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Abstract

Let ∆ : G→ GL(n,K) be an absolutely irreducible representation of an arbitrary group G over an arbitrary
field K; let χ : G→ K : g 7→ tr(∆(g)) be its character. In this paper, we assume knowledge of χ only, and
study which properties of ∆ can be inferred. We prove criteria to decide whether ∆ preserves a form, is
realizable over a subfield, or acts imprimitively on Kn×1. If K is finite, we can decide whether the image
of ∆ belongs to certain Aschbacher classes.
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1. Introduction

Let ∆ : G → GL(n, K) be a representation, where G is an arbitrary group (possibly
infinite) and K is an arbitrary field. Denote by χ = χ∆ : G → K : g 7→ tr(∆(g)) its
character. In this paper, we assume knowledge of χ only, and study which properties
of ∆ can be inferred. We will restrict to absolutely irreducible representations; in this
case, ∆ is uniquely determined by χ, up to equivalence; see Proposition 1.1 below.

The results are motivated by Aschbacher’s classification of maximal subgroups
of GL(n, F), where F is a finite field [1] (this classification has been extended to
algebraically closed fields [11]). According to this classification, every subgroup of
GL(n, F) belongs to one of nine classes, often denoted C1 up to C9. For example, a
subgroup of GL(n,F) belongs to class C2 if it acts imprimitively on Fn×1; it belongs to
class C5 if it is definable modulo scalars over a proper subfield of F. We give criteria
on χ to decide whether the image H of ∆ belongs to one of the classes C2, C5, or C8.
While motivated by Aschbacher’s classification, most of the results are also valid for
arbitrary fields. In most cases, the criterion is of the form that χ has a nontrivial
stabilizer under certain actions.
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Most of our results are generalizations of results in [15], where Plesken and
Fabiańska described an L2-quotient algorithm. This algorithm, its generalization [10],
and the L3–U3-quotient algorithm [9] provide examples where only the character of
a representation is known, but not the actual representation. The algorithms take as
input a finitely presented group G on two generators and compute all quotients of G
which are isomorphic to PSL(2,q), PSL(3,q), or PSU(3,q). Instead of constructing the
possible representations of G into PSL(2, q) or PSL(3, q), they construct the characters
of all the representations of the free group F2 into SL(2, q) or SL(3, q) which induce
projective representations of G. The characters are constructed for all possible prime
powers q by translating the group relations into arithmetic conditions for the possible
character values. This yields characters χ : F2 → R, where R is a finitely generated
commutative ring. Taking quotients of R yields characters χq : F2 → Fq, and every
such character corresponds to a representation ∆q : F2 → SL(n, q) which induces a
homomorphism δq : G→ PSL(n, q) (with n = 2 or n = 3, depending on the algorithm).

One advantage of this approach is that the representations recovered from the
characters are pairwise nonequivalent, whereas that would not necessarily be the case
if we constructed the representations directly. Another advantage is that the minimal
splitting field of a representation over finite fields is the field generated by the character
values (see for example [12, Theorem 2.9.18]), and the latter can be easily determined
from the character.

To decide whether δq is surjective, we must decide whether the image of ∆q lies in
one of the Aschbacher classes. This can be done using the criteria on χq described
in this paper. These criteria are independent of the characteristic of the field, so,
instead of applying the criteria to every χq, they can be applied to χ, thus deciding
the membership simultaneously for every quotient of R. Using this approach, the
algorithms can handle all prime powers q at once, and determine all possible values
of q automatically. The decision whether δq maps onto PSU(3, q) is similar.

The problem of determining the Aschbacher class of a given matrix group G ≤
GL(n, q) is central in the matrix group recognition project; see [3, 6, 7, 14] for
algorithms dealing with Aschbacher classes C2, C3, C5, and C8. The results in this
paper do not aim to replace any of these algorithms; while they could be applied to
matrix group recognition, the resulting runtime would certainly be worse than that
of the existing algorithms. The algorithmic value of our techniques is rather that
they can be applied to characters, without the knowledge of the full representation,
and that they work for arbitrary fields. Furthermore, our results have a purely
theoretical value, linking Aschbacher classes to characters admitting certain stabilizers
(see Theorem 6.1).

The results in this paper are based on the following proposition, which is a special
case of [2, Théorème 1] and [13, Theorem 6.12]. We include a short proof for the
convenience of the reader.

Proposition 1.1. Let G be a group, K a field, and let ∆i : G → GL(n, K) be
representations for i = 1, 2 with χ∆1 = χ∆2 . Assume that ∆1 is absolutely irreducible.
Then ∆1 and ∆2 are equivalent; in particular, ∆2 is absolutely irreducible.
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Proof. Denote by ∆i the representation KG→ Kn×n of the group algebra KG obtained
from the group representation ∆i. Let χ = χ∆1 = χ∆2 , and let rad(χ) be the radical of the
symmetric trace bilinear form KG × KG→ K : (x, y) 7→ χ(xy). Then ker(∆i) ⊆ rad(χ),
so ϕi : ∆i(KG)→ KG/rad( χ) : ∆i(x) 7→ x + rad( χ) are well-defined epimorphisms.
But ∆1(KG) = Kn×n is simple, so ϕ1 is invertible. Comparing dimensions, we see
that ϕ2 ◦ ϕ

−1
1 : Kn×n → Kn×n : ∆1(x) 7→ ∆2(x) is an automorphism, which must be inner

by the Skolem–Noether theorem [8, Theorem 4.9]. �

2. Actions on characters

Definition 2.1. Let ∆ : G→ GL(n,K) be a representation with character χ.

(1) For α ∈ Gal(K), define αχ by (αχ)(g) := α( χ(g)) for g ∈ G.
(2) For σ ∈ Hom(G,K∗), define σχ by (σχ)(g) := σ(g)χ(g) for g ∈ G.
(3) Let C2 = 〈γ〉 be a cyclic group of order two generated by γ. Define γχ by

(γχ)(g) := χ(g−1) for g ∈ G.

Clearly, αχ, σχ, and γχ are characters of the representations α∆ : G→ GL(n, K) :
g 7→ α(∆(g)), σ∆ : G→ GL(n,K) : g 7→ σ(g)∆(g), and the contragredient representation
∆−tr : G → GL(n, K) : g 7→ (∆(g)−1)tr, respectively, so we get actions of Gal(K),
Hom(G,K∗), and 〈γ〉 on the set of all characters.

Furthermore, for α ∈ Gal(K) and σ ∈ Hom(G, K∗), define ασ ∈ Hom(G, K∗) by
(ασ)(g) := α(σ(g)) for all g ∈ G, and γσ ∈ Hom(G, K∗) by (γσ)(g) := σ(g−1) for all
g ∈ G. This defines a semi-direct product Ω(G, K) := Hom(G, K∗) o (〈γ〉 × Gal(K)),
and it is easy to check that the three actions of Definition 2.1 yield an action of Ω(G,K)
on the set of characters of representations G→ GL(n,K).

3. Aschbacher class C2

In this section, K is an arbitrary field, unless specified otherwise. Let ∆ : G →
GL(n, K) be an irreducible representation; denote by V := Kn×1 the induced KG-
module. Let N E G have finite index; denote by VN the restricted KN-module.
Let W1, . . . ,Wk ≤ VN be representatives of the isomorphism classes of simple KN-
submodules of VN (there are only finitely many since |G : N| is finite), and let Vi be
the Wi-homogeneous component of VN , that is, the sum of all submodules of VN

isomorphic to Wi. By Clifford’s theorem (see for example [12, Theorem 3.6.2]),
Vi �

⊕e
j=1 Wi with e independent of Vi, and V =

⊕k
i=1 Vi; furthermore, G acts

transitively on the Vi.
If V permits a direct sum decomposition V = V1 ⊕ · · · ⊕ Vk as vector spaces such

that G permutes the Vi transitively, then ∆ is imprimitive with blocks V1, . . . ,Vk, or G
acts imprimitively on the blocks V1, . . . ,Vk. Define a homomorphism ψ : G→ Sk by
gVi = Vψ(g)(i) for g ∈G and i ∈ {1, . . . , k}; then ∆ is imprimitive with block action ψ. The
aim of this section is, given ψ : G→ Sk, to provide criteria on χ to decide whether ∆

is imprimitive with block action ψ. We start out with general k and ψ, but later restrict
to the special case that k is prime and imψ is solvable.
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We have the following necessary condition on χ, where we do not require that ∆ is
irreducible.

Lemma 3.1. Let ∆ : G → GL(n, K) be an imprimitive representation with blocks
V1, . . . ,Vk, and let χ be the character of ∆. Let ψ : G→ Sk be a homomorphism such
that G acts on the blocks via ψ. Then χ(g) = 0 for all g ∈ G with ψ(g) fixed-point free.

Proof. Let T ≤ G be the stabilizer of V1. Then V1 is a KT -module, and V � KG ⊗KT

V1. Let Γ : T → GL(n/k, K) be a representation of V1, and let P : G→ GL(k, K) be
the permutation representation corresponding to ψ. Let h1, . . . , hk be representatives
of the cosets of T in G. After conjugation, we may assume that the images of ∆ are
Kronecker products: that is, ∆(g) = P(hi) ⊗ Γ(t), where g = hit with t ∈ T . In particular,
tr(∆(g)) = 0 if ψ(g) = ψ(hi) is fixed-point free. �

The converse is not true in general, not even for absolutely irreducible
representations; that is, if χ(g) = 0 for all g ∈ G with ψ(g) fixed-point free, then there
does not necessarily exist a direct sum decomposition V = V1 ⊕ · · · ⊕ Vk such that
G acts on the blocks via ψ. For example, let G = A5, and let ∆ : G → GL(5,C) be
the unique absolutely irreducible representation of degree five; let ψ : G→ S5 be the
embedding. Then χ(g) = 0 for every five-cycle g, but ∆ is primitive. Our aim is to give
some conditions which imply the converse.

The following is a partial converse of Lemma 3.1.

Lemma 3.2. Let ∆ : G → GL(n, K) be a representation with character χ, and let
ψ : G→ Sk be a homomorphism with kernel N. If there exists g ∈G such that χ(gx) = 0
for all x ∈ N, then ∆|N is not absolutely irreducible.

Proof. Let g ∈G be such that χ(gx) = 0 for all x ∈ N. Suppose by way of contradiction
that ∆|N is absolutely irreducible; then ∆(N) contains a basis of Kn×n. Let S :
Kn×n × Kn×n → K be the trace bilinear form. Then S (∆(g),∆(x)) = χ(gx) = 0 for all
x ∈ N and, since S is nondegenerate, this implies ∆(g) = 0, which is impossible. �

We now restrict to the case k = p, a prime.

Theorem 3.3. Let K be algebraically closed, and let ∆ : G→ GL(n,K) be irreducible
with character χ. Let p be a prime with (n, p − 1) = 1, and let ψ : G → Sp be a
homomorphism such that the image is transitive and solvable. Then ∆ is imprimitive
with block action ψ if and only if χ(g) = 0 for all g ∈ G with ψ(g) fixed-point free.

Proof. By Lemma 3.1, the condition is necessary. We prove that it is sufficient. Let
V := Kn×1 be the KG-module induced by ∆, and let N := kerψ. By the O’Nan-Scott
theorem (see for example [4, Theorem 4.1A]), a transitive subgroup of Sp is either
almost simple or isomorphic to a subgroup of AGL(1, p), where AGL(1, p) denotes
the one-dimensional affine group over Fp, acting on Fp. We identify AGL(1, p) with
Fp o F

∗
p. The transitive subgroups of AGL(1, p) are conjugate to Fp o H for H ≤ F∗p,

so G/N � Fp o H for some H ≤ F∗p. Let C be the preimage of Fp under ψ. Then
N E C E G, and C/N is cyclic of order p. We assume that V is simple; hence, VC is
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simple by Clifford’s theorem, since G/C is cyclic and |G/C| is coprime to n. On the
other hand, VN is not simple by Lemma 3.2; thus, VN = W1 ⊕ · · · ⊕W`. Since C/N is
cyclic, the Wi are not all pairwise isomorphic, so VN = V1 ⊕ · · · ⊕ Vk with k > 1 in the
notation of Clifford’s theorem above. But C/N is cyclic of order p and acts transitively
on the Vi; hence, k = p. Now G/N acts on the blocks V1, . . . ,Vp. Since there is only
one conjugacy class of subgroups of G/N of index p, the action of G/N on the blocks
is permutation isomorphic to the action induced by ψ. �

The last proof used the fact that K is algebraically closed, and in fact the statement
is no longer true for arbitrary fields; it already fails for a cyclic action. For example,
let G := F∗q2 oAut(Fq2/Fq), and let ∆ : G→ GL(2, q) be an embedding. Let ψ : G→ S2

be the projection onto Aut(Fq2/Fq), so N := F∗q2 E G. Then ∆|N is irreducible, but not
absolutely irreducible; Fq2 is the smallest splitting field for ∆|N . Thus, ∆ is imprimitive
only over the field Fq2 , not over the field Fq. However, we can prove a variant of
Theorem 3.3 over arbitrary fields with some restrictions on the representation.

Theorem 3.4. Let K be an arbitrary field. Let p be prime and let ∆ : G→ GL(p, K)
be an absolutely irreducible representation with character χ. Let ψ : G → Sp be a
homomorphism such that the image is transitive and solvable, but not cyclic. Then
∆ is imprimitive with block action ψ if and only if χ(g) = 0 for all g ∈ G with ψ(g)
fixed-point free.

Proof. We use the notation of the proof of Theorem 3.3. By Theorem 3.3, there exists
an extension field L/K such that ∆ is imprimitive over L, so L ⊗K VN = V1 ⊕ · · · ⊕ Vp

for one-dimensional LN-modules V1, . . . , Vp. We show that we can choose L = K.
Let T := StabG(V1), and let Γ : T → L∗ = GL(1, L) be the induced representation. By
Clifford’s theorem, L ⊗K V � (V1)G

T = V1 ⊗LT LG, so χ = ΓG. Note that AGL(1, p)
is a Frobenius group, so the intersection of two distinct stabilizers is trivial. Thus,
if t ∈ T \ N, then gtg−1 < T for all g ∈ G \ T . The formula for induced characters
shows that Γ(t) = χ(t) ∈ K∗ for all t ∈ T \ N. Since T has index p in G and G/N is
not cyclic, it follows that T , N. Fix t ∈ T \ N, and let n ∈ N. Then nt ∈ T \ N, so
Γ(n)Γ(t) = Γ(nt) = χ(nt) ∈ K∗; hence, Γ(n) ∈ K∗. Thus, Γ is realized over K. Let V ′1
be the KT -module induced by Γ; let ∆′ : G→ GL(p,K) be the representation induced
by (V ′1)G

T and χ′ the character of ∆′. Then ∆′ is imprimitive, and χ′ = ΓG = χ, so ∆′ is
equivalent to ∆ by Proposition 1.1. �

It would be very interesting to find general criteria which work for actions of
nonprime degree or with nonsolvable image. However, it seems that other techniques
are needed for this. The problem with the current approach is that we do not have
control over the action on the blocks; in the proof of Theorem 3.3 we use that VN

decomposes into p blocks, and there is only one transitive action of AGL(1, p) on a
p-element set, but this is no longer true for arbitrary groups.
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4. Aschbacher class C5

The results in this section are only valid for finite fields, so we assume that K is
finite. An absolutely irreducible subgroup H ≤ GL(n, K) is in Aschbacher class C5
if it is conjugate to a subgroup of GL(n, F)K∗ for some subfield F < K, where we
identify K∗ with the scalar matrices in GL(n, K). Let NK/F : K∗ → F∗ be the norm;
then ker(NK/F) is the set of elements of K which have norm 1 over F.

Theorem 4.1. Let K/F be an extension of finite fields, and let α be a generator
of the Galois group of K/F. Let ∆ : G → GL(n, K) be an absolutely irreducible
representation with character χ. The image of ∆ is conjugate to a subgroup of
GL(n, F)K∗ if and only if αχ = σχ for some σ ∈ Hom(G, ker(NK/F)).

Proof. To prove sufficiency, assume that the image of ∆ is conjugate to a subgroup
of GL(n, F)K∗. We may assume that it is in fact a subgroup of GL(n, F)K∗, since
we are interested only in the traces. For every g ∈ G, there exist λg ∈ K∗ and
Xg ∈ GL(n,F) with ∆(g) = λgXg. Set σ(g) := α(λg)λ−1

g . This defines a homomorphism
σ : G→ ker(NK/F) with the desired properties.

Now assume conversely that αχ = σχ. We show first that we can assume that
α∆ = σ∆, by adapting an argument of [5]. By Proposition 1.1, α∆ and σ∆ are
equivalent, so y(σ∆)y−1 = α∆ for some y ∈ GL(n,K). Let g ∈ G. Then

∆(g) = α`−1(yσ(g)∆(g)y−1)

= NK/F(σ(g))α`−1(y) · · ·α(y)y∆(g)y−1α(y)−1 · · ·α`−1(y)−1,

where ` = |α|. Since g is arbitrary and ∆ is absolutely irreducible, Schur’s lemma yields
α`−1(y) · · ·α(y)y = λIn for some λ ∈ K∗. Applying α to this equation and conjugating
with y−1, we see that λ is fixed by α; hence, λ ∈ F. Choose η ∈ K∗ with NK/F(η) = λ;
replacing y by ηy ∈ GL(n, K), we may assume that α`−1(y) · · · α(y)y = In. Hilbert’s
Theorem 90 for matrices applies (see [5, Proposition 1.3]), so there exists z ∈ GL(n,K)
with y = α(z)−1z. Since α(z∆) = σ(z∆), for the rest of the proof we may assume that
α∆ = σ∆ and we will show that the image of ∆ is a subgroup of GL(n, F)K∗. Since
σ(g) has norm 1, there exists λg ∈ K∗ with σ(g) = α(λg)λ−1

g by Hilbert’s Theorem 90.
Set Xg := λ−1

g ∆(g). Then α(Xg) = α(λg)−1σ(g)∆(g) = Xg, so Xg ∈ GL(n, F). �

5. Aschbacher class C8

We study absolutely irreducible representations preserving a symmetric,
alternating, or Hermitian form. If the field K is finite, then these representations lie in
Aschbacher class C8, but the results are valid for arbitrary fields K.

Proposition 5.1. Let G be a group, K a field of characteristic , 2, and ∆ : G →
GL(n, K) an absolutely irreducible representation with character χ. Then ∆ fixes
a symmetric or alternating form modulo scalars if and only if σγχ = χ for some
σ ∈ Hom(G, K∗). The restriction ‘modulo scalars’ can be removed if and only if we
can choose σ = 1.
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Proof. Assume first that ∆ preserves a symmetric or alternating form modulo scalars.
That is, there exists a symmetric or skew-symmetric matrix y ∈ Kn×n such that
∆(g)try∆(g) = σ(g)y for all g ∈ G, where σ(g) ∈ K∗. It is easy to verify that σ : G→
K∗ : g 7→ σ(g) defines a homomorphism. Let z ∈ K

n×n
be such that ztrz = y, where K is

an algebraic closure of K. Then z∆(g)z−1 = σ(g)(z∆(g)z−1)−tr, so

χ(g) = tr(z∆(g)z−1) = σ(g) tr((z∆(g)z−1)−tr) = σγχ(g).

Now assume that σγχ = χ. The representations ∆ and σ∆−tr = (g 7→ σ(g)∆(g)−tr) are
absolutely irreducible with the same traces, so by Proposition 1.1 they are equivalent.
Let y ∈ GL(n, K) be such that y∆(g)y−1 = σ(g)∆(g)−tr for all g ∈ G. Then ∆(g) =

(∆(g)−tr)−tr = y−try∆(g)y−1ytr for all g ∈G, so y−try lies in the centralizer of ∆ by Schur’s
lemma. Hence, y−try = λIn for some λ ∈ K. It follows that y = λytr = λ2y and hence
λ2 = 1, since y , 0. Thus, either λ = 1, in which case y is symmetric, or λ = −1, in
which case y is skew-symmetric. �

Proposition 5.2. Let G be a group and K a field which has an automorphism α of
order two; let ∆ : G → GL(n, K) be an absolutely irreducible representation with
character χ. Then ∆ fixes an α-Hermitian form modulo scalars if and only if σγαχ = χ
for some σ ∈ Hom(G, K∗). The restriction ‘modulo scalars’ can be removed if and
only if we can choose σ = 1.

Proof. Again, only the ‘if’ part is nontrivial. As in Proposition 5.1, there exists
y ∈ GL(n, K) with y∆(g)y−1 = σ(g)α(∆(g)−tr) for all g ∈ G, and y = λα(y)tr for some
λ ∈ K. Applying α to this last equation and transposing yields α(λ)−1 = λ, so λ
has norm 1 over the fixed field. By Hilbert’s Theorem 90, there exists µ ∈ K with
λ = α( µ)/µ and, replacing y by µy, we may assume that y is Hermitian. �

6. Actions on characters revisited

Let Ω(G, K) = Hom(G, K∗) o (〈γ〉 × Gal(K)) be the group defined in Section 2,
acting on the set of characters of representations G → GL(n, K). The results in this
paper show that characters with nontrivial stabilizers usually come from special types
of representations. The most precise statement can be made if K is finite.

Theorem 6.1. Let K be a finite field and χ the character of an absolutely irreducible
representation ∆ : G → GL(n, K). Assume that χ has a nontrivial stabilizer; let
ρ = σγ′α ∈ Stab( χ) be an element of prime order, where σ ∈ Hom(G, K∗), γ′ ∈ 〈γ〉,
and α ∈ Gal(K).

(1) If γ′ = 1 and α = 1, then ∆ is imprimitive over an extension field of K, with cyclic
block action.

(2) If γ′ = 1 and α , 1, then ∆ is realizable modulo scalars over a proper subfield
of K.

(3) If γ′ , 1 and α = 1, and if char(K) , 2, then ∆ fixes an alternating or symmetric
form modulo scalars.
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(4) If γ′ , 1 and α , 1, then ∆ fixes a Hermitian form modulo scalars.

The restriction ‘modulo scalars’ in the last three statements can be removed if σ = 1.

Proof. Let p = |ρ|.
Assume first that γ′ = 1 and α = 1, so ρ = σ ∈ Hom(G,K∗). Then σ ∈ Hom(G, 〈ζ〉),

where ζ ∈ K is a primitive pth root of unity. Identifying ζ with a p-cycle in Sp, we
may regard σ as a homomorphism ψ : G → Sp. Since χ(g) = σχ(g) = σ(g)χ(g) for
all g ∈ G, we see that χ(g) = 0 whenever ψ(g) = σ(g) , 1, that is, ψ(g) is fixed-point
free. Thus, ∆ is imprimitive with cyclic block action over the algebraic closure of K, by
Theorem 3.3; it follows that it is imprimitive with cyclic block action over an extension
field of K.

Now assume that γ′ = 1 and α , 1. If σ = 1, then ρ = α ∈ Gal(K), so all character
values lie in the fixed field F of α. Since a representation over a finite field is
realizable over its character field (see for example [12, Theorem 2.9.18]), the claim
follows for σ = 1. Now assume that σ , 1. Then 1 = (σα)p = (σ · ασ · · · α

p−1
σ · αp),

so σ · ασ · · · α
p−1
σ = 1. Thus, σ ∈ Hom(G, ker(NK/F)), where F is the fixed field of α.

The second claim now follows by Theorem 4.1.
The last two claims are reformulations of Propositions 5.1 and 5.2. �
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