Suppose that g = sup u graphwise. Let x* £ fi and e > 0. Then
wen

x* ^ g on E. Let b(x) := (x, x*) — e if ||a:|| ^ 1 and b[x) := —oo otherwise. Then
inf£;[(7 — 6] ^ e > 0. Consequently, there exists w £ fi such that inft;[w — 6j ^ 0 , from
which

||z|| ^ 1 = • (x, x*) - e ^ (x, w),

that is:
| | i | | ^ 1 = > (x, x* - w ) < e ,

which is equivalent to the statement that ||x* — w|| ^ e. Thus x* G fi

(< ;^) Let 6 : E —> R U {oo} be proper, convex and boxed above and epi (g) be

separated from hypo (6). We argue as in the proof of Theorem 16((d)=>(a)) . Since

dom(^) = E, Case 2 cannot arise, hence there exist y* £ E* and n, p £ R such that

n < p,

(16.4) 6^y*+7ronE

and

(16.5) y*+p^gonE.

Evaluating (16.5) at 0 gives that p ̂  0, hence TT < 0. Using the positive homogeneity
of y* and g, it follows from (16.5) that y* ^ g on E. From the bipolar theorem,
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y* e TT . By hypothesis, y* e ft"". Let M > sup ||dom(6)||. Then there exists
w G Q such that | | w - y * | | ^ —TT/4M. Choose 6 > 0 such that S\\y*\\ ^ —TT/4 and
8 ^ M . If (z,A) G epi(w), (t/,^) G hypo (6) and ||x - y\\ ^ £ then

|A - ii\ > X - y. > (x, w) - b(y)

= (y, y*) + {z-y, y*) + (v, w - y*) + (x - y, u - y*) - b(y)

> (y, V*) - \\x-y\\ \\y'\\ - \\y\\ \\u>-y'\\ - \\x-y\\ \\w - y*|| - b(y),

Since y G dom(6), ||x — y\\ < 8 and 8 ^ M,

|A - / O <»• 2/*) - Kv) -6\\y*W ~ 2M||u, - y * | | ^ (y, y*)

From (16.4),

Thus epi (w) is separated from hypo(fc). Consequently, g — sup OJ slicewise. D
wen

REMARK 18 . In the following discussion, fi is a nonempty bounded convex subset of
E* . We consider two questions:

Q u e s t i o n 1. When is it the case that

(18.1) sup a; = g pointwise on E => sup a; = g slicewise?
u>en ugn

Q u e s t i o n 2. When is it the case that

(18.2) sup a; = || || pointwise on E = > supw = || || sh'cewise?
«6fJ wen

If E is reflexive then fi is identical with the weak closure of ft. Since Q is convex

this is, in tu rn , identical with f2 . Thus , from Theorem 17, both (18.1) and (18.2) are

true. We write E{ for the unit ball of E*.

The answer to Question 1 is:

(18.3) (18.1) is true «=> E is reflexive.

PROOF: Suppose that (18.1) is true and x** G E**. Write

fi:= {x* :x*eE*lt <«• ,***)= o } .
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Since fi is norm-closed, fi = fi . From Theorem 17, fl — f f , hence Cl is weak*-
closed. Thus the kernel of x** intersects E% in a weak*-closed set. From the Krein-
Smulian theorem, the kernel of x** is itself weak "-closed, hence x** G E. This estab-
lishes (18.3). The author is grateful to Gilles Godefroy for showing him this argument.
There are many other characterisations of reflexive spaces in terms of convex analysis
in a recent paper by Borwein, Fitzpatrick and Vanderwerff [4]. U

In order to discuss Question 2, we introduce the notion of a slice of E{ . If x** G E**

and a > 0, we write

S{x**,a) := {x* : x* G E{, (x*, x") > ||x"|| - «}•

(See [9, p.24] - note that we are only considering slices of E%.) If x G E and (3 > 0
then, of course,

S(x,(3) := {x* : x- e E;,{x, x*) > \\x\\ - 0}.

Our answer to Question 2 is:

(18.2) is true <=> for all x** € E** and a > 0,

there exists x e E and /? > 0 such that S(x,(3) C S(x**,a).

PROOF: ( = > ) We suppose first that there exist x** £ E** and a > 0 such that,

(18.5) for all x G E and 0 > 0, S(x,/3) £ S{x**,a).

Let 0 := E;\S(x**,a). Q is a proper, norm-closed subset of Ex*, hence fi" " ^ £*.

From (18.5),

(18.6) for all x G E and /? > 0, 5(x,/9) n Q ^ 0.

Hence,

(18.7) for all x G £, sup(x, fi) = ||x|| .

From the separation theorem in (E,w*), ft = E^, and so fi ^ J7 . From

(18.7) and Theorem 17, it is false that supw = || || shcewise, hence (18.2) fails. This

completes the proof of ( = > ).

( < = ) Suppose now that (18.2) fails and $7 is such that sup a; = || || pointwise
wed

on E but not slicewise. Then, again, (18.6) and (18.7) are satisfied and fl = E{.

On the other hand, from Theorem 17, 17 ^ f2 , hence f2 is a proper subset
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of E{. From the separation theorem in (.E*,|| | |), there exists x** G E** such that
sup(fl, a;**) < ||a;**||, hence there exists a > 0 such that S(x**,a) fl Cl — 0. From
(18.6),

for all x E E and 0 > 0, S{x,0) ?! S(x**,a).

This completes the proof of ( < = ) and also of (18.4). D

We do not know whether (18.2) can be put in terms of more standard Banach
space concepts. Here we shall show that if E — Co then E satisfies (18.2), and if
E = I1 or E = c then E does not satisfy (18.2). This last example is due to Isaac
Namioka — the author would also like to thank Robert Phelps for providing him with
it. Namioka's proof of the E — c case also led to a simplification of our original proof of
the E = i1 case. Since CQ and c are isomorphic, this shows that the property (18.2) is
not preserved under isomorphism. The example E = c shows that Asplund spaces do
not necessarily satisfy (18.2). If (18.2) is true then E* is the norm-closed convex hull
of its set of extreme points. The examples E = I1 and E — c show that the converse
of this assertion is false. In fact, from [9, Theorem 5.12, p.86], when E = c, E$ is
even the norm-closed convex hull of its set of weak* strongly exposed points. We do
not know whether (18.2) implies that E{ is the norm-closed convex hull of its set of
exposed points.

If E = c0 let a;** G E** = l°° with x" ^ 0, and let a > 0. Choose p such that
0 and \x**\ > \\x**\\ -a/3. Let x := (sgn x**)ep G E. Then ||x|| = 1. Letx ^ 0 and \x

13 G (0,1] and \\x**\\f3 < a/3. We shall show that S(x,0) C S(x",a). Indeed, let
x* G S(x,f3). Then

(sgn x;*)x*p = (x, x*) > \\x\\ -0 = 1-0,

from which |z* | > 1 — 0, hence

Then

•> C\ — R\ lr**l — V^ \x* I ll:r**ll > (\ - R\> I 1 P) \xp I 7.\ x n \ \ \ x II ̂  \L P)

that is to say, x* G S(x**,a).
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If E = I1, let x " be a Banach limit on £°°. Then | | x" | | = 1. If x G E and /? > 0
then, since ||x|| = sup{(x, x*) : x* G E{ H Co}, there always exists x* G S(x,/3) D Co C
5(x,/?)\5(x**,l) . Thus (18.2) is not satisfied.

If J5 = c then we can represent the norm-dual of E by i1, where

for all x = {xn}n^i G c and x* = { z ^ n j a 6 I1, (x, x*) = ( lim xn )xj + V ] x n s * + 1 .

Define x " G E** by

(x*,x"):=z* (x*G£*).

Then | |x" | | = 1. If x G E and /3 > 0 then, since ||x|| = sup{(x, x*) : x* G JBJ, X\ =

0 } , there exists x* G 5(x,/3) such that x* = 0. Then x* G S(:c,/3)\S(x**,l). Thus,
again, (18.2) is not satisfied.

We do not know whether, as is the case with the two examples discussed above,
the failure of (18.2) implies that there exists x** G E** such that ||x**|| = 1 and, for
all x£ E, \\x\\ =sup{(x , x*> :x* € E^, (x% x**) = 0 } .
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