Bull. Austral. Math. Soc.
VoL. 55 (1997) [177-184]

ON LINEAR ALMOST PERIODIC SYSTEMS WITH BOUNDED SOLUTIONS

V.I. Tkachenko

It is proved that in every neighbourhood of a system of linear differential equations with almost periodic skew-adjoint matrix with frequency module \mathcal{F} there exists a system with frequency module contained in the rational hull of \mathcal{F} possessing all almost periodic solutions.

1. Introduction

Let us consider the system of linear differential equations

$$
\begin{equation*}
\frac{d x}{d t}=A(t) x \tag{1}
\end{equation*}
$$

where $\boldsymbol{x} \in \mathbb{C}^{n}, A(t)$ is an n-dimensional skew-adjoint matrix, $A(t)+A^{*}(t)=0, t \in \mathbb{R}$, and we also suppose that $A(t)$ is a continuous function and it is Bohr almost periodic with frequency module \mathcal{F}. Let $X_{A}(t)$ be the fundamental matrix for system (1), $X_{A}(0)=I$, where I is the identity matrix.

The function $X_{A}(t)$ need not be almost periodic in t. The aim of this paper is to prove that in any neighbourhood of the matrix-function $A(t)$ (in the uniform topology on the real axis) there exists a skew-adjoint matrix-function $C(t)$ such that $C(t)$ and $X_{C}(t)$ are almost periodic with frequencies belonging to the rational hull of \mathcal{F}.

We note that in $[3,4]$ this statement was proved for systems with almost periodic matrix $A(t)$ which has a frequency basis of dimension two or three. If the matrix $A(t)$ is periodic in t the statement is trivial, taking into account Floquet's theorem.

2. Main result

Let us denote by $U(n)$ the set of all unitary matrices of dimension n and by $S U(n)$ the set of unitary matrices of dimension n with determinant equal to 1 . For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ we define the norm $\|x\|=\left(\sum_{j=1}^{n} x_{j} \bar{x}_{j}\right)^{1 / 2}$, where \bar{x} is the complex conjugate of \boldsymbol{x}. The corresponding norm $\|A\|$ for the n-dimensional matrix

[^0]A is defined as follows: $\|A\|=\sup \left\{\|A x\|: x \in \mathbb{C}^{n},\|x\|=1\right\}$. Thus $\|A x\|=1$ for $A \in U(n)$.

The frequency module \mathcal{F} of the almost periodic function $A(t)$ is defined to be the \mathbb{Z}-module of the real numbers, generated by the λ such that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} e^{2 \pi i t \lambda} A(t) d t \neq 0 \tag{2}
\end{equation*}
$$

$\mathcal{F}_{\text {rat }}$ is the rational hull of \mathcal{F}, that is, $\mathcal{F}_{\text {rat }}=\{\lambda / m: \lambda \in \mathcal{F}, m \in \mathbb{Z}\}$.
Theorem 1. In every neighbourhood of the system of linear differential equations (1) with almost periodic skew-adjoint matrix with frequency module \mathcal{F} there exists a system with frequency module contained in the rational hull of \mathcal{F} possessing all almost periodic solutions with frequencies belonging to $\mathcal{F}_{\text {rat }}$.

The proof of theorem is preceded by two lemmas.
Lemma 1. For $\varepsilon>0$ and for positive integers n and d there exists a number $N(\varepsilon, n, d)$ such that for every compact metric space X of dimension at most d and for every homotopic trivial $u: X \rightarrow J(n)$ there exists a sequence $u=u_{0}, u_{1}, \ldots$, $u_{N(e, n, d)}=I$ of continuous maps from X to $U(n)$ with

$$
\sup _{\varphi \in X}\left\|u_{k}(\varphi)-u_{k+1}(\varphi)\right\| \leqslant \varepsilon \quad \text { for all } \quad k
$$

Proof: Let us consider a continuous homotopic trivial $a(\varphi): X \rightarrow U(n)$. The function $a(\varphi)$ can be rewritten in the form $a(\varphi)=(\operatorname{det} a(\varphi))^{1 / n} a_{1}(\varphi)$, where $a_{1}(\varphi)$: $X \rightarrow S U(n)$ is a homotopic trivial map. $D(\varphi)=(\operatorname{det} a(\varphi))^{1 / n}$ is a homotopic trivial map from X to $U(1)=\{x \in \mathbb{C}:|x|=1\}$. Hence there is $\theta_{0} \in[0,2 \pi)$ such that the point $e^{i \theta_{0}}$ does not have an inverse image under the map $D(\varphi)$ and the function $D(\varphi)$ has the representation $D(\varphi)=e^{i \alpha(\varphi)}$, where $\alpha(\varphi): X \rightarrow \mathbb{R}$ is a continuous function and $\theta_{0}<\alpha(\varphi)<\theta_{0}+2 \pi$.

The function $h(\varphi, t)=\exp (i t \alpha(\varphi)): X \times[0,1] \rightarrow U(1)$ is a homotopy from $D(\varphi)$ to the identity. Let us consider a sequence of functions

$$
v_{k}(\varphi)=\exp \left(i \frac{k}{N_{1}} \alpha(\varphi)\right), \quad 0 \leqslant k \leqslant N_{1}
$$

with natural N_{1}. We get the estimate

$$
\begin{aligned}
\left|v_{k+1}-v_{k}\right| & =\left|\exp \left(i \frac{k+1}{N_{1}} \alpha(\varphi)\right)-\exp \left(i \frac{k}{N_{1}} \alpha(\varphi)\right)\right|=\left|\exp \frac{i \alpha(\varphi)}{N_{1}}-1\right| \\
& =\left|\cos \frac{i \alpha(\varphi)}{N_{1}}+i \sin \frac{i \alpha(\varphi)}{N_{1}}-1\right|=2 \sin \frac{i \alpha(\varphi)}{2 N_{1}} \leqslant \frac{2\left(\theta_{0}+2 \pi\right)}{2 N_{1}} \leqslant \frac{4 \pi}{N_{1}} .
\end{aligned}
$$

We choose N_{1} so that $4 \pi / N_{1}<\varepsilon / 2$.
By Lemma 3.1 [5] for $\varepsilon>0$ and for positive integers $n \geqslant 2$ and d there exists $N_{2}(\varepsilon, n, d)$ such that for every compact metric space X of dimension at most d and every homotopic trivial $u: X \rightarrow S U_{n}$, there exists a sequence $u=u_{0}, u_{1}, \ldots, u_{N_{2}(e, n, d)}=$ I of continuous maps from X to $S U_{n}$ with

$$
\sup _{\varphi \in X}\left\|u_{k}(\varphi)-u_{k+1}(\varphi)\right\| \leqslant \varepsilon / 2 \quad \text { for all } k
$$

By taking $N(\varepsilon, n, d)=\max \left\{N_{1}, N_{2}(\varepsilon, n, d)\right\}$ we complete the proof.
REmark 1. Analysis of [5, proof of Lemma 3.1] and [1, Lemmas 1.3 and 4.3] shows that Lemma 1 remains valid with $U(n)$ replaced by a compact Riemannian manifold Y with finite fundamental group $\pi_{1}(Y)$. Therefore Lemma 1 is valid for homotopic trivial maps from a compact metric space X of dimension at most d to the group $S O(n)$ of n-dimensional orthogonal matrices with determinant 1 for $n \geqslant 3$ (because $\pi_{1}(S O(n))=\mathbb{Z}_{2}$ if $\left.n \geqslant 3[2]\right)$.

Lemma 2. Suppose that the continuous function $A(\varphi): T_{m} \rightarrow U(m)$ satisfies

$$
\begin{equation*}
\sup _{\varphi \in T_{m}}\|A(\varphi)-I\| \leqslant \varepsilon \leqslant \frac{1}{2} \tag{3}
\end{equation*}
$$

Then there exists a continuous logarithm of the function $A(\varphi)$ defined on the torus T_{m} such that

$$
\begin{equation*}
\sup _{\varphi \in T_{m}}\|\ln A(\varphi)\| \leqslant \frac{4 \sqrt{2} \varepsilon}{1-2 \varepsilon} \tag{4}
\end{equation*}
$$

Proof: We use the formula

$$
\begin{equation*}
\ln A(\varphi)=\frac{1}{2 \pi i} \int_{\theta \Omega}(\lambda I-A(\varphi))^{-1} \ln \lambda d \lambda \tag{5}
\end{equation*}
$$

where the simply connected domain Ω in the complex plane contains the closure of the set of eigenvalues of $A(\varphi), \varphi \in T_{m}$ and it does not contain zero [6].

By assumption (3) the eigenvalues of the matrix $A(\varphi), \varphi \in T_{m}$ are contained inside the circle of radius ε with centre at the point $(1,0)$ of the complex plane. The function $\ln A(\varphi)$ is continuous on the torus T_{m}.

Let $\partial \Omega$ in (5) be the circle of radius 2ε with centre at the point $(1,0)$ of the complex plane,

$$
\partial \Omega=\left\{\lambda: \lambda=1+2 \varepsilon e^{i \varphi}, \varphi \in[0,2 \pi]\right\}
$$

Hence for $\lambda \in \partial \Omega$ we get

$$
\begin{equation*}
\left\|(\lambda I-A(\varphi))^{-1}\right\| \leqslant \frac{1}{\varepsilon} \tag{6}
\end{equation*}
$$

Let us estimate $|\ln \lambda|$ for $\lambda \in \partial \Omega$. These λ have the form

$$
\lambda=1+2 \varepsilon e^{i \varphi}=\rho e^{i \theta}
$$

where

$$
\rho=\sqrt{1+4 \varepsilon \cos \varphi+4 \varepsilon^{2}}, \theta=\arctan \frac{2 \varepsilon \sin \varphi}{1+2 \varepsilon \cos \varphi} .
$$

Hence we have

$$
\ln \lambda=\ln \rho+i \theta+2 \pi i k, k \in \mathbb{Z}
$$

Let $k=0$, then

$$
|\ln \lambda| \leqslant \sqrt{(\ln \rho)^{2}+\theta^{2}}
$$

Further, $\ln \rho$ satisfies the inequalities

$$
-\ln \left(1+\frac{2 \varepsilon}{1-2 \varepsilon}\right)=\frac{1}{2} \ln \left(1-4 \varepsilon+4 \varepsilon^{2}\right) \leqslant \ln \rho \leqslant \frac{1}{2} \ln \left(1+4 \varepsilon+4 \varepsilon^{2}\right)=\ln (1+2 \varepsilon)
$$

hence

$$
|\ln \rho| \leqslant\left|\ln \left(1+\frac{2 \varepsilon}{1-2 \varepsilon}\right)\right| \leqslant \frac{2 \varepsilon}{1-2 \varepsilon}
$$

Similarly we get the estimate

$$
|\theta| \leqslant\left|\arctan \frac{2 \varepsilon}{1-2 \varepsilon}\right| \leqslant \frac{2 \varepsilon}{1-2 \varepsilon} .
$$

Therefore we conclude that

$$
\begin{equation*}
|\ln \lambda| \leqslant \frac{2 \sqrt{2} \varepsilon}{1-2 \varepsilon} \tag{7}
\end{equation*}
$$

Using (6) and (7) we get the estimate for the right-hand side of (5):

$$
\sup _{\varphi \in T_{m}}\|\ln A(\varphi)\| \leqslant \frac{1}{2 \pi} \frac{1}{\varepsilon} \frac{2 \sqrt{2} \varepsilon}{1-2 \varepsilon} 2 \varepsilon 2 \pi=\frac{4 \sqrt{2} \varepsilon}{1-2 \varepsilon}
$$

which completes the proof of the lemma.

Remark 2. If $A(\varphi) \in S O(n)$ then it can be shown that the matrix $\ln A(\varphi)$ in (5) is real and satisfies the estimates (4).

Proof of theorem: Let $\varepsilon>0$ be arbitrary. For the almost periodic function $A(t)$ with frequency module \mathcal{F} there exists a quasiperiodic function $A_{1}(t)$ with frequencies belonging to \mathcal{F} such that $\sup _{t \in \mathbb{B}}\left\|A(t)-A_{1}(t)\right\|<\varepsilon$. Hence we can consider system (1) with quasiperiodic matrix $A(t)$.

We can rewrite $A(t)$ in the form $A(t)=B\left(\omega_{1} t, \ldots, \omega_{m+1} t\right)$, where the continuous skew-adjoint matrix $B\left(\varphi_{1}, \ldots, \varphi_{m+1}\right)$ is periodic with period 1 in each coordinate $\varphi_{i}, i=1, \ldots, m+1$, and m is some positive integer. The real constants $\omega_{1}, \ldots, \omega_{m+1}$ are rationally independent. Without loss of generality we may assume that $\omega_{m+1}=1$. The ($m+1$)-dimensional torus $T_{m+1}=\mathbb{R}^{m+1} / \mathbb{Z}^{m+1}$ is the hull of the quasiperiodic function $A(t)$.

Consider now the collection of systems

$$
\begin{equation*}
\frac{d x}{d t}=B(\varphi \cdot t) x \tag{8}
\end{equation*}
$$

where $\varphi \cdot t=\omega t+\varphi$ is the irrational twist flow on the torus $T_{m+1}, \varphi=\left(\varphi_{1}, \ldots, \varphi_{m+1}\right) \in$ T_{m+1}. Then $A(t)=B\left(\varphi_{0} \cdot t\right)$, where $\varphi_{0}=(0, \ldots, 0)$. Let $\Phi(\varphi, t)$ be the fundamental matrix for the system (8), $\Phi(\varphi, 0)=I$. It forms a cocycle

$$
\begin{equation*}
\Phi\left(\varphi, t_{1}+t_{2}\right)=\Phi\left(\varphi \cdot t_{1}, t_{2}\right) \Phi\left(\varphi, t_{1}\right) \tag{9}
\end{equation*}
$$

We consider the torus T_{m+1} as a product $T_{m+1}=T_{m} \times T_{1}$ of the m-dimensional torus T_{m} and of the circle T_{1}. Then $\varphi=(\psi, \xi), \psi \in T_{m}, \xi \in T_{1}$ and $\Phi(\varphi, t)=\Phi(\psi, \xi, t)$.

For fixed t the function $\Phi(\psi, 0, t)$ forms a mapping $T_{m} \rightarrow U(n)$ which is homotopic to the identity in the space $U(n)$.

We consider the fundamental matrix $\Phi(\psi, 0, N)$, where the number

$$
N=N\left(\frac{\varepsilon}{16}, m, n\right)
$$

is the same as in Lemma 1. By Lemma 1 there exists a sequence of maps $M(\psi, k)$: $T_{m} \rightarrow U(n)$ such that $M(\psi, 0)=I, M(\psi, N)=\Phi^{*}(\psi, 0, N)$ and

$$
\sup _{\psi \in T_{m}}\|M(\psi, k)-M(\psi, k+1)\| \leqslant \frac{\varepsilon}{16} \quad \text { for } \quad k=0, \ldots, N-1
$$

Obviously,

$$
\begin{equation*}
\sup _{\psi \in T_{m}}\left\|M(\psi, k+1) M^{*}(\psi, k)-I\right\| \leqslant \varepsilon / 16, \quad k=0, \ldots, N-1 . \tag{10}
\end{equation*}
$$

By Lemma 2 for $\varepsilon \in\left(0, \varepsilon_{0}\right]$ with sufficiently small $\varepsilon_{0}>0$, there exists a logarithm $\ln \left(M(\psi, k+1) M^{*}(\psi, k)\right)$ continuous on T_{m} with

$$
\begin{equation*}
\sup _{\psi \in T_{m}}\left\|\ln \left(M(\psi, k+1) M^{*}(\psi, k)\right)\right\| \leqslant \frac{\varepsilon}{2} . \tag{11}
\end{equation*}
$$

Let $\alpha(t):[0,1] \rightarrow[0,1]$ be a differentiable monotone increasing function satisfying the conditions $\alpha(0)=\alpha^{\prime}(0)=\alpha^{\prime}(1)=0, \alpha(1)=1, \alpha^{\prime}(t)<2$. We construct the function

$$
N(\psi, t)=\exp \left[\alpha(t-k) \ln \left(M(\psi, k+1) M^{*}(\psi, k)\right)\right] M(\psi, k)
$$

for $t \in[k, k+1), k=0, \ldots, N-1$.

$$
\begin{gathered}
\frac{\partial N(\psi, t)}{\partial t}=\exp \left[\alpha(t-k) \ln \left(M(\psi, k+1) M^{*}(\psi, k)\right)\right] \\
\\
\times \ln \left(M(\psi, k+1) M^{*}(\psi, k)\right) \alpha^{\prime}(t-k) M(\psi, k), \\
\frac{\partial N(\psi, t)}{\partial t} N^{*}(\psi, t)=\alpha^{\prime}(t-k) \ln \left(M(\psi, k+1) M^{*}(\psi, k)\right)
\end{gathered}
$$

for $t \in[k, k+1]$. By construction, the function $N(\psi, t)$ is continuously differentiable with respect to t, for $t \in[0, N]$. Using (11) we obtain for $t \in[0, N]$

$$
\sup _{\psi \in T_{m}}\left\|\frac{\partial N(\psi, t)}{\partial t} N^{*}(\psi, t)\right\| \leqslant \varepsilon .
$$

Let us consider the function $\Psi(\psi, t)=\Phi(\psi, 0, t) N(\psi, t)$. It satisfies the conditions $\Psi(\psi, 0)=\Psi(\psi, N)=I, \psi \in T_{m}$. We extend the function $\Psi(\psi, t)$ to the intervals $t<0$ and $t>N$ by the formula

$$
\begin{equation*}
\Psi(\psi, t+k N)=\Psi(\psi \cdot k N, t), \quad k \in \mathbb{Z} \tag{12}
\end{equation*}
$$

where $\psi=\left(\psi_{1}, \ldots, \psi_{m}\right), \psi \cdot t=\left(\omega_{1} t+\psi_{1}, \ldots, \omega_{m} t+\psi_{m}\right)$. The function $\Psi(\psi, t)$ is uniformly continuous on the set $T_{m} \times[0, N]$. Therefore for $\varepsilon>0$ there exists $\delta>0$ such that if $\rho\left(\psi_{1}, \psi_{2}\right)<\delta$ then $\left\|\Psi\left(\psi_{1}, t\right)-\Psi\left(\psi_{2}, t\right)\right\|<\varepsilon$. Here $\rho(.,$.$) stands for the$ metric on the torus T_{m}.

For the irrational twist flow $\psi \cdot t$ on the torus T_{m} there exists a relatively dense set of integers q_{6} such that $\rho\left(\psi, \psi \cdot N q_{6}\right)<\delta$ for all $\psi \in T_{m}$. Then

$$
\left\|\Psi(\psi, t)-\Psi\left(\psi, t+N q_{\delta}\right)\right\|=\left\|\Psi(\psi, t)-\Psi\left(\psi \cdot N q_{\delta}, t\right)\right\|<\varepsilon
$$

for $t \in[0, N], \psi \in T_{m}$. Therefore for the function $\Psi(\psi, t)$ there exists a relatively dense set of ε-almost periods, the function $\Psi(\psi, t)$ is almost periodic in t, and for fixed ψ it satisfies the system

$$
\begin{equation*}
\frac{d \Psi(\psi, t)}{d t}=B_{1}(\psi \cdot t, t) \Psi(\psi, t) \tag{13}
\end{equation*}
$$

where

$$
B_{1}(\psi \cdot t, t)=\frac{\partial \Psi(\psi, t)}{\partial t} \Psi^{*}(\psi, t), \psi \in T_{m}, t \in \mathbb{R}
$$

The function $B_{1}(\psi, t)$ is periodic in t with a period N and

$$
\begin{equation*}
B_{1}(\psi, t)=B_{1}(\psi, t+N), \psi \in T_{m}, t \in \mathbb{R} . \tag{14}
\end{equation*}
$$

In order to verify equality (14) let us consider

$$
\begin{aligned}
B_{1}\left(\left(\psi_{1} \cdot t\right) \cdot N, t+N\right) & =\frac{\partial \Psi\left(\psi_{1}, t+N\right)}{\partial t} \Psi^{*}\left(\psi_{1}, t+N\right) \\
& =\frac{\partial \Psi\left(\psi_{1} \cdot N, t\right)}{\partial t} \Psi^{*}\left(\psi_{1} \cdot N, t\right)=B_{1}\left(\left(\psi_{1} \cdot N\right) \cdot t, t\right)
\end{aligned}
$$

Thus we obtain (14) if $\psi_{1} \cdot(N+t)=\psi$. Hence the matrix $B_{1}(\psi, t)$ is periodic in each coordinate and $B_{1}(\psi \cdot t, t)$ is quasiperiodic.

For $t=N q+t_{1}, 0 \leqslant t_{1}<N, \varphi=(\psi, 0)$ we get the following estimate:

$$
\begin{aligned}
& \left\|B_{1}(\psi \cdot t, t)-B(\varphi \cdot t)\right\| \\
& \quad=\left\|\frac{\partial \Psi(\psi, t)}{\partial t} \Psi^{*}(\psi, t)-\frac{\partial \Phi(\psi, 0, t)}{\partial t} \Phi^{*}(\psi, 0, t)\right\| \\
& \quad=\left\|\frac{\partial \Psi\left(\psi \cdot N q, t_{1}\right)}{\partial t} \Psi^{*}\left(\psi \cdot N q, t_{1}\right)-\frac{\partial \Phi\left(\psi \cdot N q, 0, t_{1}\right)}{\partial t} \Phi^{*}\left(\psi \cdot N q, 0, t_{1}\right)\right\| \\
& \quad=\left\|\Phi\left(\psi \cdot N q, 0, t_{1}\right) \frac{\partial N\left(\psi \cdot N q, t_{1}\right)}{\partial t} N^{*}\left(\psi \cdot N q, t_{1}\right) \Phi^{*}\left(\psi \cdot N q, 0, t_{1}\right)\right\| \\
& \quad \leqslant\left\|\frac{\partial N\left(\psi \cdot N q, t_{1}\right)}{\partial t} N^{*}\left(\psi \cdot N q, t_{1}\right)\right\| \leqslant \varepsilon .
\end{aligned}
$$

The numbers $\omega_{1}, \ldots, \omega_{m}, 1$ form a basis of \mathcal{F} and the quasiperiodic function $B_{1}(\psi \cdot t, t)$ has the following expansion in the Fourier series:

$$
B_{1}(\psi \cdot t, t)=\sum_{k, l} a_{k l} e^{2 \pi i\left(k_{1} \omega_{1}+\ldots+k_{m} \omega_{m}+l / N\right) t}
$$

Therefore the frequencies of the function $B_{1}(\psi \cdot t, t)$ belong to $\mathcal{F}_{r a t}$. A direct computation by (2) shows that the frequencies of the almost periodic function $\Psi(\psi, t)$ belong to $\mathcal{F}_{\text {rat }}$.

Thus we have constructed in the ε-neighbourhood of the almost periodic skewadjoint function $A(t)$ an almost periodic skew-adjoint function $A_{1}(t)=B_{1}\left(\psi_{0} \cdot t\right), \psi_{0}=$ $(0, \ldots, 0) \in T_{m}$ with frequencies belonging to $\mathcal{F}_{\text {rat }}$ and such that the fundamental matrix $X_{A_{1}}(t)$ is almost periodic. The proof of the theorem is now complete.

Remark 3. Theorem 1 remains valid for systems (1) considered in a real space $x \in \mathbb{R}^{\boldsymbol{n}}$. In this case the matrix $A(t)$ is skew-symmetric and the fundamental matrix $X_{A}(t)$ is orthogonal for all $t \in \mathbb{R}$. The proof is practically identical to that for the complex case with regard to Remarks 1 and 2 . We note that the case $n=1$ is trivial and the result for the case $n=2$ was proved in [4].

In [7] it is proved that those systems with k-dimensional frequency basis of the almost periodic function $A(t)$ whose solutions are not almost periodic form a subset of the second category (an intersection of a countable set of everywhere dense subsets) in the space of all systems (1) with k-dimensional frequency basis of $A(t)$. Therefore by Theorem 1 we obtain the following

Corollary 1. Systems with k-dimensional frequency basis of $A(t)$ and with an almost periodic fundamental matrix form an everywhere dense set of the first category in the space of all systems (1) with k-dimensional frequency basis of the skew-adjoint matrix $A(t)$.

References

[1] A. Calder and J. Siegel, 'Homotopy and uniform homotopy', Trans. Amer. Math. Soc. 235 (1978), 245-269.
[2] D. Husemoller, Fibre bundles (Springer-Verlag, Berlin, Heidelberg, New York, 1975).
[3] J. Kurzweil and A. Vencovska, 'On linear differential equations with almost periodic coefficients and the property that the unit sphere is invariant', in Proceedings of the International conference held in Wurzburg, 1982, Lecture Notes in Mathematics 1017 (Springer-Verlag, Berlin, Heidelberg; New York, 1983), pp. 364-368.
[4] J. Kurzweil and A. Vencovska, 'Linear differential equations with quasiperiodic coefficients', Czechoslovak Math. J. 37 (1987), 424-470.
[5] N.C. Phillips, 'How many exponentials?', Amer. J. Math. 116 (1994), 1513-1543.
[6] A.M. Samoilenko, Elements of mathematical theory of multi-frequency oscillations (Kluwer Academic Publishers, Dodrecht, 1991).
[7] V.I. Tkachenko, 'On linear systems with quasiperiodic coefficients and bounded solutions', Ukrain. Math. J. 48 (1996), 109-115.

[^1]
[^0]: Received 20th March, 1996
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

[^1]: Institute of Mathematics
 National Academy of Sciences
 Tereshchenkivs'ka Str. 3
 252601 Kyiv
 Ukraine
 e-mail: mathkiev@imat.gluk.apc.org

