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Effects of surface roughness on the drag
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an inclined plane
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An experimental investigation identifying the effects of surface roughness on the drag
coefficient (CD) of freely rolling spheres is reported. Although lubrication theory predicts
an infinite drag force for an ideally smooth sphere in contact with a smooth wall, finite
drag coefficients are obtained in experiments. It is proposed that surface roughness
provides a finite effective gap (G) between the sphere and panel, resulting in a finite
drag force while also allowing physical contact between the sphere and plane. The
measured surface roughnesses of both the sphere and panel are combined to give a total
relative roughness (ξ ). The measured CD increases with decreasing ξ , in agreement with
analytical predictions. Furthermore, the measured CD is also in good agreement with
the combined analytical and numerical predictions for a smooth sphere and wall, with
a gap approximately equal to the root-mean-square roughness (Rq). The accuracy of
these predictions decreases for low mean Reynolds numbers (Re), due to the existence of
multiple scales of surface roughness that are not effectively captured by Rq. Experimental
flow visualisations have been used to identify critical flow transitions that have been
previously predicted numerically. Path tracking of spheres rolling on two panels with
different surface roughnesses indicates that surface roughness does not significantly affect
the sphere path or oscillations. Analysis of sphere Strouhal number (St) highlights that
wake shedding and sphere oscillations are coupled at low Re but with increasing Re, the
influence of wake shedding on the sphere path diminishes.
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1. Introduction

Numerous previous studies (e.g. Carty 1957; Jan & Shen 1995) and dedicated reviews
(Thompson, Leweke & Hourigan 2021) have focused on the simple process of a sphere
rolling down an inclined plane. Rolling sphere experiments date back to the time of
Galileo Galilei (Galilei 1638), which have recently been corrected to include the effects
of aerodynamic drag and rolling resistance (Breiland 2022). This process has practical
applications, such as the re-suspension and transport of particles deposited on a surface,
including dust on the ground or sediment in rivers. Despite the practical importance and
apparent simplicity of this process, it is surprising that the mechanisms that allow sphere
motion, while in contact with the plane, are not yet fully understood.

Lubrication theory (Goldman, Cox & Brenner 1967; O’Neill & Stewartson 1967; Cooley
& O’Neill 1968) predicts an infinite drag coefficient (CD) for an ideally smooth sphere
rolling in contact with a smooth surface, and in an incompressible fluid. Therefore, a
sphere in contact with the panel will neither move nor roll due to infinite pressure peaks at
the point of contact. However, spheres are observed to move in experiments (Carty 1957;
Jan & Shen 1995), forming the basis of the rolling paradox (Prokunin 2003; Thompson
et al. 2021).

For a sphere in a Newtonian incompressible fluid to move, a gap must exist between
the sphere and the plane, which may occur via cavitation (Prokunin 2003; Ashmore, Del
Pino & Mullin 2005; Seddon & Mullin 2006), compressibility (Terrington, Thompson &
Hourigan 2022) or surface roughness (Smart, Beimfohr & Leighton 1993; Galvin, Zhao &
Davis 2001; Houdroge et al. 2023) depending on the flow regime. This study considers the
flow regime where the sphere maintains contact with the surface, in which the effective
gap is determined by the roughness of both the sphere and the plane.

Prior to the extensive investigation by Carty (1957) (see figure 1), very little research had
been conducted on the variation of the mean drag coefficient (C̄D) with mean Reynolds
number (Re = ŪD/ν, where Ū is the mean sphere velocity, D the sphere diameter and ν

the fluid kinematic viscosity) for a sphere freely rolling down an inclined plane. Following
the work by Carty (1957), many other researchers performed similar experiments and
obtained consistent results, with some degree of scatter in the data (Garde & Sethuraman
1969; Jan & Shen 1995; Jan & Chen 1997; Chhabra & Ferreira 1999; Verekar & Arakeri
2010; Wardhaugh & Williams 2014; Tee 2018). For comparison, the results of Garde &
Sethuraman (1969) are also plotted in figure 1, which indicates the degree of scatter present
in existing experimental studies. More recent work by Houdroge et al. (2023) produced C̄D
vs Re results that are in agreement with those of Carty (1957), with minimal scatter in the
data. The findings of the present study are also consistent with these two investigations.

Analytical solutions of the Stokes equations (i.e. Re = 0) for a sphere translating and
rotating parallel to a plane wall were obtained by Dean & O’Neill (1963) and O’Neill
(1964, 1967), using a bi-spherical coordinate transformation. However, their series solution
suffers from poor numerical convergence for small gap ratios. An asymptotic solution,
valid for small gap ratios, was obtained by Goldman et al. (1967), and independently
by O’Neill & Stewartson (1967) and Cooley & O’Neill (1968), using a combined
Stokes-flow/lubrication approach. These studies find that the drag varies logarithmically
with the gap height, and diverges towards infinity as the gap height approaches zero.
A similar logarithmic divergence of the drag with gap height was reported by
Bhattacharya, Mishra & Bhattacharya (2010) for spherical particles translating and
rotating in a cylindrical conduit.

Figure 1 presents the solutions provided by Goldman et al. (1967) for a fixed
gap/diameter ratio (G/D) of 10−4. Goldman et al. (1967) assumed that the sphere and
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Figure 1. The C̄D vs Re comparison of previous experimental, analytical and computational studies. As seen
in the figure, analytical predictions are generally well below both experimental and numerical predictions.
Goldman et al. (1967) and Houdroge et al. (2023) (see (2.4)) predictions have been plotted with a G/D value
of 1 × 10−4, which is an average value based on experimental data of the present study (see figure 12 for
equivalent experimental ξ = G/D values).

the plane were not in contact, and separated by a small gap, where the flow could be
described using classical lubrication theory. However, the idealised model provided by
Goldman et al. (1967) underestimated CD in comparison with the experimental results
of Carty (1957), and required G/D of the order of 10−8 for agreement with the Carty
(1957) results, well beyond the limits of applicability of the model. Goldman et al.
(1967) suggested six possible explanations for the observed divergence, including surface
roughness, compressibility or cavitation linked to the large pressure magnitudes in the
interstice, breakdown of the continuum assumption, inertial effects, non-Newtonian effects
and deformation of the sphere. Goldman et al. (1967) provided cavitation as the most
likely explanation for the observed divergence, due to the lack of supporting evidence
for the other mechanisms. In particular, surface roughness was ruled out since the Carty
(1957) results indicated a single Re vs C̄D curve for Re < 60, despite the various degrees
of roughness present in the experiments. However, more recent experiments by Houdroge
et al. (2023) have indicated that, when additional data points are obtained, multiple
curves corresponding to various G/D values are observed. While Goldman et al. (1967)
dismissed the effects of surface roughness as a plausible explanation for the deviation of
his predictions from experimental data, the results of Houdroge et al. (2023) have shown
that variations in surface roughness can lead to variations in C̄D in inertial flow, which will
be investigated in more detail in the present study.
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The analytical work of Goldman et al. (1967) was further extended by Houdroge
et al. (2023) to describe the value of CD of a sphere in contact with a plane, rolling
without slipping and at finite Re. Contact forces between the sphere and the wall increase
the predicted CD compared with the model of Goldman et al. (1967). In addition, the
inclusion of inertial effects at non-zero Re results in an additional contribution to the
drag coefficient, known as the wake drag coefficient (CD,wake) (see § 2.1). Figure 1 shows
the combined analytical and numerical predictions of Houdroge et al. (2023) for a fixed
G/D = 10−4, which marginally underpredict CD compared with the measurements of
Carty (1957) for Re < 200. We note that the surface roughness was not measured in the
Carty (1957) experiments. The value of G/D = 10−5 provides much better agreement
between the Houdroge et al. (2023) predictions and the Carty (1957) results. Given
that Carty (1957) used spheres with diameters ranging from 2 to 30 mm made from
different materials (Lucite, glass, steel and acetate), to obtain G/D ≈ 10−5, G should be
approximately 0.02 to 0.3 μm, which is of the same order of magnitude as the surface
roughness measurements obtained in this study.

Numerical simulations have shown that, while the wake dynamics of a rolling body
is independent of the gap size, when the gap is small, the observed forces are highly
sensitive to it (Rao et al. 2012). Zhang et al. (2017) investigated the value of CD for a
particle moving parallel to a wall for G/D = 0 that should produce infinite drag at the
point of contact, but which has not been captured in the lattice-Boltzmann method they
have used. However, their findings were consistent with the results of Carty (1957) for
higher Re (> 100), but there was a noticeable deviation at lower Re (refer to figure 1). This
indicates that the numerical schemes are effective in capturing the effects of wake drag on
CD that dominate at higher Re, but diverge as the gap-dependent drag (CD,gap, primarily
arising from high pressure gradients and viscous forces within the gap region) dominates
at lower Re. This divergence can be attributed to limitations in a gap height introduced at
the point of contact (or zero gap in the case of Zhang et al. 2017) between the sphere and
plane to avoid mesh singularities. Simulation by Houdroge et al. (2023) demonstrated this
sensitivity of CD to G/D, where the predicted CD increased by 40 % at Re = 50, when
the gap height is reduced from 0.01 to 0.0002 (see also figure 12). To effectively capture a
value of CD,gap comparable to experimental results, gap heights in the range of 10−5–10−8

are required, which are not computationally feasible to carry out over a large range of
Re. To address these numerical difficulties, Terrington, Thompson & Hourigan (2023)
proposed a combined analytic and numerical approach for a two-dimensional cylinder
translating and rotating adjacent to a plane wall. Similar to the method used by Houdroge
et al. (2023), the newly proposed method decomposes the total flow into the inner flow,
which is represented using analytical expressions using lubrication theory, and outer flow,
described using numerical simulations.

While surface roughness has often been neglected in studies performed in the inertial
regime, many previous studies have considered the effects of surface roughness on the
dynamics of a rolling sphere in the Stokes regime (Smart & Leighton 1989; King &
Leighton 1997; Galvin et al. 2001; Zhao, Galvin & Davis 2002; Prokunin 2003). Smart
& Leighton (1989) developed a technique for measuring the effective hydrodynamic gap,
based on the time taken for the sphere to fall away from the wall under the influence
of gravity. For a stationary sphere, they show that the effective hydrodynamic gap is
determined by the height of the largest scale of surface asperity with sufficient coverage
to support the sphere. Smart et al. (1993) used the effective hydrodynamic roughness to
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predict the rotational and translational velocities of a rolling sphere in the Stokes regime,
finding good agreement between their predictions and experimental measurements.

King & Leighton (1997), Galvin et al. (2001) and Zhao et al. (2002) extended this
analysis to include multiple scales of roughness, rather than the single scale of roughness
considered by Smart & Leighton (1989) and Smart et al. (1993). Galvin et al. (2001) and
Zhao et al. (2002) propose a model featuring two scales of roughness: a dense coverage
of small asperities, and a sparse coverage of large asperities. The small asperities support
the sphere at rest and low speeds (U), while the sphere only contacts the large asperities
at higher U. This hypothesis explained the discrepancy between the model of Smart et al.
(1993) and experimental measurements at higher U.

These studies have clearly demonstrated that surface roughness plays a key role in
the dynamics of a rolling sphere in the Stokes-flow regime. However, determining the
effects of surface roughness on the motion of a sphere in the inertial flow regime (Re > 1)
requires further investigations. The present study aims to demonstrate the effects of surface
roughness on the motion of a rolling sphere in the inertial flow regime.

In addition to the investigation of the effects of surface roughness on CD, we will
also be presenting experimental flow visualisations, path tracking and vortex-induced
vibration (VIV) analysis on freely rolling spheres. The value of CD of a freely rolling
sphere is dependent on its velocity, and the sphere wake dynamics has a direct influence
on the down-slope and cross-slope velocities. As such, it is crucial to obtain a better
understanding of the wake of a freely rolling sphere, which will be achieved using flow
visualisations. In addition, wake shedding has been observed to induce oscillations (also
called VIV) on a freely rolling sphere (Houdroge 2017). We will also investigate this
relationship between the sphere wake dynamics and VIV, while also examining the effects
of surface roughness on the VIV response of a sphere.

Many previous studies have investigated wake formation behind bluff bodies and some
previous research has been undertaken on rolling spheres (Taneda 1965; Stewart et al.
2008, 2010a,b; Rao et al. 2011; Verekar & Arakeri 2019). Experimental flow visualisations
by Leweke et al. (1999) captured the wake of an isolated sphere in great detail, showing
the division of the re-circulation region into two parallel threads with opposite vorticity,
which later combine to form a hairpin-like structure with centre-line mirror symmetry. The
photographs also capture the connection between the head of one hairpin vortex to the tail
of the previous hairpin vortex, demonstrating the complexity of the wake of an isolated
sphere. Houdroge (2017) also experimentally visualised the wake of a freely rolling sphere
and obtained results in good agreement with numerical predictions. Although these studies
have presented flow visualisations at a few distinct Re, the present literature lacks a
detailed experimental investigation of the wake of a freely rolling sphere, visualising
the transitions with increase in Re. As such, in the present study, we will be presenting
detailed visualisations of the wake of a freely rolling sphere, and comparing our results
with existing experimental and numerical predictions.

At low Re, the flow behind a rolling sphere is steady, remains attached and a fluid
re-circulation zone has been observed (Stewart et al. 2010b). This is analogous to an
isolated sphere, where a double threaded wake comprised a counter-rotating vortex pair,
as described by Thompson et al. (2021). As Re increases, this re-circulation zone grows
in size, and the flow becomes increasingly unsteady. Numerical simulations conducted by
Stewart et al. (2010b) identified that the flow undergoes a transition to unsteady, periodic
flow in the range 125 < Re < 150 for a forward rolling sphere. Rao et al. (2012) found
that this transition occurs at Re = 139 (Rec1) and further identified a second transition at
Re = 192 (Rec2) where mirror symmetry was broken. Interestingly, Houdroge (2017) also
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found that the first critical transition is strongly dependent on the mass ratio, β = ρs/ρf
(where ρs and ρf are the densities of the sphere and fluid, respectively), which acts to
delay the onset of unsteadiness in the flow. As Re increases further, hairpin vortices are
shed into the wake, and in the second transition, centre-plane symmetry of the wake is
broken. In simulations by Houdroge (2017), significant lateral movement was observed,
and vortices were shed at varying orientations. Similar lateral oscillations were observed
experimentally by Houdroge et al. (2023), who attributed these oscillations at lower Re to
imperfections and dust on the rolling surface. This unsteadiness in the wake leads to VIVs
which produce Strouhal numbers (St) ranging between 0.10 and 0.15 in line, and 0.05
cross-slope, for Re < 300 (Houdroge et al. 2023). We will investigate these phenomena
further in the present paper.

In this study, we will experimentally investigate the effects of surface roughness on
the drag coefficient of spheres, freely rolling without slipping down an inclined plane.
We aim to provide experimental evidence that C̄D is dependent on both the sphere and
panel surface roughness, and the effective gap (G) between the panel and sphere can be
estimated by assuming an effective gap determined by the surface roughness parameters.
However, it should be noted that, due to the logarithmic dependence of CD on gap height
(see (2.2)), an order of magnitude change in G/D or surface roughness will only produce
relatively small changes in C̄D, posing a challenge in establishing the effects of surface
roughness on C̄D. Nevertheless, we will demonstrate that variations in surface roughness
(25-fold change) leads to a change in observed C̄D (≈ 10 %), which is well beyond the
experimental uncertainty (typically 1 %–2 %) of the measurements.

Moreover, we demonstrate that the measured drag coefficients are in agreement with the
predicted drag coefficient for a smooth sphere and smooth wall, with a gap approximately
equal to the root-mean-square (r.m.s.) surface roughness. Our primary focus will be on
the inertial flow regime (30 < Re < 800), where the present literature lacks experimental
evidence of the dependence of CD on surface roughness. A limited set of experiments of
freely rolling foam spheres in air will be conducted for comparison against the results
with spheres in water. These results will be used to demonstrate that cavitation (or
compressibility) is not a necessary requirement to allow sphere motion. Additional flow
visualisations and VIV analysis will also be used to indicate the complexity of the rolling
sphere wake and to provide experimental validation of the relative significance of surface
roughness and wake formation for the unsteady motion of the sphere. Experimental flow
visualisation will be used to validate critical flow transitions that have been observed in
previous numerical studies (Rao et al. 2012; Houdroge 2017). We will demonstrate that
the VIV response of a freely rolling sphere is independent of surface roughness, and
that results are also in relative agreement with numerical predictions which have been
produced assuming a gap between the sphere and plane. This paper is organised as follows.
Section 2 describes the problem and the existing analytical solutions and § 3 presents the
experimental method. Section 4 presents detailed experimental results of the investigation
including flow visualisations and path tracking information together with discussion of
observations. Section 5 presents concluding remarks.

2. Problem description

The general case of a sphere of diameter D rolling down a plane sloped at an angle θ to
the horizontal, considered in this study, is shown in figure 2. The sphere density is denoted
by ρs and the fluid density ρf ; typically ρs > ρf (negatively buoyant). The coordinate
system is attached to the centre of the body and the fluid is stationary with respect to the
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Figure 2. The schematic free body diagram of the forces acting on a sphere rolling down an inclined plane
under the influence of gravity, in a stationary fluid.

plane. Once the body reaches a quasi-steady state, it will travel at the time-mean terminal
velocity Ū in the x direction and mean angular velocity ω about the y direction, as indicated
in the figure. The x direction is also referred to as the down-slope direction, and the y
direction is referred to as the cross-slope direction; WB is the buoyant weight of the body
(WB = πD3(ρs − ρf )/6), and N is the normal reaction at the point of contact between the
body and the plane; ξ is the non-dimensional effective gap between the body and the plane
imposed by surface roughness, given by ξ = G/D. The parameter ξ will be discussed in
detail in § 2.2. The parameter FL is the lift force acting on the body, while Ty is the total
torque about the y axis and FD indicates the total drag force acting on the body.

Considering the force balance parallel to the plane, the mean drag coefficient of a freely
rolling sphere is given by (2.1). Note that the experimentally measured drag coefficient
includes both a hydrodynamic component (drag and torque) and contact forces

C̄D,exp = 4g sin(θ)D(β − 1)

3Ū2
. (2.1)

2.1. Analytical predictions
Goldman et al. (1967) provided analytical expressions for the non-dimensional drag force
on a sphere, both translating and rotating near a plane wall in Stokes flow, as a function
of G/D. Assuming no contact forces between the sphere and the wall, they concluded that
a sphere rolling down the plane must slip. Smart et al. (1993) and Houdroge et al. (2023)
assume that static friction forces due to physical contact between surface asperities on
both the sphere and the wall cause the sphere to roll without slipping. They present the
following expression for the total effective drag coefficient for the Stokes-flow case, which
includes both hydrodynamic and contact forces:

CD,gap = 1
Re

(−44.2 log10(G/D) + 34.0). (2.2)

It should also be noted that, in the derivation of (2.2), a frictional force was required
at the contact point to maintain the no-slip boundary condition. Without this force, as
stated by Goldman et al. (1967), the sphere will slip. Therefore, a frictional force at the
point of contact is essential for the sphere to roll without slip. Note that the static contact
force included in (2.2) does no work on the sphere, and therefore does not reduce the
sphere’s total kinetic energy. Instead, it transfers the sphere’s total kinetic energy between
translation and rotation to maintain no slip.
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The above equation expresses the contributions of the lubrication flow in the narrow
gap between the sphere and the plane to the total drag coefficient, which is referred to
as gap-dependent drag (CD,gap). The lubrication approach assumes that the gap is much
smaller than the sphere diameter (G � D), which holds for the spheres considered in the
present work.

For non-zero Re, there is an additional contribution to the drag coefficient known as
wake drag (CD,wake), which is approximately independent of G/D (Houdroge et al. 2023;
Terrington et al. 2023). Houdroge et al. (2023) provide the following empirical expression
for the wake drag coefficient, valid for 5 < Re < 300, based on numerical simulations
performed at G/D = 0.005:

CD,wake = 1.70 − 0.136(log10 Re) − 0.0716(log10 Re)2. (2.3)

The total drag coefficient is then obtained as the sum of the gap-dependent drag and wake
drag

CD,pred = CD,wake + CD,gap. (2.4)

Equation (2.4) is plotted in figure 1 for a fixed G/D = 10−4 and shows the same general
trend as observed by Carty (1957) for Re < 100. Slight differences between the predictions
and experiments are attributed to the influence of gap size, which is not known for Carty’s
experiments. The experimental results of the present investigation will be compared
against the predictions from (2.4), in § 4.4.

2.2. Relationship between gap and surface roughness
A primary aim of the present investigation is to establish the relationship between the
effective gap (G) to be used in (2.2)–(2.4), and the surface roughness parameters. Many
parameters may be used to describe surface roughness, that vary depending on the
application. British Standard Geometric Product Specifications (GPS) – Surface texture:
Profile method – Terms, definitions and surface texture parameters, BS ISO 4287:1997
describes these parameters in detail. The most common parameters are mean absolute
deviation, r.m.s. and peak roughness (Ra, Rq and Rp, respectively).

Based on these roughness parameters, a new non-dimensional relative roughness ξ will
be defined as follows:

ξ = (G)effective

D
= (R)panel + (R)sphere

D
, (2.5)

where ξ is the non-dimensional roughness coefficient or relative roughness, Rpanel and
Rsphere are the relevant roughness lengths corresponding to the panel and sphere. It is
currently unclear what statistical measure of surface roughness best describes the effective
gap. In this study, we consider the parameters ξq, ξa and ξp, based on the r.m.s. roughness
(Rq,panel and Rq,sphere), mean absolute deviation (Ra,panel and Ra,sphere) and peak roughness
(Rp,panel and Rp,sphere), respectively.

Equation (2.5) assumes that the effective gap (Geffective) at the point of contact is the
linear summation of the individual roughness values. This is a simplistic approach in
approximating the effective roughness, where we have assumed that the sphere and the
panel roughness contribute equally to the effective gap between them. This assumption
will be discussed in detail in § 4.1.

It is expected that the surface roughness of both sphere and panel will contain multiple
scales of roughness, with varying heights and spatial distributions (Galvin et al. 2001;
Zhao et al. 2002). The different scales of roughness likely do not contribute equally to
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Water tank

U

Adjustable inclined planeθ

Removable panel

Figure 3. Experimental set-up of the water tank at the FLAIR Laboratory, Monash University.

determining the effective gap between the sphere and plane. For example, the largest
asperities may be too sparsely distributed to provide a significant contribution to the
effective gap, while the smallest asperities may be too short to physically contact the
opposing wall. Therefore, simple statistical measures of the average roughness properties
may be insufficient to fully characterise the effective gap. This is discussed further in § 4.4.

3. Experimental methodology and roughness characterisation

3.1. Experimental set-up
The present experiments were conducted within the Fluids Laboratory for Aeronautical
and Industrial Research (FLAIR) at Monash University, Clayton, Australia. Figure 3 shows
a schematic diagram of the experimental set-up (not to scale) in the FLAIR laboratory. The
water tank used for the experiments measured 1000 × 500 × 600 mm3 (L × W × H), with
a glass plate of dimensions 800 × 480 × 10 mm3 mounted on an adjustable stainless steel
frame. The frame was mounted on a base frame, with one end hinged, to allow for the
angle of inclination of the top panel and frame to be adjusted using a threaded rod at the
other end. The inclination angle varied from 4◦ to 20◦. It was observed that, at angles
of inclination smaller than 4◦, the uncertainty of measurements escalated. Other panels
made of glass, ceramic and acrylic with varied surface roughness, typically 700 × 300 ×
10 mm3 in size, were also used for the experiments. These panels were placed atop the
existing glass panel and clamped down to limit relative movement. The properties of the
panels and spheres used during the experimental process are described in tables 1 and 2.

The flatness of the panels used was estimated by measuring the surface height variation
based on 48 equally spaced grid points on the surface of the panels. Panels were placed on
a cast iron surface plate (manufactured by Wing Industries, Australia; Grade D), machined
and installed to be horizontally levelled, which was used as a reference surface. A metric
dial indicator (manufactured by Mitutoyo, Japan; accuracy = 0.01 mm) and an arm were
used to measure the height of the rolling surface of the panel, from which a mean plane
was obtained. Two parameters have been used in table 1 to describe the flatness of
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Panel type Panel thickness (mm) Max. deviation (mm) Max. gradient (%)

Glass panel 10 0.05 0.10
Frosted glass panel 10 0.06 0.18
Acrylic panel 15 0.25 0.30
Ceramic panel 15 0.10 0.22

Table 1. Panel types used as inclined planes are detailed here. Max. deviation is the maximum absolute
deviation of surface height measurements from the mean plane. Max. gradient is the maximum cross-slope
gradient over a minimum cross-slope measurement distance of 50 mm.

Sphere density Sphere diameter
Sphere material ρs (g cm−3) (mm)

Cellulose acetate 1.3

11.49 ± 0.10 (0.9 %)

9.74 ± 0.05 (0.5 %)

6.89 ± 0.04 (0.6 %)

6.35 ± 0.03 (0.5 %)

5.86 ± 0.02 (0.3 %)

4.87 ± 0.03 (0.7 %)

4.42 ± 0.02 (0.5 %)

3.94 ± 0.02 (0.6 %)

3.44 ± 0.03 (0.8 %)

Acrylic 1.2

7.85 ± 0.03 (0.4 %)

6.33 ± 0.03 (0.4 %)

4.71 ± 0.02 (0.4 %)

3.95 ± 0.07 (1.7 %)

Foam 0.022

4.38 ± 0.18 (4.0 %)

5.60 ± 0.11 (2.2 %)

6.57 ± 0.18 (2.8 %)

Table 2. Specifications of spheres used for experimental evaluation are given in the table above. Each diameter
corresponds to a set of eight individual spheres, and three measurements of each sphere were obtained to
calculate the values presented above. The mean values of diameter including the error for each set are shown
above. Refer to Appendix A for details of the uncertainty analysis.

the plates. Max. deviation (mm) describes the maximum absolute deviation of surface
height measurements from the mean plane. Max. gradient is the maximum cross-slope
gradient over a measurement distance of 50 mm. The smallest angle of inclination used
for experiments was 4◦, which yields a maximum gradient of ≈7 % down the slope.
Comparing this with the maximum cross-slope gradient of 0.3 % for the acrylic panel, we
can conclude that the non-flatness of the panel is negligible compared with the down-slope
angle of inclination of the panels.

A waterproof digital inclinometer (model: DWL 280, Digi-Pas US, accuracy = 0.05◦)
was used to measure the angle of the panel with respect to the horizontal axis. Water
temperature was initially measured using a water-resistant digital thermometer (Mextek,
accuracy = 0.1 ◦C). During the second stage of testing, a residual temperature device
configured for the temperature range of 10–40 ◦C, for an output voltage range of 0–10 V,
was used (ECEFast RTD PT100, Accuracy = 0.001 V). These measurements allowed
for the calculation of water viscosity and density in accordance with the International
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Surface roughness effects on the drag coefficient of spheres

Figure 4. Laser set-up used to measure sphere velocity.

Association for the Properties of Water and Steam (IAPWS) Formulation 2008 for the
Viscosity of Ordinary Water Substance (reference IAPWS 2008).

The spheres were pre-soaked under the water level, and air bubbles were manually
removed using vibration and stirring. Then the spheres were placed atop the inclined
plane, at a collection port and released, carefully ensuring minimum disturbance to the
water surface. Following any perturbation of the water, a minimum of 2 min was allowed
to ensure that the water was reset to rest prior to any further measurements. The water
tank was also cleaned regularly to ensure that any dust or fibres were not deposited on the
surface of the panels. It was noted that the presence of small air bubbles, fibres or dust
deposited on the panel surface significantly affected measurements. As such, all attempts
were made to ensure that the presented results were void of these errors.

The rolling sphere velocities were calculated by measuring the time taken to travel a
fixed distance. The spheres were allowed to roll a minimum of 20D prior to starting
the measurements. Initially, a stopwatch was used to measure the time taken to travel
200 mm distance atop the removable panel (70 % of data). In the second half of the
project, a new system incorporating three laser-based object detectors was developed
to improve the accuracy and efficiency of these measurements (see figure 4, 30 % of
data). The uncertainty analysis presented in Appendix A considers errors from both
types of measurements. The results presented in this paper include both sets of data.
Each measurement presented in § 4.1 represents the mean values of eight individual runs
recorded using a set of spheres with same density and diameter. In addition, spot checks
were done at random locations to ensure the data were repeatable, even under different
fluid temperatures.

Table 2 presents the uncertainty of the sphere diameter in each set of spheres, which was
typically less than 1 %. The uncertainty in sphere diameter was used to estimate deviations
in sphericity. Given that the uncertainties in the diameter of acrylic and cellulose acetate
(CA) spheres were generally below 1 %, it was assumed that deviations in the sphericity
of spheres could be neglected.

To minimise any distortion of spheres and panels due to water absorption (mainly
acrylic, which is known to absorb water), they were removed from the water tank outside
of measurement windows and dried regularly.

A set of preliminary tests at angles of inclination in the range 4◦–20◦ using a subset of
the spheres, covering a range of Re(40–900) were carried out to test whether the sphere
slips in our experiments. A marker was placed on the sphere surface and the sphere was
recorded with a digital camera. The estimated rotational velocity was compared against
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Panel type Ra Rp Rq
(μm) (μm) (μm)

Glass 0.023 ± 0.005 (20 %) 0.308 ± 0.155 (50 %) 0.029 ± 0.006 (19 %)

Acrylic 0.02 ± 0.01 (53 %) 0.57 ± 0.20 (35 %) 0.04 ± 0.02 (63 %)

Ceramic 0.70 ± 0.07 (11 %) 3.43 ± 1.38 (40 %) 0.91 ± 0.10 (11 %)

Frosted glass 1.86 ± 0.12 (6 %) 5.96 ± 1.03 (17 %) 2.33 ± 0.15 (6 %)

Table 3. Measured surface roughness values of panels. Values presented are the arithmetic mean of five
individual measurements. The measurement area of each presented measurement is 0.25 × 0.25 mm2 (12
measurements under 50 × 1 magnification joined together).

the measured translational velocity and no significant deviation between translational and
rotational velocities (<1 %) was observed. Therefore, any slip between the sphere and the
wall, if present, is negligible. In addition, detailed experiments conducted by Wardhaugh
& Williams (2014) and Tee (2018) observed no slip below ≈25◦ for spheres rolling on
a glass plate in water. This evidence, coupled with our own preliminary measurements,
was sufficient to conclude that the no-slip condition is met under the present experimental
conditions.

3.2. Surface roughness measurements
An optical profilometer (Bruker Contour GT-I) located at the Melbourne Centre for
Nanofabrication in the Victorian Node of the Australian National Fabrication Facility was
used to obtain non-contact surface roughness measurements of all the spheres and panels.
Roughness measurements were obtained under 50 times magnification using the vertical
scanning interferrometry method. Vertical scanning interferrometry utilises a broad band
light source and is accurate when measuring typically rough surfaces. Tables 3 and 4
present the measured values.

Figure 5 depicts the surface roughness measurements of two panels and two spheres
used for experiments. The surface roughness profiles of the glass panel in figure 5(a)
range from 40 to 60 nm while frosted glass in figure 5(b) has significantly taller asperities
reaching as high as 5 μm. Similarly, the asperities on both spheres indicated in figure 5(c,d)
also contain a sparse distribution of asperities taller than 1 μm, with the majority of
asperities being around the 0.5 μm range. A clear observation from these images is the
sparse distribution of very tall asperities. Captions of tables 3 and 4 contain additional
information regarding the measurement techniques used.

4. Results and discussion

4.1. Measured Reynolds number vs drag coefficient data in water
Based on the experimental set-up and methodology noted in § 3.1, measurements of C̄D

and Re were obtained for 30 < Re < 800, corresponding to 13 different diameter spheres
rolling on four separate panels. Figure 6(a) shows all of the data gathered, with the
figure legend indicating the marker shapes corresponding to sphere diameters. Figure 6(b)
presents the same data on a log–log scale, with the legend showing the marker colours
corresponding to panel types. The data indicate a similar trend to those of previous studies
(i.e. 1/Re trend, as observed by Carty 1957; Garde & Sethuraman 1969; Jan & Chen 1997).
Results of Carty (1957) are plotted in figure 6 for comparison. There is a notable variation
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Surface roughness effects on the drag coefficient of spheres

Sphere diameter Sphere material Ra Rp Rq
(mm) (μm) (μm) (μm)

3.95 Acrylic 0.20 ± 0.07(33 %) 5.69 ± 2.27(40 %) 0.40 ± 0.13(33 %)

4.71 Acrylic 0.11 ± 0.02(20 %) 4.27 ± 0.67(16 %) 0.22 ± 0.08(35 %)

6.33 Acrylic 0.11 ± 0.03(25 %) 2.91 ± 0.78(27 %) 0.20 ± 0.09(45 %)

7.85 Acrylic 0.15 ± 0.09(60 %) 5.08 ± 2.74(54 %) 0.30 ± 0.20(66 %)

3.44 CA 0.50 ± 0.26(53 %) 4.44 ± 2.39(54 %) 0.70 ± 0.38(55 %)

3.94 CA 0.41 ± 0.07(17 %) 3.20 ± 0.51(16 %) 0.60 ± 0.09(14 %)

4.42 CA 0.44 ± 0.15(34 %) 4.03 ± 2.39(59 %) 0.69 ± 0.22(32 %)

4.87 CA 0.22 ± 0.02(11 %) 2.30 ± 0.67(29 %) 0.31 ± 0.05(15 %)

5.86 CA 0.21 ± 0.02(12 %) 2.44 ± 1.58(65 %) 0.30 ± 0.04(12 %)

6.35 CA 0.22 ± 0.08(37 %) 2.82 ± 1.02(36 %) 0.32 ± 0.11(33 %)

6.89 CA 0.47 ± 0.03(7 %) 4.67 ± 2.64(57 %) 0.65 ± 0.05(8 %)

9.74 CA 0.36 ± 0.05(15 %) 4.34 ± 0.95(22 %) 0.56 ± 0.12(22 %)

11.49 CA 0.35 ± 0.02(5 %) 3.79 ± 0.76(20 %) 0.58 ± 0.05(8 %)

4.38 Foam 2.78 ± 1.11(40 %) 11.72 ± 4.44(38 %) 3.61 ± 1.31(36 %)

5.60 Foam 2.97 ± 0.59(20 %) 10.62 ± 1.34(13 %) 3.75 ± 0.67(18 %)

6.57 Foam 3.85 ± 1.32(34 %) 13.70 ± 3.95(29 %) 4.89 ± 1.57(32 %)

Table 4. Measured surface roughness values of spheres. Values presented are arithmetic mean of five
individual measurements of five separate spheres, of the same diameter. The measurement area of each
presented measurement is 0.3 × 0.3 mm2 for all diameters (12 measurements under 50 × 1 magnification
joined together), leading to percentage measurement areas ranging from 0.23 % for D = 3.44 mm to 0.02 % for
D = 11.49 mm. All measurements were corrected for sphere curvature prior to obtaining roughness statistics.
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Figure 5. Surface roughness profiles obtained using the optical profilometer, under 50× magnification.
(a) Glass panel, (b) frosted glass panel, (c) 3.95 mm diameter acrylic sphere, (d) 6.35 mm diameter CA sphere.

984 A13-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

14
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.146


S.D.J.S. Nanayakkara, J. Zhao, S.J. Terrington, M.C. Thompson and K. Hourigan

10
(a)

(b)

9

8

7

6

5

C̄D

4

3

2

1

10

8

6

C̄D

4

3

2

1

0 200100 300 400 500 600 700 800

3.44 mm
Sphere diameters

3.94 mm
3.95 mm
4.42 mm
4.71 mm
4.87 mm
5.86 mm
6.33 mm
6.35 mm
6.89 mm
7.85 mm
9.74 mm
11.49 mm

Marker colours
Frosted glass panel
Acrylic panel
Ceramic panel
Glass panel

Carty (1957)

Carty (1957)

30 100 1000
Re

Figure 6. Variation of C̄D with Re for a sphere rolling down an inclined plane. Markers corresponding to
individual sphere diameters are as indicated in the legend of figure 6(a) and the marker colours correspond
to the panel as indicated in figure 6(b). (a) All data points, Re = 30–800 range; (b) Re = 30–1000 range in
log–log scale.

of C̄D with panel type and sphere diameter at a given Re for Re < 200; at Re = 100 this
observed deviation is of the order of 10 %.

A distinctly higher C̄D for the three larger CA spheres (D = 6.89 mm, 9.74 mm and
11.49 mm) is seen in figure 6. Generally, these spheres follow a separate C̄D vs Re trend
compared with the other spheres investigated. Additionally, in figure 9, we observe a
distinct increase in C̄D for the D = 6.89 mm CA sphere, for all four panels considered.
At this stage, we cannot quantitatively explain this jump in C̄D for the larger CA spheres.
However, the surface finish of these larger spheres (matte finish) was distinct from the
smaller spheres (shiny finish). The matte finish spheres contained a higher density of
larger peaks and valleys. Despite the distinct surface finishes, the roughness statistics
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Figure 7. Variation of C̄D with Re for the two individual panels, with least-squares lines fitted through each
panel. Marker shapes correspond to sphere diameter, as indicated in the legend of figure 6(a). The Rq roughness
of the two panels are as follows: frosted glass panel; 2.33 μm, glass panel; 0.029 μm. Error bars indicate
combined bias error and random error. Refer to Appendix A for details on error analysis.

of both types of spheres are nominally similar (table 4, Rq ≈ 0.5 μm). A plausible
explanation, to be investigated in more detail in the future, is that the higher C̄D is due to an
increased rolling resistance induced by the higher density of the taller peaks. Mechanisms
concerning rolling resistance are discussed further in § 4.4.3.

The results of foam spheres are not included in figure 6, and are presented in § 4.2.
Upon closer examination of the data for Re < 300, multiple trend lines are observed as

the panel surface roughness and sphere diameter are varied, as was observed by Houdroge
et al. (2023). This variation of C̄D with panel type is clearly observed in figure 6(b).
Figure 7 presents the variation of C̄D with Re ranging from 50 < Re < 120, in which
two least-squares lines of the form a + b/Re have been fitted through the data points
corresponding to the two panels used. The r2 values, indicating goodness of fit of the
curves, are approximately 0.9, indicating a good fit. The deviation of C̄D with the change
in panel roughness is highlighted in this figure. There is an approximately 10 % increase
in C̄D at Re = 100 between the frosted glass panel and the glass panel (which corresponds
to an 80 times decrease in panel Ra roughness). The increase in C̄D with a decrease in
roughness (or ξ = G/D) can be attributed to the increase in the gap drag component with
a decrease in gap height, as was predicted in (2.4).

This increase in C̄D with a decrease in panel surface roughness is further highlighted in
figure 8, where the sphere diameter was fixed (D = 5.86 mm) while the panel roughness
was varied. The individual variations of Re vs C̄D are clearly observed in this figure.

Upon even further examination of figure 7, what initially appears to be scatter around
curves fitted for a panel, more trend lines indicating variation in C̄D vs Re for specific
diameters are observed. Figure 9 presents the data separated by panel roughness, with
least-squares lines of the form a + b/Re fitted through the data corresponding to individual
diameters. A subset of the data is presented in this figure to highlight the variation of
C̄D with sphere diameter. It is observed that variations in D with a fixed panel surface
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Figure 8. Variation of C̄D with Re for a fixed diameter, D = 5.86 mm. Data for three individual panels, with
least-squares lines fitted through each panel are shown. Error bars indicate bias error only.

roughness lead to variations in measured C̄D. As indicated in figures 9 and 10, an increase
in sphere D leads to an increase in C̄D. This observed increase is greater at lower Re
than at higher values; however, the observed variations still maintain the overall 1/Re
behaviour. A similar observation was made by Houdroge et al. (2023) on the variation of
CD with the sphere diameter. These observations provide further evidence that the relative
roughness (ξ ) is dependent on the panel roughness, the sphere roughness and also the
sphere diameter, as we have assumed in (2.5). For each ξ , we observe a separate C̄D vs Re
relationship.

Figure 10 presents a comparison between the experimentally measured drag coefficients,
and the drag coefficients predicted using (2.4) under the assumption G/D = ξq.
Figure 10(a) shows that the measured C̄D is in good agreement with analytical predictions
for acrylic spheres, and therefore ξq is a suitable estimate of the effective gap. However,
for CA spheres (figure 10b), analytical predictions assuming G/D = ξq underestimate CD,
particularly at lower Re (Re < 100). Nevertheless, at higher Re, a better agreement between
analytical predictions and experimental measurements is observed. This observation is
further supported through data presented in §§ 4.3 and 4.4, where the effective values
of ξ required to match the predicted drag (2.4) to the experimental measurements are
closer to the measured ξq for acrylic spheres but are below the measured ξq for CA
spheres. Therefore, the assumption G/D = ξq is applicable to acrylic spheres, but not CA
spheres. As discussed in § 2.2, simple roughness statistics such as Rq may not capture the
complexities of the various scales of surface roughness that contribute to the effective
gap. We also note that the effective ξ required to match the predictions and measurements
is still of the same order of magnitude as the measured ξq for CA spheres. These
issues are discussed further in §§ 4.3 and 4.4. For now, we assume G/D = ξq is a valid
approximation, at least to within one order of magnitude.

As discussed previously in § 1, Goldman et al. (1967) dismissed surface roughness as a
possible explanation for the disparity between the analytical prediction and experimental
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Figure 9. Variation of C̄D with Re for the four panels used for experimentation in the range 100 > Re > 300.
Least-squares lines of the form a + b/Re have been fitted through data that correspond to individual diameters
of the spheres used. Error bars indicate bias error only. (a) Glass panel, (b) acrylic panel, (c) ceramic panel,
(d) frosted glass panel.
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Figure 11. Variation of C̄D with Re for a foam sphere rolling down in inclined surface in air. (a) Foam
spheres on acrylic panel, (b) foam spheres on frosted glass panel.

data. However, based on the data observed in figures 6–10, there is a clear correlation
between surface roughness and the measured C̄D, and therefore surface roughness is at
least partially responsible for allowing the sphere to move. Moreover, the G/D required to
match the experimental measurements and the predicted drag using (2.4) is of the same
order of magnitude as the r.m.s. surface roughness (ξq), supporting our hypothesis that
surface roughness introduces an effective hydrodynamic gap between the sphere and the
wall.

4.2. Measured Reynolds number vs drag coefficient data for foam spheres in air
Goldman et al. (1967) tentatively suggest that cavitation, rather than surface roughness, is
responsible for the motion of the sphere. This suggestion is supported by experimental
observation of cavitation bubbles appearing close to the point of contact between the
body and the plane for heavy bodies in highly viscous fluids (Prokunin 2003; Ashmore
et al. 2005; Seddon & Mullin 2006). Cavitation has been observed primarily in the Stokes
regime, where the viscous forces are greater than the inertial forces. We have concentrated
our efforts so far on the motion of bodies at somewhat higher Re (>30), and have not
observed any cavitation bubbles during our experiments in water for acrylic and CA
spheres (β = 1.2, 1.3).

To further evaluate the role of cavitation in the drag experienced by rolling spheres,
experimental measurements were obtained for foam spheres rolling down an inclined
surface in air. If cavitation, rather than surface roughness, were responsible for determining
the effective gap, we would expect large differences in the measured drag coefficients
between air and water, given that cavitation does not occur in air.

Figure 11 depicts the obtained C̄D vs Re variation for foam spheres rolling down an
inclined plane in air on acrylic and frosted glass panels. The results of acrylic spheres of
similar diameters rolling on the same panels in water are also plotted for comparison.
Experiments performed in air, where cavitation cannot occur, display the same trends
and values of C̄D as those performed in water. The agreement between the results of
measurements conducted in air and in water suggests that cavitation does not affect the
motion of the sphere, at least for the experimental parameters considered in this study.
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Figure 12. Variation of C̄D with ξq for three fixed Re. Values of C̄D at specific Re values were calculated using
linear interpolation of nearest neighbours. The CD predictions from (2.4) are also plotted for comparison with
experimental results. Results of foam spheres rolling in air are also plotted in the same figure.

The surface roughness of foam spheres is larger than that of the acrylic and CA spheres,
as seen in table 4. However, figure 12 shows that the measured C̄D values are similar to
those of the other spheres, and follows the general C̄D vs ξq trend.

Terrington et al. (2022) present a general model for predicting the motion of the
sphere in both cavitating and non-cavitating flows. They consider three dynamic regimes:
contacting motion without slip; contacting motion with slip; and non-contacting motion.
Contacting motion with slip occurs at low inclination angles, with the sphere transitioning
first to the slip regime, and then to the non-contacting regime, as the inclination is
increased. The present study considers angles of inclination below 20◦, both in water and
air, and no slipping was observed. Therefore, the results of the present study all fall in the
‘contacting motion without slip’ regime. For a different set of experimental parameters,
cavitation may be responsible for determining the effective gap.

4.3. Variation of drag coefficient with surface roughness
This subsection investigates the effects of the r.m.s. surface roughness (ξq) on the mean
drag coefficient (C̄D). Figure 12 plots the variation of the measured C̄D vs ξq for three
constant values of Re (70, 100, 150). Here, ξq was calculated using (2.5) based on the
r.m.s. roughness measurements presented in tables 3 and 4. The C̄D values corresponding
to each Re were calculated using linear interpolation from the nearest neighbouring Re.
Some scatter in data is observed at each Re, introduced by the uncertainty of both Rq
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(≈5 %) and interpolated C̄D (≈2 %) measurements. The approximation of G using Rq
roughness will also introduce an error, which is more prominent for the CA spheres, and
at lower Re, as discussed in § 4.4.

A line of best fit of the form a + b log(ξ) has been fitted through the experimental
data to indicate the general trend of decreasing C̄D with increasing ξq. Light shading
around curves indicates the uncertainty of the fitted curve, quantified by constructing a
95 % confidence interval about the regression line, assuming that errors are normally and
randomly distributed. The r2 values of the curve fits were ≈ 0.4, indicating that, while
variations in Rq roughness account for some of the variation in C̄D, it is not accurate for
all cases (see § 4.4.2 which discusses these issues further). The results for foam spheres
in air are also plotted in the figure. Note that foam data (which have larger uncertainties)
have been excluded from the curve fits.

At Re = 70, there is approximately a 9 % reduction in C̄D as ξq is increased from
4 × 10−5 to 1 × 10−3 (25-fold increase). At Re = 100 and 150, the decrease in C̄D for
the same change in ξq is approximately 10 %. The absolute reductions of C̄D at the same
Re are approximately 0.42, 0.36 and 0.28, respectively. The experimental uncertainty of
measurements of C̄D is typically ≈ 2 % (see Appendix A). The measured reduction in
C̄D for a 25-fold increase of roughness is well above the experimental uncertainty of
the C̄D measurements. This observation, coupled with the relative agreement between the
effective ξ and roughness statistics discussed in § 4.4, support the present hypothesis that
surface roughness provides the gap required by lubrication theory, and is dependent on
both the sphere and panel roughnesses.

The increase in C̄D with decreasing ξq is consistent with our hypothesis that the effective
gap is governed by the height of surface asperities. Figure 12 includes predicted drag
coefficients using (2.4) (predictions from Houdroge et al. 2023), under the assumption
G/D = ξq at Re = 70, 100 and 150. The computational and analytical solutions correctly
predict that C̄D increases as ξq is decreased; however, they marginally underestimate C̄D
compared with the present experimental results. The discrepancy between the predicted
and measured C̄D indicates either that the effective gap is smaller than ξq, or that there is
some additional source of drag that has not been accounted for in our analysis.

A possible source of this additional drag could be the rolling resistance due to surface
roughness. This is discussed further in § 4.4.3.

The dependence of C̄D on ξ is limited to low Re values (Re < 500). In figure 12 we
observe that the Re = 150 curve is flatter compared with the smaller Re. The value of C̄D

decreases marginally when Re is increased further, although the differences in ξ remain
unchanged. This observation can be explained using (2.4). The parameter ξq affects only
the gap-dependent drag (CD,gap), and not the wake drag (CD,wake). The gap-dependent
drag is proportional to 1/Re (2.2), and therefore becomes negligible at high Re. The wake
drag coefficient remains O(1) as Re is increased (Houdroge et al. 2023), and therefore
dominates the total drag at high Re. Since the wake drag does not depend on ξq, the
sensitivity of C̄D to ξq decreases as Re is increased.

Referring to the Carty (1957) data in figure 1, C̄D remains relatively constant at C̄D ≈ 1
in the range 103 < Re < 104. At these high Re, the total C̄D is almost certainly dominated
by wake drag, and therefore CD,wake is approximately constant for high Re. We also note
a similar trend in behaviour for a sphere in free fall (Rouse 1946), which does not contain
either gap or contact forces. It should be noted that, unlike the case of a free-falling
sphere, the presence of the panel impacts the wake structures generated, and therefore the
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converged C̄D. That is, for a free-falling sphere, C̄D ≈ 0.4(103 < Re < 104) (Rouse 1946),
while for a freely rolling sphere, C̄D ≈ 1(103 < Re < 104); the difference is attributed to
the effects of the plane on the near wake and wake structures generated by the sphere.

The above observations support our hypothesis that the surface roughness of both the
sphere and the panel results in an effective gap between the sphere and the wall when the
two surfaces are in contact. The mean drag coefficient can be estimated by assuming the
gap is equal to the combined r.m.s. roughness of both the sphere and the wall (ξq).

4.4. Roughness analysis
So far, we have been assuming the effective gap ξ is equal to the combined r.m.s. roughness
of the sphere and panel (ξq). As discussed previously (§ 2.2 and briefly in § 4.1), simple
statistical measures such as Rq may not capture the various scales of surface roughness.
To investigate these effects further, we consider four cases in detail – two acrylic spheres
with D = 3.95 mm and D = 4.71 mm and two CA spheres with D = 3.94 mm and D =
4.87 mm – rolling on a glass surface. Since the roughness of the glass panel is much
smaller than that of the sphere by a factor of 10, we expect the gap will be dominated by
the roughness of the sphere.

4.4.1. Relationship between effective ξ and Rq
We define the effective ξ(= Geff /D) as the G/D required to match the predictions of (2.4)
with the experimental measurements. These effective ξ are shown in figure 13 for the four
spheres, alongside the measured r.m.s. roughness (Rq), mean roughness (Ra) and peak
roughness (Rp) of the sphere, normalised by the sphere diameter. Light coloured shading
indicates one standard deviation error of the roughness measurements. As observed in the
figure, Rp/D values are generally larger and overestimate the gap height. Though Ra/D and
Rq/D are similar in magnitude, Ra/D underestimates the gap for the two acrylic spheres.
As such, Rq roughness was chosen as the roughness metric that best correlates with the
effective ξ .

In all four cases, we observe that the effective ξ increases with increasing Re, before
reaching an approximately constant value. This approximately constant value is also shown
in the figure as ξmean. The fixed gap height at higher Re is of the same order of magnitude
as the sphere Rq/D for acrylic and below Rq/D for CA spheres. This figure indicates that
Rq/D is an excellent approximation for ξ for the acrylic sphere above Re = 50 for the
D = 3.95 mm sphere and above Re = 80 for the D = 4.71 mm sphere. However, the Rq/D
for the CA spheres overestimates the gap by a factor of 2–3 for both CA spheres. The
parameter Ra/D provides marginally better agreement for the two CA spheres, but the
difference is too small to conclude that Ra/D is a better metric. However, it is promising
that the effective ξ is of the same order of magnitude as Rq/D (or Ra/D) roughness, for
all four cases considered here, highlighting that roughness likely provides a satisfactory
explanation for the gap required by lubrication theory, while also allowing solid-to-solid
contact.

Figure 13 also indicates that the effective ξ is smaller at low Re, and increases with Re.
The increase in the effective ξ with Re is in general agreement with the predictions of
Galvin et al. (2001) and Zhao et al. (2002). They considered two scales of roughness – a
dense covering of small asperities, and a sparse covering of large asperities. Their model
predicts an effective gap close to the height of the small asperities at low speeds, but
which increases towards the height of the large asperities at high speeds. It should also be
noted that the present combined analytical and numerical solution ignores the effects of

984 A13-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

14
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.146


S.D.J.S. Nanayakkara, J. Zhao, S.J. Terrington, M.C. Thompson and K. Hourigan

40
1 × 10–5

5 × 10–5

0.0001

0.0010

ξ

ξ

0.0020

1 × 10–5

5 × 10–5

0.0001

0.0010

1 × 10–5

0.0001

0.0010

0.0030

0.0001

0.0010

0.0030

1 × 10–5

D = 3.95 mm

Effective ξ
ξmean = 9.1 × 10–5

Rq sphere/D
(Re > 50)

Rp sphere/D
Ra sphere/D

D = 3.94 mm

Effective ξ
ξmean = 6 × 10–5

Rq sphere/D
(Re > 80)

Rp sphere/D
Ra sphere/D

D = 4.87 mm

Effective ξ
ξmean = 2.5 × 10–5

Rq sphere/D
(Re > 80)

Rp sphere/D
Ra sphere/D

D = 4.71 mm

Effective ξ
ξmean = 6.7 × 10–5

Rq sphere/D
(Re > 80)

Rp sphere/D
Ra sphere/D

60 80 100 120 140 160 180 14012010080 160 180 200 220 240 260 280

4020 60 80 100 120 140120100806040 160 180

Re Re

(b)(a)

(c) (d )

Figure 13. Effective ξ vs Re for four spheres rolling on a smooth glass panel. The measured roughness
parameters of the spheres are plotted in the figure. Error bands shown by light shading indicate one standard
deviation error of roughness parameters. Panels show (a) D = 3.95 mm acrylic sphere, (b) D = 3.94 mm CA
sphere, (c) D = 4.71 mm acrylic sphere, (d) D = 4.87 mm CA sphere.

rolling resistance. Given that rolling resistance due to collisions between surface asperities
(see § 4.4.3) will be a function of the plane normal component of the buoyant weight of
the sphere (WBg cos(θ)) (see figure 2), we can expect this to be more prominent at lower
angles of inclination (θ ), hence lower Re. This might provide a reasonable explanation for
the observed divergence of effective ξ at low Re; however, this analysis is beyond the scope
of the present study.

4.4.2. Comparison of surface textures of the two materials
From figure 13, we see that, for acrylic and CA spheres of approximately equal diameter,
the acrylic sphere has a larger effective ξ , while the CA sphere has a marginally larger
r.m.s. roughness (Rq,sphere/D). Therefore, the r.m.s. roughness alone is not sufficient to
fully characterise the effective gap. To explain this difference, figure 14(a,b) compares
the surface textures of the two materials corresponding to D = 3.95 mm acrylic and D =
3.94 mm CA spheres. Two-dimensional excerpts of the surface roughness measurements
are shown in figure 14(c,d). Sections A–A were selected to represent sections with Rq
similar to that of the mean Rq of the spheres, as indicated in table 4 and figure 13. The
geometry of the sphere is also indicated for visualisation.
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Figure 14. Detailed review of D = 3.95 mm acrylic and D = 3.94 mm CA spheres. (a) Three-dimensional
surface of 3.95 mm acrylic sphere. Measurement Rq = 0.40. (b) Three-dimensional surface of 3.94 mm CA
sphere. Measurement Rq = 0.54. (c) Section A–A of (a). Two-dimensional surface profile of D = 3.95 mm
acrylic sphere. (d) Section A–A of (b). Two-dimensional surface profile of D = 3.94 mm CA sphere.

The surface textures of both acrylic and CA spheres are remarkably different. The acrylic
sphere contains two clearly distinct scales of asperities: small asperities which are typically
in the range 0.1–0.5 μm in height that densely cover the sphere, and a sparse distribution
of large asperities in the range 2–10 μm in height (10 μm asperities are not shown in the
figure). The CA sphere contains a single scale of asperities that are typically between 0.5
and 1 μm in height, but which can be up to 5 μm in height. The CA sphere also contains
large valleys, which are of a similar depth to the height of the asperities, while the acrylic
does not contain large valleys.

The Rq roughness of the D = 3.95 mm acrylic spheres was measured to be 0.40 μm
while for the CA sphere it was 0.60 μm, and these are also indicated in figure 14(c,d)
for comparison. The measured Rq roughness of CA is approximately 50 % larger than
that of acrylic. This is due to the CA sphere containing a high density of moderately
large (0.5–1 μm) asperities, including both bumps and valleys. While the acrylic sphere
contains some very tall asperities, these are balanced out by a large proportion of the
sphere containing only small asperities, leading to a smaller overall Rq. The mean effective
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gap (mean G) calculated from figure 13 is also shown in figure 14(c,d). This indicates the
effective average gap required to match the predicted C̄D with experimental measurements.
While the Rq roughness of the CA sphere is greater than that of the acrylic sphere, the
effective gap of the CA sphere is below that of the acrylic sphere. For both acrylic and
CA, the heights of the surface asperities are not uniform across the surface. There are many
regions on the sphere’s surface where the size of asperities – and therefore the minimum
possible gap – is well below both mean G and Rq. Similarly, there are many regions where
the local asperities are taller than both mean G and Rq.

Therefore, our assumption that surface roughness produces an effective gap is consistent
with the detailed measurements of the surface profiles for both acrylic and CA. The
effective gap is larger than the smallest asperities, but smaller than the largest asperities, as
is to be expected. Simple statistical measures, such as Rq, can approximately indicate the
effective gap. However, Rq does not consider several important factors, such as the spatial
distribution of asperities, and the existence of multiple scales of surface roughness. In the
case of acrylic, the effective gap and the r.m.s. roughness agrees quite well. However, this
does not hold for all materials.

4.4.3. Other considerations
As discussed in § 2.2, although the heights of surface asperities may vary (approximately
from 0.1 to 10 μm for the spheres under consideration), it is likely that not all the scales
of roughness will contribute equally to determining the effective gap. Moreover, the
effective gap may depend on the speed of the sphere as well. As observed in figure 13,
at lower rolling speeds (low Re) the effective gap is small but gradually increases with
Re. Under the two-scale model of Galvin et al. (2001) and Zhao et al. (2002), the
effective gap is predominantly determined by the smallest scale of roughness at low
speeds. At high speeds, however, the sphere does not have time to fall below the height
of the large asperities, and therefore the effective gap is dominated by the height of
the largest asperities. We note, however, that the effective gap presented in figure 13
becomes independent of Re at an effective gap well below the height of the tallest
asperities. For instance, the D = 3.95 mm acrylic sphere contains asperities greater than
2 μm, corresponding to ξ = 0.0005. However, the effective ξ reaches a maximum value
of ξ = 0.0001. We tentatively suggest that the large asperities do not cover enough of the
sphere’s surface to maintain an effective gap equal to the height of the large asperities.
However, it is likely that these large asperities will make some contribution to the overall
effective gap since the effective gap is generally larger than the height of the small
asperities.

As mentioned in § 4.3, a possible source of additional drag could be rolling resistance,
which has not been accounted for in the analytical derivations. Analytical derivations
assumed a plane normal contact force at the point of contact between the sphere and
the plane. In reality, the contact force is replaced by a contact area, and energy may be
dissipated at this contact region. Mechanisms contributing to energy dissipation, which are
typically considered as rolling resistance, cover an extensive area of research. Bikerman
(1949) and Halling (1958) highlight some of these mechanisms, a few of which are
noted here: continuous collisions, elastic deformation, capillary action, hysteresis effects,
inter-facial slip and molecular adhesion. At constant rolling velocity, the rolling resistance
due to surface roughness can be assumed to be constant, and will increase with increasing
speed as observed by Cross (2015, 2016) for a rolling sphere on a hard surface. Cross (2016)
presents a theoretical model to estimate the rolling resistance due to surface asperities
on a rolling sphere, with an unknown parameter to be determined empirically. Some
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disagreement between theoretical and experimental results was also observed. Moreover,
their model considers spheres rolling in a vacuum and does not consider lubrication
forces in the gap region, nor fluid forces in general. Experimental measurements of rolling
resistance by Halling (1958) and Cross (2016) for hard spheres rolling in air are typically
around 0.0001–0.001. Assuming a similar range of rolling resistances for our spheres, as
a drag coefficient this contribution would likely be of the order of 0.0005–0.5. However,
without an accurate analytical model that predicts the effects of rolling resistance with
ξ (or roughness), we cannot determine the exact contribution of the rolling resistance to
C̄D. The construction of such a model is beyond the scope of the present study and is
recommended for future work. We anticipate that the rolling resistance will increase as ξq
is increased.

Summarising the results of this section, the effective gap required to match the predicted
and experimental drag coefficients is greater than the smallest surface asperities, but less
than the largest asperities, consistent with our hypothesis that the effective gap is due to
the surface roughness. However, simple statistical averages such as r.m.s. roughness only
approximate the effective gap, since these averages do not account for the many different
scales of surface roughness that are present. Further analysis of surface roughness against
Re is required to understand which scales of roughness are critical at specific Re.

4.4.4. Rolling paradox
Although we have argued that physical contact between surface asperities results in an
effective gap, we note that lubrication theory still requires an infinite pressure at the
point where two asperities come into contact (Thompson et al. 2021). One possible
explanation for the phenomenon could be non-continuum flow. Although previously
dismissed by Goldman et al. (1967), arguing that the effects of surface roughness should
be evident prior to approaching the molecular level, given that we have observed effects of
surface roughness, the non-continuum flow may be able to provide an explanation for
how solid-to-solid contact may occur. At the surface roughness scale, the gap heights
could be as low as 10−9 m, leading to a Knudsen number (Kn) of the flow in the gap
region of approximately 0.01 (assuming the mean free path of water is 0.19 nm). This is
within the range of the Knudsen number (Kn > 0.001) where the Navier–Stokes equation
needs to be corrected for wall slip, which has not been accounted for in any analytical
solutions. In addition, Ray, Durst & Ray (2020) claim an incremental pressure drop in
microchannels due to wall slip (the flow in between roughness may be assumed to be a
microchannel), which may provide a basis to relieve the positive and negative pressure
peaks at the contact point. This could allow sphere motion under solid–solid contact
between asperities. However, again, this is beyond the scope of the present study.

4.5. Wake–structure interactions
As discussed previously in § 1, the value of CD of a freely rolling sphere is dependent
on the sphere wake, due to the influence of wake shedding on the down-slope and
cross-slope velocities. In addition, wake shedding has been observed to lead to sphere VIV
(Houdroge 2017), which in turn has an indirect impact on CD. As such, we have conducted
an analysis of the sphere wake–structure interaction, to investigate these effects, and to
provide experimental validation of numerically observed critical transitions.
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4.5.1. Flow visualisations
A UV-induced fluorescent dye visualisation technique was used to visualise the wake
structures behind the freely rolling spheres. High-resolution (Nikon D7100 and GoPro
Hero 10) cameras were used to capture images of wake formations and will be compared
against previous experimental and computational studies.

The sphere was placed atop the panel using a place holder, ensuring that no dust or small
air bubbles were present. A concentrated solution of the fluorescence dye was introduced
on to the sphere at rest, using a syringe with a long needle. The whole sphere was coated
with the dye. After allowing the water surface to settle due to perturbations caused by
the insertion of dye, the sphere was gently released from its rest position. The sphere was
allowed to roll a minimum of 20D before entering the frame of the video camera, to ensure
a steady state was achieved.

We note that these visualisations highlight the integral effect of the wake characteristics
of the sphere, especially at higher Re. Smaller vortices often dissipate quickly and are not
captured by the camera, and generally only large vortices are highlighted by this method.
These visualisations serve as a valuable tool for understanding the overall behaviour of the
wake, emphasising the mean behaviour of vortices. Smaller vortices or fluctuations that
contribute to the overall behaviour are not effectively captured by this method. As such,
these images are mainly useful in understanding the general behaviour of the wake.

Figure 15 displays the evolution of the wake behind a freely rolling sphere, as Re is
increased. As discussed in § 1, previous studies have identified two critical Re where
transitions occur, namely Rec,1 = 139 and Rec,2 = 192. Figure 15(a,b), corresponding to
Re = 33 and Re = 108, depict the wake prior to the first transition; the wake is steady and
attached to the sphere. Some lateral motion across the slope was observed, even at these
low Re. At Re = 108, we observe the development of the recirculation zone downstream
of the sphere and the beginning of the formation of hairpin-like structures in the far wake.
However, as Re is increased, the recirculation zone expands further downstream, ultimately
leading to its detachment. This transition to unsteady periodic flow is first observed
at Re ≈ 135 in the present study. This is in excellent agreement with the numerically
predicted first critical transition Rec,1 = 139. Figure 15(c,d) indicates the flow states
just before and after this observed transition. In figure 15(d), we observed hairpin-like
structures being shed periodically into the wake. Figure 15(e) shows the developed state
where one hairpin vortex has been shed downstream, another has just been shed into
the wake and a third is observed attached to the sphere, still in development. Further to
that, it is observed that the vortices are shed from alternating sides of the sphere. As was
observed by Leweke et al. (1999), the tail of the shed vortex is connected to the head of
the preceding vortex, indicating the complex coupled interaction between the shed and
forming vortices. Also in agreement with Houdroge et al. (2017), the vortices are shed
at varying orientations. This alternating and varying orientation of shedding leads to the
observed VIV response of the sphere, which is discussed in detail in § 4.6.

As Re is increased further, these vortices are periodically shed into the wake, as seen
in figure 15(e–l). The frequency of shedding increases with Re. Numerical studies have
identified a second transition, Rec,2 = 192, beyond which the wake loses its symmetry.
However, in experimental visualisations, even a small perturbation in the initial conditions
can break the wake symmetry. It has been difficult to capture a symmetrical wake, due
to sphere oscillations and the lateral movement across the plane. We were unable to
observe a symmetrical wake even at Re < 100. Perhaps it is also worth commenting that
even very weakly perturbed numerical simulations of freely rolling spheres see the wake
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(e)

(b)(a)

(c) (d )

(g) (h)

(i) ( j)

(k) (l)

( f )

Figure 15. Plan view of experimental flow visualisation using UV-induced fluorescent dye technique for
Re = 33–1607. Images were captured using Nikon D7100 and Go-Pro cameras and post-processed. The sphere
is rolling from right to left. The video recordings are provided as supplementary movie 1 available at https://
doi.org/10.1017/jfm.2024.146. Panels show (a) Re = 33(±1), (b) Re = 108(±1), (c) Re = 133(±2), (d) Re =
135(±2), (e) Re = 166(±2), ( f ) Re = 198(±2), (g) Re = 221(±2), (h) Re = 238(±3), (i) Re = 244(±2),
( j) Re = 321(±5), (k) Re = 733(±7), (l) Re = 1607(±15).

symmetry broken at Re � 140, well below the predicted transition for a fixed rolling sphere
(Houdroge et al. 2023).

Figures 16 and 17 depict the temporal evolution of the wake of a freely rolling sphere
at Re = 166 and Re = 238, respectively. In figure 16, we observe five hairpin vortices
shed into the wake within an 8 s period. From t = 0 to t = 1 s, we notice the shedding
of one vortex from one side of the sphere to the formation of another vortex on the
opposite side. This oscillatory behaviour continues throughout the wake-shedding cycle,
and we observe that the size and orientation of these shed vortices also vary. Similarly,
in figure 17, we observe the same behaviour, but the shedding is at a higher frequency;
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t = 8 s

t = 0 s

t = 1 s

t = 2 s

t = 3 s

t = 4 s

t = 5 s

t = 6 s

t = 7 s

Figure 16. Plan view of the temporal evolution of the wake behind a freely rolling sphere at Re = 166(±2).
The sphere is rolling from right to left.

five vortices are shed in a 5.5 s period, and the cross-slope deviation of the sphere is more
pronounced in this figure. Again, we also notice the variation in orientation and size of
the shed vortices; some vortices are larger than others in size. The fluctuating component
of pressure generated by these variations in the shedding of vortices drives the observed
cross-slope oscillations. Section 4.6 discusses these VIVs in detail.

The visualisations presented in figures 15–17 are in excellent agreement with the wake
structures previously observed by Leweke et al. (1999). However, at high Re, as seen
in figure 15(l), the laminar hairpin structures are no longer visible in the wake, which
is more turbulent and high-frequency shedding occurs. Individual vortices are no longer
discernible; however, we observed the emergence of large-scale turbulent structures.
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t = 0 s

t = 0.5 s

t = 1.0 s

t = 1.5 s

t = 2.0 s

t = 2.5 s

t = 3.0 s

t = 3.5 s

t = 4.0 s

t = 4.5 s

t = 5.0 s

t = 5.5 s

Figure 17. Plan view of the temporal evolution of the wake behind a freely rolling sphere at Re = 238(±3).
The sphere is rolling from right to left.

4.6. Vortex-induced vibration
Cross-slope VIV driven by fluctuating side forces has been observed on freely rolling
spheres in previous numerical and experimental studies (Houdroge 2017; Houdroge et al.
2023). The present study experimentally characterises sphere VIV using high-resolution
videos of spheres rolling down an inclined plane, which were post-processed using path
tracking software (Tracker by Open Source Physics). This enables the extraction of the
instantaneous body displacement and velocity, which can be compared with previous
predictions and measurements. Similar to the procedure outlined in § 3.1, the spheres were
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Figure 18. Cross-slope variation for a rolling sphere visualised using non-dimensional variables y/D and x/D,
where y is the cross-slope distance, x is the down-slope distance and D is the sphere diameter. Path tracking of
10 runs of a sphere of D = 6.35 mm, at a Re = 221(±2) on a glass panel is shown in the figure.

allowed to roll a minimum of 20D prior to starting measurements, to ensure the asymptotic
state was reached prior to recording data.

Figure 18 shows sphere tracking results for Re = 221, characterised by non-dimensional
variables y/D and x/D, where y is the cross-slope distance, x is the down-slope
distance and D is the sphere diameter. In this case, 10 individual runs were recorded
while maintaining the angle of inclination (θ) and constant diameter (D). The total
down-slope (x) distance over which the sphere was tracked was 357 mm (x/D = 56.26).
Over this down-slope distance, the mean absolute deviation (y = 5.51 mm(±0.88), y/D =
0.87) represents a 1.5 % deviation across the slope. The maximum deviation (y =
22.38 mm, y/D = 3.524) represents a 6.3 % deviation. Measurements were taken at 30
frames per second, with a total measurement duration of approximately 9.5 s for each run.
Light grey coloured markers indicate the unfiltered data with a measurement uncertainty
of approximately 1 %. A cubic-spline smoothing technique (Python Scipy (Virtanen et al.
2020) interpolate.splrep package) was used to filter the raw data. The figure shows that the
10 runs correspond to 10 distinct paths, indicating considerable variability in trajectories,
despite nominally uniform initial and boundary conditions. Similar measurements were
made covering a range of Re, with similar trends observed. These experiments were
undertaken on a glass panel, which has much lower roughness than the spheres (O(10)).

Figure 19 depicts the non-dimensional cross-slope displacement and cross-slope
velocity of the 10 runs at Re = 221. The adjusted cross-slope displacement y′/D is shown
in figure 19(a), where the linear trend was subtracted from the measured y/D data. This
adjustment was made to assist in uncovering any underlying periodicity in the signals. In
addition to the displacement, the normalised cross-slope velocity is shown in figure 19(b).
Figure 19 also indicates local maxima and minima, the corresponding St for each run and
the mean St. Despite considerable variation, these figures show an underlying periodicity
in the displacement and velocity signals. The figures also indicate that the velocity of the
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sphere is quasi-steady periodic with random fluctuations. These fluctuations result from
fluctuations in the cross-slope force coefficients due to vortex shedding. Houdroge (2017)
calculated the cross-slope force coefficients numerically and found that, with increasing
Re, the side force evolves from being steady to periodic following the first critical transition
at Re ≈ 136. They found that, not too far in excess of that Reynolds number, the force
coefficient becomes highly irregular. In fact, Rao et al. (2012) found that, even for a sphere
rolling at a fixed velocity down a slope, the cross-slope force develops a second frequency
component at the second transition (Re ≈ 191), leading to loss of mirror symmetry across
the wake. The variation of the sphere path and velocity between the ten runs is evidence of
this unsteadiness in the wake. However, the velocity fluctuates around a mean value, which
enables the derivation of the mean velocity, which also yields Re and C̄D. The standard
deviation between these individual runs contributes to the random error of the C̄D and Re
measurements, typically comprising over 50 % of the total uncertainty.

That the cross-slope displacement and velocity signals display oscillatory components
enables the extraction of the oscillation frequency for each variable. Estimates of the
oscillations frequencies of each signal were obtained using a peak detection algorithm,
with maxima and minima indicated in figure 19. This also enables the calculation of the
sphere Strouhal number (St = f D/Ū), which is discussed in § 4.7. This same analysis was
carried out over a range of Re, and the Strouhal numbers corresponding to cross-slope
displacement and cross-slope velocity were derived. The results are discussed in detail in
§ 4.7.

4.6.1. Effects of surface roughness on VIV
To establish the effects of surface roughness on the VIV response, path tracking data of
the same sphere rolling on two panels with widely different surface roughnesses were
obtained. Figure 20 compares the y/D vs x/D data for the same sphere (D = 3.94 mm,
material = CA, Rq,sph/D = 1.5 × 10−4) rolling on a glass panel (Rq,pan/D = 7.4 × 10−6)
and a frosted glass panel (Rq,pan/D = 5.9 × 10−4) at fixed Re = 100. The glass panel’s
roughness is only 5 % of that of the sphere, while the frosted glass panel is a factor
of 3.9 rougher. Thus, the frosted glass panel is approximately 80 times rougher than
the glass panel. Even under such a pronounced variation in roughness, the observed
sphere cross-slope deviation and oscillations appear similar. The maximum deviations
at x/D = 100 are ≈ ±3D, and Sty for the two panels are 0.062 for glass and 0.052
for frosted glass. In addition, StUy is 0.084 and 0.077 for the glass and frosted glass
panels, respectively. These measurements indicate that the surface roughness has at best
a second-order effect on sphere VIV or sphere trajectories, at least within the range of
roughness investigated. This, of course, is consistent with previous studies indicating that
the time-dependent outer flow, which induces the time-dependent forcing, is relatively
independent of the gap flow (Houdroge et al. 2023). As roughness is increased further,
surface asperities may start to influence the sphere path and VIV response. However, such
an effect will likely be a function of Re.

4.7. Strouhal number calculations
The shedding of hairpin vortices at moderate-to-high Re has been numerically observed to
lead to fluctuations in the sphere force coefficients in the cross-slope direction (Rao et al.
2012; Houdroge 2017; Houdroge et al. 2023). These force fluctuations are accompanied
by a varying velocity component, which in turn leads to variations of the sphere path
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Figure 19. Cross-slope displacement and velocity corresponding to Re = 221(±2), with the displacement
adjusted to remove total cross-slope deviation over the sampling period. The figures also indicate the locations
of maxima and minima, allowing an estimate of the corresponding St for each run and the mean St. The
velocity signal has been normalised by the time-mean Uy component of the sphere velocity. (a) Adjusted
non-dimensional cross-slope displacement (y′/D) data. (b) Non-dimensional cross-slope velocity (Uy/Uy)
tracking data.

from the mean down-slope direction. The relationship between shedding of vortices and
fluctuations in the sphere cross-slope velocity and displacement will be investigated in this
section. This correlation will be studied by analysing the frequency responses of the sphere
kinematics.

In the present study, the Strouhal number (St = f D/Ū) of a freely rolling sphere was
derived using two techniques. The first was based on the number of vortices shed into the
wake of the sphere, where f is the vortex shedding frequency, D is the sphere diameter
and Ū is the mean down-slope velocity. The second employed path tracking of the sphere
motion and calculation of the frequency of oscillation using a peak detection algorithm in
the cross-slope (y) direction.
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Figure 20. Non-dimensional cross-slope displacement comparison between glass and frosted glass panels at
the same Re. (a) Non-dimensional cross-slope displacement (y/D) tracking data on the glass panel (Rq,pan/D =
7.4 × 10−6) at Re = 100. Here, Sty = 0.062 and StUy = 0.084. (b) Non-dimensional cross-slope displacement
(y/D) tracking data on the frosted glass panel (Rq,pan/D = 5.9 × 10−4) at Re = 100. Here, Sty = 0.052 and
StUy = 0.077.

The first method used the video recordings obtained for wake visualisations shown in
figure 15; the number of large-scale wake vortical structures shed per given length of time
was determined, leading to an estimate of the wake-shedding frequency f at a given Re.
The number of larger-scale hairpin vortices shed into the wake was manually counted,
halved to account for shedding from opposite sides and divided by the measurement time
to determine f . As defined in § 2, D was measured and Ū was calculated based on the time
taken to travel a known distance (≈ 200–400 mm).

The second method used a peak detection algorithm on the sphere-adjusted cross-slope
displacement (y′/D) and cross-slope velocity (Uy/Ūy) to calculate the sphere oscillation
frequency ( f ). The maxima and minima of the sphere displacement and velocity signals
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Figure 21. Estimates of Strouhal numbers (St) of a rolling sphere over a range of Re. Computational and
experimental data from previous studies are plotted for comparison. The present results are obtained using
the peak detection method applied to the displacement and velocity signals from the path tracking analysis
described in § 4.6.

were identified using a peak detection algorithm, added together, halved and divided by
the measurement duration to calculate f for each run.

While the displacement and velocity signals should contain the same frequency
components, the higher-frequency component dominates the velocity signal, while
the lower-frequency component dominates the displacement signal. That enabled the
derivation of two parameters. The parameter Sty corresponds to oscillations in the sphere
cross-slope displacement, while StUy corresponds to oscillations in the sphere cross-slope
velocity. All values presented are mean values obtained by averaging the individual St
obtained using the path tracking data discussed in § 4.6.

All three sets of results are indicated in figure 21 and compared against existing
numerical predictions and experimental data. Given that the signals have a sizeable chaotic
component, these estimates of the underlying periodicity are at best approximate.

As can be seen from figure 21, St is a function of Re. These Strouhal numbers were
obtained using flow visualisations within the range 130 < Re < 420. For Re < 100, no
shedding was observed. For Re > 500, the shedding frequency was too high to distinguish
individual vortices to enable the calculation of St. Inspection of figure 15(k,l) highlights
this limitation. The wake is chaotic and unsteady, and the oscillations and lateral movement
add further complexity to the wake shedding. As such, St estimates beyond Re = 450 were
not reported.

The Sty predictions are approximately constant at Sty ∼ 0.05, with some scatter observed
in the derived dataset. On the other hand, StUy initially increases approximately linearly
with Reynolds number. The numerical predictions of Rao et al. (2012) for a sphere
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rolling at constant velocity with a fixed G/D = 0.005 are also shown in figure 21. In that
study, two dominant frequencies were identified, corresponding to the cross-slope and
down-slope force signals. The figure also shows these two measured Strouhal numbers
from numerical simulations of a freely rolling sphere at a fixed gap (Houdroge et al.
2023). The downstream oscillation occurs first due to shedding of hairpins into the
wake, followed by the development of cross-slope oscillation at a higher frequency as
the Reynolds number is increased. Interestingly, Sty estimates from the present study are
in broad agreement with the Strouhal number predicted numerically by Rao et al. (2012)
and Houdroge et al. (2023) for large-scale shedding of hairpin structures into the wake.
The figure also indicates that Sty is independent of surface roughness.

Analysis of flow visualisations combined with path tracking of a sphere just prior to the
second critical transition was conducted at Re = 166 and also at a higher Reynolds number
(Re = 372), as shown in figure 22. Large-scale hairpin vortices are identified manually, and
the manually identified large hairpin vortices are numbered in figure 22. Figure 22 shows
a qualitative agreement between wake shedding and sphere VIV. However, it should be
noted that other mechanisms may also influence sphere VIV, which are discussed in the
latter part of this section.

At Re = 166, the sphere Sty and StUy are approximately equal and the vortical wake
structures as marked by the dye visualisations have been identified and numbered, as seen
in figure 22(a). Depending on the orientation of the shedding of the hairpin vortex, the
lateral direction of motion of the sphere changes. Typically, hairpin vortices are shed from
alternating sides, leading to an average mean path without any deviation in one direction.
However, as seen in the figure, the intensity of shedding from both sides is not always
equal, which leads to the overall cross-slope deviations as observed in figure 18. At Re =
166, each shedding of a hairpin vortex leads to a change in sphere displacement.

The StUy values measured in the present study initially increase with Re, and continue to
increase up to Re ≈ 400 before suddenly decreasing to a relatively constant value. There is
excellent agreement between StUy and the wake shedding St at Re < 400. This observation
suggests that, below Re < 400, the sphere cross-slope velocity and wake shedding are
coupled. The combined path tracking and wake-shedding diagrams at Re = 372 shown
in figure 22(b) further support this observation. Here, 18 hairpin vortices are shed into
the wake of the sphere at Re = 372, and we observe peaks in Uy that correspond to each
hairpin vortex. This observation suggests that the sphere cross-slope velocity is coupled
to vortex shedding frequency. Close agreement between the wake shedding St and StUy
further supports this hypothesis. We only observe 7 prominent peaks in the y′/D data,
suggesting that shedding of every hairpin does not lead to a significant change in sphere
displacement (or direction), as was observed at Re = 166.

The observed VIV response of the sphere displacement and velocity with wake shedding
provides valuable insight into the dynamics of the freely rolling sphere. Figure 21 indicates
that the VIV response of a sphere contains two dominant frequencies related to the
shedding of vortices. These two frequencies are observed beyond Rec,1, the critical Re
beyond which vortex shedding occurs, giving rise to two branches in the St vs Re data. The
sphere velocity is more responsive to the higher-frequency signal, continuing to increase
with Re up to Re ≈ 400. The sphere displacement is affected by the lower-frequency
forcing due to large-scale shedding, and is converted into a side oscillation when the
body is allowed to move laterally. This frequency remains relatively independent of Re.
Interestingly, beyond Re > 400 the high-frequency signal is no longer observed, and both
velocity and displacement are observed to respond to the lower-frequency signal.
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Figure 22. Combined path tracking and flow visualisations. (a) Path tracking combined with flow visualisation
(plan view) at Re = 166(±2). (b) Path tracking combined with flow visualisation (plan view) at Re = 372(±3).

To understand the relationship between vortex shedding and cross-slope sphere
movement, consider that the cross-slope force is expected to oscillate at the frequency
of vortex shedding (Rao et al. 2012). An additional contribution to the cross-slope force
from the lubrication region is likely to depend on the cross-slope velocity, and act to
dampen cross-slope motion. Finally, cross-slope contact forces are also present. The
cross-slope acceleration of the sphere will be the cross-slope force divided by the sphere’s
mass. The cross-slope velocity and displacement are the time-integrated effect of the
cross-slope acceleration. Therefore, the cross-slope velocity and position are likely to
oscillate at a frequency determined by the wake shedding. However, the time integration
may result in a smoothing effect that removes some local minima and maxima, resulting in
a lower frequency in the velocity and displacement profiles than the shedding frequency.
From figure 21, we see that the velocity profiles have the same frequency as the wake
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shedding (for Re < 400). This supports our assumption that fluctuations in the cross-slope
motion of the sphere are due to cross-slope forces caused by wake shedding. However,
the displacement profile has a lower (and constant) frequency, because integrating the
fluctuating velocity removes some of the extrema. In addition, experimental limitations
such as image resolution and inaccuracies in tracking and post-processing, are likely to
further dampen the higher-frequency displacement signals.

Although the St variation presented in figure 21 provides key insights into the sphere’s
motion, sources of error contributing to the scatter need to be considered. In addition
to the shedding of hairpin vortices, other sources of cross-slope movement also exist,
which may influence the sphere’s path down the inclined plane. For instance, smaller-scale
oscillations in the shear layer marking the re-circulation zone may also contribute to sphere
movement. These structures can be observed in flow visualisations shown in figure 15.
Local gradients on the panel surface and contact with large asperities on both the sphere
and panel could also lead to perturbations to the sphere path. In addition, dust deposited
on the sphere or panel surface, and micro-air bubbles although (mostly) systematically
removed, may also lead to system perturbations.

Presently, we have observed a qualitative correlation between wake shedding and sphere
VIV. However, the exact mechanisms that lead to sphere VIV are presently unknown.
Sphere VIV is likely due to a combination of many effects such as sphere inertia, the added
mass coefficient and perhaps other unknown factors. It is plausible that some of these
mechanisms may dominate the VIV response dependent on the sphere Re. The detailed
exploration of these mechanisms is beyond the present study, and we recommend it as
future research.

5. Conclusions

This study has examined the effects of surface roughness on the drag coefficient (CD) of
a sphere rolling freely down an inclined plane under the influence of gravity. Additional
effects of Re, wake dynamics, VIV and the possible influence of cavitation were also
investigated or considered.

The most significant finding was the functional dependence of CD on both the average
Reynolds number, Re, and the surface roughnesses of the spheres and panels. An increase
in roughness, characterised by the parameter ξ , was observed to lead to a decrease in CD.
This is consistent with the lubrication theory predictions if one assumes that the roughness
generates an effective gap between the sphere and the surface. It was observed that the
surface roughnesses of both the sphere and panel contribute to variations in CD. As an
illustration of the effect, as ξ was increased by a factor of 25, approximate reductions in
CD of 10 % at Re = 70, 100 and Re = 150, were observed.

Our experimental results are in good agreement with the combined analytical and
numerical model of Houdroge et al. (2023). Under that model, the total CD can be
separated into two components, the gap-dependent drag CD,gap and the wake drag CD,wake.
The first, CD,gap, depends on both Re and ξ , while CD,wake is only dependent on Re.
Assuming G/D = ξq (the r.m.s. roughness), the predicted drag coefficients display the
same trends with both ξq and Re; however, the model marginally underestimates CD
compared with the experimental measurements. This suggests that either the effective gap
is smaller than ξq, or there is an additional source of drag, such as rolling resistance, that
has not been accounted for in the analysis.

Matching drag coefficients from analytical predictions for perfectly smooth spheres
based on a fixed gap with those from experiments using rough spheres found general
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agreement between the effective gap ratio (ξ ) and the measured relative r.m.s. roughness
(Rq,sphere/D) of the spheres for cases where they were rolling on a much smoother glass
panel. Indeed, for acrylic spheres, the effective ξ values were in excellent agreement with
the measured Rq,sphere/D, while for CA spheres, the predicted values were smaller than
Rq,sphere/D for spheres of similar diameters. Deviation of effective ξ against measured
roughness values was more prominent at lower Re for all spheres considered, further
highlighting the underestimation of CD using (2.4) if the idealised gap is assumed to be
equivalent to the r.m.s. roughness.

The difference in effective ξ and measured Rq,sphere/D between the two materials is
attributed to the limitations in using simple statistical measures of surface roughness to
estimate the effective gap. The surface of the acrylic sphere contains a dense distribution
of smaller asperities and a sparse distribution of very tall asperities, while the CA spheres
have more evenly sized asperities, including both bumps and valleys, that are moderately
large. Simple estimates such as Rq cannot account for the multitude of different height and
length scales that can influence the effective gap as the sphere rolls along.

The gap drag coefficient is inversely proportional to Re, while the wake drag coefficient
remains of O(1) as Re is increased. Thus, only the wake drag, which does not depend on
ξ , is significant at large Re. Therefore, the separate CD vs Re curves for various ξ appear
to converge towards a single curve as Re is increased.

The variation of C̄D with Re for freely rolling foam spheres in air was also obtained and
compared against the results with spheres in water of similar dimensions. The relative
agreement between the two sets of results suggests that cavitation is not a necessary
requirement to allow sphere motion, contrary to the suggestions of previous authors, since
cavitation does not occur in air.

Experimental flow visualisations were undertaken for freely rolling spheres, and
compared against existing literature. The expected increase in unsteadiness of the sphere
wake with Re was observed, with the formation and shedding of hairpin-like vortices
captured in detail. Numerical studies predict the transition to the shedding of hairpins
to occur at Re = 139, which is in agreement with the present visualisations. The
Strouhal number (St) calculated based on wake shedding is in agreement with previous
experimental and numerical results. The VIV analysis found cross-slope oscillations of
the displacement and velocity of the sphere, with the sphere velocity fluctuating around
fixed values, as was observed numerically by Houdroge et al. (2023). Path tracking of the
sphere’s motion indicated a significant level of randomness of the sphere’s path down
the inclined plane, with cross-slope oscillations leading to many different paths, even
under seemingly uniform conditions. This behaviour was also found in previous numerical
studies (Houdroge et al. 2023). The cross-slope oscillations were attributed to the shedding
of vortex loops, with a (possibly) minor dependence on panel unevenness. Path tracking
of a sphere rolling on two panels with varied surface roughness indicates that surface
roughness does not contribute to significant variations in the sphere’s path or the amplitude
of oscillations.

Frequency analysis of the sphere’s displacement and velocity signals allowed the
estimation of the Strouhal numbers, St, which were compared against previous numerical
results. The sphere St corresponding to cross-slope displacement was relatively constant
with increasing Re, which is in agreement with the St of the cross-slope force coefficients
previously calculated by Rao et al. (2012). The sphere velocity StUy was found to increase
with Re until a critical Re ≈ 400. Beyond this value, StUy decreases with Re and converges
to St ≈ 0.075. Combined flow visualisation and path tracking show that, at Re = 166, Sty
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and StUy are coupled with the wake shedding St. However, beyond Re = 372, Sty is no
longer coupled with wake shedding but StUy retains the coupling; StUy is generally in
excellent agreement with the wake shedding St of the sphere.

Further work is required to develop a deeper understanding of the details of the rolling
mechanism of freely rolling spheres, especially with a focus on the lower Re range
where the effects of surface roughness are more prominent. The dependence of CD on
higher roughness panels and or spheres would also be an interesting area to explore. As
mentioned earlier, analysis of the rolling resistance due to energy loss due to the rolling
sphere interaction with roughness elements may provide further insight, allowing the
development of a more complete model.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.146.
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Appendix A. Uncertainty analysis

Experimental uncertainty estimates of measured and calculated parameters are critical
in establishing the accuracy of observed trends in behaviour. This uncertainty in the
calculated Re and C̄D values was presented in figures 7–12 as error bars in the data points.
This section outlines the process in which these error bars were calculated, by using an
example calculation. For each variable of interest, it is assumed that the total error (δ) is
the linear summation of bias error (δB) and random error (δR). Figure 7 indicates the total
error while figures 8–12 only indicate the bias error as error bars. The Python uncertainties
package (Lebigot 2023) was used for error propagation analysis. This package calculates
the standard deviation of variables using the linear approximation of error propagation
theory. As an example, table 5 summarises the corresponding reference values used, for
an acrylic sphere rolling on a glass panel.

The values of Re and C̄D are given by the following equations:

Re = UD
ν

= (L/t)D
ν

, (A1)

CD = 4
3

(β − 1)gD
U2 sin(θ). (A2)

Based on the reference values given in table 5, the measured Re and C̄D are

Re = 50 ± 1(2 %), (A3)

CD = 6.25 ± 0.24(3.8 %). (A4)
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Definition (unit) Symbol Reference value δB Estimation δR Estimation δ

Distance (mm) L 200 1 IR — — 1
Time(s) t 17.45 0.1 IR 0.20 STD 0.30
Fluid viscosity (mm2 s−1) ν 1.070 0.005 IRa — — 0.005
Diameter (mm) D 4.71 0.01 IR 0.01 STD 0.02
Angle (deg.) θ 4.0 0.05 IR — — 0.05
Fluid density (g cm−3) ρf 0.999 0.001 IRa — — 0.001
Relative density β 1.192 — — 0.0012 STD 0.0012

Table 5. Reference values for uncertainty calculations; IR, instrument resolution; STD, standard deviation of
measurements.

aFluid density and viscosity were calculated using a temperature measurement, the given value is the
deviation of viscosity for the instrument resolution of the temperature measurement.

Approximately 50 % of the measured error in Re and CD is due to the natural variation
of the rolling sphere velocity, as indicated in figure 18. The bias error (error due
to measurement uncertainty) is approximately 1 %–2 % for this case, and is generally
applicable for the Re range reported in this paper.
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