ON THE PRODUCT OF THE PRIMES

BY
DENIS HANSON
In memory of Leo Moser, a friend and teacher for many years

1. In recent years several attempts have been made to obtain estimates for the product of the primes less than or equal to a given integer n. Denote by $A(n)=\prod_{p \leqslant n} p$ the above-mentioned product and define as usual

$$
\Theta(n)=\sum_{p \leq n} \log p \quad \text { and } \quad \Psi(n)=\sum_{p^{\alpha} \leq n} \log p .
$$

Analysis of binomial and multinomial coefficients has led to results such as $A(n)<4^{n}$, due to Erdös and Kalmar (see [2]). A note by Moser [3] gave an inductive proof of $A(n)<(3.37)^{n}$, and Selfridge (unpublished) proved $A(n)<(3.05)^{n}$. More accurate results are known, in particular those in a paper of Rosser and Schoenfeld [4] in which they prove $\Theta(n)<1.01624 n$; however their methods are considerably deeper and involve the theory of a complex variable as well as heavy computations. Using only elementary methods we will prove the following theorem, which improves the results of [2] and [3] considerably.

Theorem 1. Let $B(n)$ denote the least common multiple of the integers $1,2, \ldots, n$. Then $B(n)<3^{n}$.

Note that for a given prime p, if α_{p} is such that $p^{\alpha_{p}}$ is the highest power of p not exceeding n, then $B(n)$ is the product of the $p^{\alpha_{p}}$ taken over all primes $p \leq n$. That is

$$
B(n)=\prod_{p \leq n} p^{\alpha} p \quad \text { or } B(n)=\prod_{p^{\alpha} \leq n} p
$$

2. Before proving Theorem 1 we must first prove a number of preliminary lemmas.

Lemma 1. If $a_{1}, a_{2}, \ldots, a_{k}$ are positive integers such that

$$
\begin{align*}
& \sum_{i=1}^{k} \frac{1}{a_{i}} \leq 1 \text { and if } a_{k}>x \geq 1 \text { for } x \text { real, then } \\
& {[x]>\sum_{i=1}^{\mid k}\left[\frac{x}{a_{i}}\right]} \tag{2.1}
\end{align*}
$$

where the square brackets denote the greatest integer function.
Received by the editors February 12, 1971 and, in revised form, March 16, 1971.

Proof. Using the fact that $[a / m]=[[a] / m]$ if m is a positive integer we have

$$
\sum_{i=1}^{k}\left[\frac{x}{a_{i}}\right]=\sum_{i=1}^{k-1}\left[\frac{x}{a_{i}}\right]=\sum_{i=1}^{k-1}\left[\frac{[x]}{a_{i}}\right] \leq \sum_{i=1}^{k-1} \frac{[x]}{a_{i}} \leq[x]\left(1-\frac{1}{a_{k}}\right)<[x] .
$$

We now choose a particular set of a_{i} 's defined as follows:

$$
a_{1}=2, \quad a_{n+1}=a_{1} a_{2} \ldots a_{n}+1
$$

A simple induction shows that the a_{i} 's defined in this manner satisfy the following recurrence relation: $a_{1}=2, a_{n+1}=a_{n}^{2}-a_{n}+1$. It is easy to see that the a_{i} 's also satisfy the conditions of lemma 1 .

Define

$$
\begin{equation*}
C(n)=\frac{n!}{\left[n / a_{1}\right]!\left[n / a_{2}\right]!\left[n / a_{3}\right]!\ldots} \tag{2.2}
\end{equation*}
$$

where the a_{i} 's are as above. $C(n)$ may be seen to be an integer upon comparison to the appropriate multinomial coefficient.

Lemma 2. Let $\beta_{p}(n)$ be defined by $C(n)=\prod_{p \leq n} p^{\beta_{p}(n)}$. Then $\beta_{p}(n) \geq\left[\log _{p} n\right]$.
Proof. By Legendre's formula

$$
\beta_{p}=\sum_{i=1}^{\left[\log _{p} n\right]}\left(\left[\frac{n}{p^{i}}\right]-\left[\frac{n}{a_{1} p^{i}}\right]-\left[\frac{n}{a_{2} p^{i}}\right]-\cdots\right) .
$$

That each term in this sum is at least 1 now follows from Lemma 1 by taking $x=n / p^{i}$. This proves Lemma 2 .

Lemma 3.

$$
\frac{\left(n / a_{i}\right)^{n / a_{i}}}{\left[n / a_{i}\right]^{\left[n / a_{i}\right]}}<\left(\frac{e n}{a_{i}}\right)^{\left(a_{i}-1\right) / a_{i}}, \quad n \geq a_{i} .
$$

Proof. If $n=a_{i}$ the result is trivial. If $n>a_{i}$ we have

$$
\begin{aligned}
\frac{\left(n / a_{i}\right) / a_{i}}{\left[n / a_{i}\right]^{n / a_{i}}} & \leq \frac{\left(n / a_{i}\right)^{n / a_{i}}}{\left(\left(n-a_{i}+1\right) / a_{i}\right)^{\left(n-a_{i}+1\right) / a_{i}}} \\
& \left.=\left(1+\frac{1}{\left(n-a_{i}+1\right) /\left(a_{i}-1\right)}\right)\right)^{\left(\left(n-a_{i}+1\right)\left(a_{i}-1\right)\right) \times\left(\left(a_{i}-1\right)\left(a_{i}\right)\right.}\left(\frac{n}{a_{i}}\right)^{\left(a_{i}-1\right) / a_{i}} \\
& <\left(\frac{e n}{a_{i}}\right)^{\left(a_{i}-1\right) / a_{i}}
\end{aligned}
$$

We will now proceed to obtain upper bounds for $C(n)$ using the preceding lemmas.

Lemma 4.

$$
C(n)<\frac{n^{n}}{\left[n / a_{1}\right]^{\left[n / a_{1}\right]}\left[n / a_{2}\right]^{\left[n / a_{2}\right]} \ldots\left[n / a_{k}\right]^{\left[n / a_{k}\right]}}
$$

for a particular $k=k(n)$.

Proof. If $n=n_{1}+n_{2}+\cdots+n_{k}$, where n and $n_{i}, i=1,2, \ldots, k$, are positive integers. Then by the multinomial theorem we know that

$$
\begin{equation*}
\left(n_{1}+n_{2}+\cdots+n_{k}\right)^{n}>\left(n_{1}, n_{2}, \ldots, n_{k}\right) n_{1}^{n_{1}} 1 n_{2}^{n_{2}} \ldots n_{k}^{n_{k}} \tag{2.3}
\end{equation*}
$$

since the right-hand side of (2.3) is just one term in the expansion of

$$
\left(n_{1}+n_{2}+\cdots+n_{k}\right)^{n}
$$

Let k be the least integer such that $a_{k+1}>n$ and let $\sum_{i=1}^{k}\left[n / a_{i}\right]=t \leq n$, then

$$
C(n)=\frac{n(n-1) \ldots(t+1) t!}{\left[n / a_{1}\right]!\left[n / a_{2}\right]!\ldots\left[n / a_{k}\right]!}<\frac{n^{n-t} t^{t}}{\left[n / a_{1}\right]^{\left[n / a_{1}\right]}\left[n / a_{2}\right]^{\left[n / a_{2}\right]} \ldots\left[n / a_{k}\right]^{\left[n / a_{k}\right]}}
$$

by (2.3), and the lemma follows.
The magnitude of k satisfies the following:
Lemma 5. If $a_{k} \leq n<a_{k+1}$, then

$$
\begin{equation*}
k<\log _{2} \log _{2} n+2 \text { for } k \geq 3 \tag{2.4}
\end{equation*}
$$

Proof. We know $a_{k+1}=a_{k}^{2}-a_{k}+1$ and $a_{3}=7>2^{2^{1}}+1$. Therefore, inductively

$$
a_{k+1}>2^{2 k-1}+1
$$

and

$$
k<\log _{2} \log _{2}\left(a_{k}-1\right)+2<\log _{2} \log _{2} n+2
$$

Finally, applying Lemmas 3, 4 and 5 we have, if k is such that $a_{k} \leq n<a_{k+1}$,

$$
\begin{equation*}
C(n)<\frac{n^{n}\left(e n / a_{1}\right)^{\left(a_{1}-1\right) / a_{1}}\left(e n / a_{2}\right)^{\left(a_{2}-1\right) / a_{2}} \ldots\left(e n / a_{k}\right)^{\left(a_{k}-1\right) / a_{k}}}{\left(n / a_{1}\right)^{n / a_{1}}\left(n / a_{2}\right)^{n / a_{2}}\left(n / a_{3}\right)^{n / a_{3}} \ldots} \tag{2.5}
\end{equation*}
$$

since

$$
\left[n / a_{t}\right]=0,\left[n / a_{t}\right]!=1 \quad \text { and } \quad \frac{1}{\left(n / a_{t}\right)^{n / a_{t}}}>1 \quad \text { for all } t>k
$$

We observe that the product $a_{1}^{1 / a_{1}} a_{2}^{1 / a_{2}} \ldots a_{k}^{1 / a_{k}}$ is monotonic increasing with k. Since

$$
a_{i+1}=a_{i}^{2}-a_{i}+1, \quad a_{i}^{2}>a_{i+1}>\left(a_{i}-1\right)^{2} \text { for } i \geq 1
$$

Therefore

$$
\frac{\log a_{i+1}^{1 / a_{i+1}}}{\log a_{i}^{1 / a_{i}}}=\frac{a_{i} \log a_{i+1}}{a_{i+1} \log a_{i}}<\frac{2 a_{i}}{a_{i+1}}<\frac{2 a_{i}}{\left(a_{i}-1\right)^{2}}<\frac{1}{2} \quad \text { for } i \geq 3
$$

It now follows since $\log a_{6}^{1 / a_{6}}<5 \times 10^{-8}$ that

$$
\sum_{i=1}^{\infty} \log a_{i}^{1 / a_{i}}=\sum_{i=1}^{5} \log a_{i}^{1 / a_{i}}+\sum_{i=6}^{\infty} \log a_{i}^{1 / a_{i}}<1.08240+10^{-5}
$$

That is, if we define

$$
w=\lim _{k \rightarrow \infty}\left(a_{1}^{1 / a_{1}} a_{2}^{1 / a_{2}} \ldots a_{k}^{1 / a_{k}}\right)
$$

that $w<2.952$.

Observe that

$$
\begin{aligned}
\frac{a_{1}-1}{a_{1}}+\frac{a_{2}-1}{a_{2}}+\cdots+\frac{a_{k}-1}{a_{k}} & =\left(1-\frac{1}{a_{1}}\right)+\cdots+\left(1-\frac{1}{a_{k}}\right) \\
& =k-1+\frac{1}{a_{k+1}+1} .
\end{aligned}
$$

It now follows from (2.5) that

$$
\begin{align*}
C(n) & <\frac{(e n)^{k-1+1 /\left(a_{k+1}+1\right)} w^{n}}{a_{1}^{\left(a_{1}-1\right) / a_{1}} a_{2}^{\left(a_{2}-1\right) / a_{2}} \ldots a_{k}^{\left(a_{k}-1\right) / a_{k}}} \tag{2.6}\\
& <e^{k-3 / 2} n^{k-3 / 2} w^{n}, \quad k>2\left(\text { since } n \leq a_{1} a_{2} \ldots a_{k}\right) .
\end{align*}
$$

A check of tables reveals $C(n)<3^{n}$ for $n>1300$ and a check of tables of $\Psi(n)$, such as those of Appel and Rosser [1], for $n \leq 1300$ concludes the proof of Theorem 1.
3. Obtaining a lower bound for the product of the primes by similar methods leads to a less elegant result for small n. If we define

$$
D(n)=\frac{n!}{[n / 2]![n / 3]![n / 6]!}
$$

it can be shown

$$
\frac{\left(2^{4} 3^{3}\right)^{n / 6}}{n^{2}}<D(n)<\prod_{p \leq n} p \prod_{p \leq n / 5} p n^{n^{n / 6}}
$$

Theorem 1 now implies

$$
\begin{equation*}
\Theta(n)>0.79169 n-\left(2+n^{1 / 2}\right) \log n>\frac{3}{4} n \text { for } n>8 \times 10^{4} \tag{3.1}
\end{equation*}
$$

A simple check of tables shows that (3.1) holds for $n>13$.
Let $\pi(x)$ denote the number of primes less than or equal to x.

$$
\begin{aligned}
\pi(x) & =\sum_{p \leq x} 1=\sum_{n=2}^{x} \frac{\Psi(n)-\Psi(n-1)}{\log n} \\
& =\sum_{n=2}^{x} \Psi(n)\left(\frac{1}{\log n}-\frac{1}{\log (n+1)}\right)+\frac{\Psi(x)}{\log x} .
\end{aligned}
$$

It can be shown by Theorem 1 that

$$
\begin{aligned}
\pi(x) & <\frac{x \log 3}{\log x}+\log 3\left(\frac{1}{\log ^{2} 2}+\frac{1}{\log ^{2} x}+40\right) \\
& <\frac{5}{4} \frac{x}{\log x} \text { for } x \geq 25,000
\end{aligned}
$$

A direct check of tables (such as [1]) for values of $x<25,000$ implies

$$
\pi(x)<\frac{5 x}{4 \log x}
$$

for $1<x<113$ and $x \geq 114$, and for $x=113$

$$
\pi(x)=1.25506 \frac{x}{\log x}
$$

That is $\Pi(x) /(x / \log x)$ is a maximum for $x=113$.

Bibliography

1. K. I. Appel and J. B. Rosser, Tables for estimating functions of primes, Comm. Research Div. Technical No. 4, Von Neumann Hall, Princeton, N.J. (Sept. 1961).
2. G. H. Hardy and E. M. Wright, The theory of numbers, Oxford Univ. Press, London, Ch. XXII, 4th ed., 1959.
3. L. Moser, On the product of the primes not exceeding n, Canad. Math. Bull. (2) 2 (1959), 119-121.
4. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.

University of Saskatchewan,
Regina, Saskatchewan

