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ON THE PRODUCT OF THE PRIMES 
BY 

DENIS HANSON 

In memory of Leo M oser, a friend and teacher for many years 
1. In recent years several attempts have been made to obtain estimates for the 

product of the primes less than or equal to a given integer n. Denote by 
^(«)=^p5:n/, the above-mentioned product and define as usual 

0(H) = 2 1°SP and T(«) = 2 log/;. 

Analysis of binomial and multinomial coefficients has led to results such as 
A(n) < 4n, due to Erdôs and Kalmar (see [2]). A note by Moser [3] gave an inductive 
proof of A(ri)<(331)n, and Selfridge (unpublished) proved A(n) <(3.05)\ More 
accurate results are known, in particular those in a paper of Rosser and Schoenfeld 
[4] in which they prove ©(«)< 1.01624/*; however their methods are considerably 
deeper and involve the theory of a complex variable as well as heavy computations. 
Using only elementary methods we will prove the following theorem, which im
proves the results of [2] and [3] considerably. 

THEOREM 1. Let B(n) denote the least common multiple of the integers 1, 2 , . . . , n. 
Then B(n) <3n. 

Note that for a given prime p, if ap is such that pap is the highest power of p not 
exceeding w, then B(ri) is the product of the pap taken over all primes p<n. That is 

B(n) = riPa> or B(n) = T[P-

2. Before proving Theorem 1 we must first prove a number of preliminary 
lemmas. 

LEMMA 1. Ifa1,a29...,ak are positive integers such that 

k i 

2 — < 1 and ifak > x > 1 for x real, then 

(21> M > , 1 HI 
where the square brackets denote the greatest integer function. 
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Proof, Using the fact that [a/m] = [[a]Jm] if m is a positive integer we have 

We now choose a particular set of afs defined as follows : 

ax = 2, an+1 = a1a2.. .an+l. 

A simple induction shows that the a^s defined in this manner satisfy the following 
recurrence relation: #1 = 2, an + 1=a% — an+l. It is easy to see that the afs also 
satisfy the conditions of lemma 1. 

Define 

(2.2) C{n) [»/fli]![ii/aa]![/i/fl8]!... 

where the a^s are as above. C(n) may be seen to be an integer upon comparison to 
the appropriate multinomial coefficient. 

LEMMA 2. Let pp(n) be defined by C(n)=YlP^np
$p{n\ Then pp(n) > [logp n]. 

Proof. By Legendre's formula 

*-T(&]-fe]-fe]-l 
That each term in this sum is at least 1 now follows from Lemma 1 by taking 
x=n/pK This proves Lemma 2. 

LEMMA 3. 

("M)n/a* ^ (en\ 
[nfaFW < [aj 

Proof. If n — ax the result is trivial. If n>at we have 

]nlai (eri\(a* ~ 1) /a< 

, n > at. 

(«M)n/ai (n/ai)nlai 

[n/ajcn/ai] ~ ((n -at + l)M)(n ~°i + 1 ) / a < 
, ((n - a, + l)/(ai -1)) x ((a, - l)/a,) / ^\ (af - l)/a< ( J \ ((n - a, + l)/(ai -1)) x ((a, - l)/a,) / ^\ ( 

l + (n-ai + l)/(at-l)) \7J 

(f)' 
/enVai~1)lai 

< 

We will now proceed to obtain upper bounds for C(n) using the preceding 
lemmas. 

LEMMA 4. 

nn 

C(n)< [nla1\
inla^[nja2Y

nla^... [n/ak]
inlaJ 

for a particular k=k(ri). 
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Proof. If «==«i+«2+ l-ty» where n and nu J = 1 , 2 , . . . , k, are positive in
tegers. Then by the multinomial theorem we know that 

(2.3) (»!+/ i 2+ • • • +nk)
n > (nl9 « 2 , . . . , nk)n\ml*.. .«£*, 

since the right-hand side of (2.3) is just one term in the expansion of 

( » l + r t a + " •+»*)*. 

Let k be the least integer such that ak+1>n and let 2f=i [nla{] = t<n, then 

r<„\ - n(n-\)...{t+\)t\ r^¥ 
W " [nMl [n/a2)\.. .[n/ak]\ < [ ^ ^ [ « M ] ^ . . .[n/ak)™*J 

by (2.3), and the lemma follows. 
The magnitude of k satisfies the following: 

LEMMA 5. Ifak<n<ak+l9 then 

(2.4) k < log2 log2 n+2 for k > 3. 

Proof* We know ak+1=al~-ak +1 and tf3 = 7>22 l-f 1. Therefore, inductively 

^ + 1 > 2 2 f c " 1 + l 
and 

fc < log2 log2 (ak-1)+2 < log2 log2 n + 2 . 

Finally, applying Lemmas 3, 4 and 5 we have, if k is such that ak<n<ak+1, 

14.DJ c w < (n/aiT^rifaY'HnM"1** •.. 

since 

[«MJ = 0, [«/a,]! = 1 and fmt.ntt. > 1 for all t > k. (n/at)
n 

We observe that the product a\aia$a*.. .ak
la^ is monotonie increasing with k. 

Since 

^i+i = fl?—flj + 1, a? > tfi + i > (tf i~l)2 for / > 1. 

Therefore 
loga^V^a^ogai + 1<2aL< 2 « 1 f o r -

loga,1/0< a i+1logûfi a i + 1 fo-l)2 2 

It now follows since log aj/a6 < 5 x 10~6 that 

I l o g a ^ = J logfl«1/fl<+ I l o g û ^ < 1.08240+10"5. 
« = 1 i = l < = 6 

That is, if we define 

w = lim (a\laialla2.. .4 /afe) 
fc-*oo 

that u><2.952. 
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Observe that 

ax — l a2—l 
« i a2 ak \ aj \ akJ 

k-l+ l 

«fc + i + 1 

It now follows from (2.5) that 

(2.6) 

(eri)k-1 + 1Ka*+i + 1)wn 

< aiai " 1)/0ia(a2 ~ 1 ) / a2. . . aiak ~ 1)/afc 

< gfc-3/2^-3/2^ ^ > 2 (since « < a±a2.. .tffc). 

A check of tables reveals C(ri) < 3n for n > 1300 and a check of tables of ^(ri), such 
as those of Appel and Rosser [1], for n< 1300 concludes the proof of Theorem 1. 

3. Obtaining a lower bound for the product of the primes by similar methods 
leads to a less elegant result for small n. If we define 

D(n) 
[n/2]\[n/3]\[n/6]l 

it can be shown 

vj)<m< YIP Tli 

Theorem 1 now implies 

(3.1) @(n) > 0J9169n-(2+n112) log n > \n for n > 8 x 104. 

A simple check of tables shows that (3.1) holds for n> 13. 
Let TT{X) denote the number of primes less than or equal to x. 

•wi-intT')-
V<.x n = 2 lOg « * / 1 1 \ 

= n?2
 Y ( n ) t eg7r log («+!))+ logx 

It can be shown by Theorem 1 that 

^ < T o W + 1^3(ïoi-2 + i o ^ + 4 0 ) 
< I r ^ - for* > 25,000. 4 log x 

A direct check of tables (such as [1]) for values of x< 25,000 implies 

, N 5x 
TT(X) < -r-j 

v J 4 logx 
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for l < x < 1 1 3 and x>114, and for x=113 

TT(X) = 1.25506 7-^- . 
log* 

That is f i (x)J(x/log x) is a maximum for x= 113. 
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