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RANKIN-SELBERG METHOD FOR SIEGEL CUSP FORMS

TADASHI YAMAZAKP

Introduction

Let GTO(resp. Γn) be the real symplectic (resp. Siegel modular) group
of degree n. The Siegel cusp form is a holomorphic function on the Siegel
upper half plane which satisfies functional equations relative to Γn and
vanishes at the cusps. For an integer r, l<r<n, there exists a maximal
parabolic subgroup Pr of Gn defined by

e Gn\a2l = c21 = 0, cn = 0, c12 = θ} ,

in which we decompose a n n X n matrix x into r xr, rχ(n — r)9 (n — r)χr
and (n — r) X (n — r) submatrices xn, JC12, #21 and x22, respectively. Let F
and H be Siegel cusp forms of the same weight /. For any half-integral
positive definite symmetric matrix S of size r, we denote by fs and hs the
S-th Fourier-Jacobi coefficients relative to Pr of F and H, respectively.
Then they are Jacobi cusp forms of weight I and index S and we denote
their Petersson inner product by (fs, hs). Consider a Dirichlet series
defined by

D (F H' s) — * ^ ^
ε(S) (det S)s

in which the summation is taken over the set of equivalence classes of
S and ε(S) denotes the order of its automorphism group. This is an
obvious generalization of the symmetric square for the elliptic cusp forms
([8]) Our main objective is to show that the Rankin-Selberg method is
applicable to the study of the analytic properties of Dr(F, H: s).

We remark that, in the special case where r — n, this type of Dirichlet
series has been examined by Maass [5] for n = 2 and by Kurokawa for
general n (unpublished). Also Kohnen-Skoruppa [4] recently investigated
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36 TADASHI YAMAZAKI

the case where n = 2 and r = 1. Among other things, they showed that
if F — H is in the Maass space and is a common eigen function of the
Hecke operators, then D^F, F: s) has Euler product and, up to some
elementary facts, coincides with Andrianov's spinor zeta function [1].

Now we give a brief account of the paper. In Section 1, we collect
standard facts about Fourier-Jacobi expansion of the Siegel modular forms.
In Section 2, following Kalinin [3] we closely examine the Eisenstein
series Er(s : g) for the symplectic group. It is a function on C X Gn and
is a non-holomorphic automorphic form of weight zero with respect to g.
We show that, as a function on C, it can be continued meromorphically
to the entire complex plane and satisfies a functional equation (Theorem
2.2). In a special case where r = 1, it has a nice holomorphy property
(Theorem 2.3). In Section 3, we calculate the Petersson inner product
(FEr, H). It turns out that, up to some elementary factors, it is equal to
a translate of Dr(F, H: s) (Theorem 3.2). Then, applying the Rankin-Selberg
method, we get analytic continuation and a functional equation for
Dr(F, H: s) (Theorem 3.4).

Notation. As usual we denote by Z, Q, R and C the ring of rational
integers, the rational number field, the real number field and the complex
number field, respectively. For an associative ring A with identity ele-
ment, Ax denotes the group of invertible elements of A.

We denote by Mm>n the set of m X n matrices. We put Mm = Mm,TO. If
x is a matrix, ιx, det(x) and tr(x) stand for its transpose, determinant and
trace, respectively. The identity and zero matrix in Mm are denoted by
lm and 0m, respectively. If xu , xr are square matrices, άiag(xu , xr)
denotes the matrix with xu , xr in the diagonal blocks and zero matri-
ces in all other blocks.

For an algebraic group G defined over Q and a commutative ring A,
we denote by G(A) the group of A-valued points of G.

We put Symw = { S e M r a | ΰ = S}. For S e Symm and x e Mm,n, we
write S[x] = cxSx. Two symmetric matrices S, T e Symm(Q) are said
equivalent and written as S ~ T, if there exists g e GLm(Z) such that
S[g] = T.

The symplectic group Spn of degree n is defined by

in which Jn = ( _ i n rf ). The Siegel upper half plane Hn of degree n
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RANKIN-SELBERG METHOD FOR SIEGEL CUSP FORMS 37

is the set of symmetric matrices τ = SymTO(C) with positive definite imagi-

nary parts Im(τ) > 0.

For a real number x, we denote by [x] the largest integer such that

[x] < x. For a complex number s, we write e(s) = e2πίs. We also write

ξ(s)=π~s/2Γ(s/2)ζ(s), in which Γ denotes the gamma function and ζ denotes

the Riemann zeta function.

1. Preliminaries

The purpose of this section is to summarize those items that we shall

need in the following. Let us start at the Siegel cusp forms. Let Gn be

the symplectic group of degree n. We put Gn = Gn(R) and Γn = Gπ(Z).

Then Gn operates transitively on the Siegel upper half plane, namely for

any g = ( a * 1 in Gn and r in Hn, we define

g(τ> = (az + b)(cτ + d)-1 ,

and the canonical automorphic factor is given by

j(g, τ) = cτ + d.

The isotropy subgroup K at τ0 = ίln is a maximal compact subgroup of Gn.

Let us fix a natural number / and consider a function F on Gn which

satisfies the functional equation

(51) F(rgk) = aetj(k,T,yiF(g),

for all T in Γn and k in K. For any function F on Gn which satisfies

(Si), we put

F'(τ) = det j(gnτ>YF(gv),

in which for any r in Hn we take an element gτ in Gn such that

gt(TQ} = τ. Then JP° does not depend on the choice of gτ and defines

a function on Hn. For a function JF on Gn satisfying (SI), we consider

the following conditions.

(52) The associated function F° on Hn is holomorphic.

(53) The function F is bounded on Gn.

The functions on Gn which satisfy the conditions (SI), (S2) and (S3)

are called the Siegel cusp forms of weight Z, and we denote by S(l) the
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38 TADASHI YAMAZAKI

totality of such functions. We also define the Petersson inner product
on S(l) by

(Fl9 Ft) = f
J Γn/Gn

in which dg denotes the Haar measure on Gn.

Secondly we shall briefly recall the basic facts about the Jacobi forms.

For more details, we refer to Murase [7]. Let m and r be natural num-

)d) GTO, we
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bers. For h = (λ, μ, K) e Mr>m x Mr>m x Symr and g =

put

(h,g)

Then G w , r = {(h,g)\h e Mr,m X Mr,m X Sym r,^ e Gm} forms a Q-algebraic

subgroup of G m + r , and it is a semi-direct product of the Heisenberg group

Hm, r = {(h, I2m)\h e Mr>m X M r , w X Symr} and G w . Note that the center

of Gm, r is Zw, r = {((0, 0, K), I2m)|/ce Symr}. For simplicity, we wrtie hg for

each element (h, g) of Gm, r. Let Dmtr denote the complex domain Hm X

MΓiW(C). Then Gm,r = Gm,r(R) acts on Dm,r transitively by

, Zj(g, μ) ,

in which η = (λ, μ, tc)g 6 Gm>r and Z = (r, ̂ ) 6 Z)m>r. The stabilizer of Zo =

(τ0,0) e J5m i r in Gm<r coincides with Zm>r(R)K. We shall fix a natural

number I and a half-integral positive definite symmetric matrix S of size

r. The automorphic factor Jl)S: Gm<r X Dm, r -> C x of weight Z and index S

is defined by

JUi, Z) = det j(g, τyjsvj, Z),

where for η = (λ, μ, κ)g e Gm,r, g = ^ Λ and Z = (τ, z) e Dm,r we put

We also define a character of Symr(R)/Symr(Z) by

κ) = e(tr(Sκ)).

https://doi.org/10.1017/S0027763000003226 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003226
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Let / b e a function on Gm>r satisfying

(Jl) /((0, 0, κ)ϊηk) = detj(k, τo)-ιψs(κ)f(V)

for K e Symr(R), ϊ e Gm,r(Z) and k e K, For each Z e Dm, r, take an ele-

ment ??2 e Gm,r so that 5?2<Z0> = Z and put

f°(Z)=f(Vz)Jι,s(Vz,Z2).

Then /°(Z) does not depend on the choice of ηz and defines a function on

A .r
Let S(Z, S) be the space of functions / on Gm>r satisfying the following

conditions (J2) and (J3) as well as (Jl).

(J2) The associated function f° is holomorphic on Όmr.

(J3) The function / is bounded on Gm>r.

Each element of S(l, S) is called a Jacobi cusp form of weight / and

index S. The Petersson inner product is defined by

= f
Gm,r(Z)\Gm,r

Finally let us explain about Fourier-Jacobi expansions of auto-

morphic forms relative to a parabolic subgroup. Take integers r, n such

that 1 <C r < n and put m = n — r. Then we have the maximal parabolic

subgroup Pr of Gn defined by (see Section 2)

r = {(c d)
= Oj c" = 0? Cl2 = °' C21 =

in which α, b, c, and rf are n X n matrices and decompose an n X n matrix

x into r X r, r X m, m X r and m X m blocks ί̂ 11 ^12J. We shall always

consider Gm,r as a subgroup of Pr. For any element w in GL(r, i?), we

define w = diag(w;, lm, ̂ " S lm). Then any element in Pr can be written

uniquely as ηw, where η e Gw,r and α; e GL(r, R). Let F b e a Siegel cusp

form of weight / for Γn. For any positive definite half-integral matrix

S e Symr(Q), we define a function fs on Gm,r by

fs(v) = f F((0, 0, x)η)e(- tv(S(ilm + x)))dx .
J Symr(R)/symr(Z)

Then / s is a Jacobi cusp form of weight I and index S for Γm and we
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call it the S-th Fourier-Jacobi coefficient of F relative to P r . The Fourier-

Jacobi expansion of F relative to Pr is given by

F{ηw) = Σ e(ίtv(S[w]))(detwyfs(y),

in which the summation is taken over the set of positive definite half-

integral symmetric matrices S e Symr(Q). We note that, by the uniqueness

of the Fourier-Jacobi expansion we have

ftusΛil μ, κ)g) = (det u)ιfs((uλ, uμ, uκιu)g)

for all S > 0, u e GL(r, Z) and (λ, μ, κ)g e Gn,r.

In terms of the associated functions F° and f°s with F and fs, the

Fourier-Jacobi expansion may be written as

Σ
S>0

in which we decompose τ e Hn into blocks \ n Γ l 2) with τn e Hr, r12 € Mr m(C)
\Ϊ2l ^22/

and τ22 e Hm.

§ 2. Eisenstein series

This section is devoted to a discussion of the Eisenstein series for

the symplectic group. Since we essentially follow Kalinin [3], and since

many of the statements can be proved in the similar way as [3], we omit

most of the proofs.

As in the previous section, let Gn be the real symplectic group of

degree n and let Γn be the Siegel modular group in Gn. Since we fix n

all through this section, for simplicity we drop the index n and write

just G and Γ for example. Let g be the Lie algebra of G. We denote by

eίp (j,7 = 1, ., 2n) the matrix unit of size 2n, and put ht = eu — ei+nΛ+n

for 1 < i < n. Then the Lie subalgebra α spanned by hi9 (1 < ί < n) is

a Cartan subalgebra of $. In the dual vector space α* we choose basis

£i, (1 < i <̂  n) which is dual to h^ As a system of positive roots relative

to the Cartan subalgebra α, we may choose the set

Σ = {2εi(1 < ί < n), Si ± εj(l < ί <j < n)}.

With this choice of order, the set of simple roots is given by

Σ° = {at = 8,- εί+ί(l < i < n - 1), an = 2εn}.
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The Weyl group W is generated by the orthogonal reflections wai for

1 < ί < n. We set

P = α + Σ n« >

in which nΛ is the root subspace corresponding to α:. Then (p9 a) is a

Borel pair in g in the sense of [2]. Let (P, A) be the Borel pair in G

corresponding to (p, α), and let P = C7AM be its Langlands decomposition.

Let if be a maximal compact subgroup of G. Then we have G = PAT =

UAMK. Therefore any element g in G can be written as g = uamk,

with ueU, ae A, me M and ke K, and the A-part α is uniquely deter-

mined. We denote it by α(g). Let αg be the dual of the complexified

vector space αc = C(x)Rα. For any λ in aξ and for any α in A, we put

α);(α) = e' ( l o g a ),

in which log denotes the inverse of the exponential map of α to A. We

introduce coordinates on αg as follows. We set for 1 <i < n9

Note that ωt9 i = 1, , n are the fundamental weights. For (zu - - -, zn)

6 Cn we set

λ(zl9 - - , z n ) = Σiziΰi-

In terms of these coordinates the vector λ(l9 , 1) is the half-sum p of

the positive roots.

Now we define the Eisenstein series associated to the constant func-

tion on M. For any z = (zu , zn) e Cn and for any geG, we set

- Σ

We remark that from the general theory of the Eisenstein series, E(z:g)

is holomorphic for Refe) > 1, I < ί < n. Let us fix an integer r such

that 1 < r < n. We set

Er(zr: g) = Res2n=1 Res2r=1 Res2l=1£Jfe, , zn: g),

in which we take residues at zt = 1, 1 < i < ?z except at 2r = 1.

We shall need another type of Eisenstein series. We know that for
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any subset Fr = Σ° — {<xr} of Σ°, these exists a parabolic pair (pr, ar) such

that pr^p and αr c a. In particular, by definition we have

aτ = {Hea\ai(H) = 0 for i Φ r}

We denote by 2 r , the set of elements a e Σ which are not identically

equal to zero on αr, and we set

Then we have

Pr = δ(cir) + Πr ,

in which g(αr) is the centralizer of αr in g. Let (Pr, Ar) be the parabolic

pair in G corresponding to (pr, αr). Take a Langlands decomposition

Pr = UrArMr of Pr. Then we have G = PrK = C7rArMrJβ:, and for any r̂

in G we denote by ar(g) the Ar-part of "̂.

For any s e C and g 6 G, we define

where we write φlr)(g) = ω25δr(αr(g)). It follows from the general theory

of the Eisenstein series that the sum in the right hand side converges

absolutely for Re(s) > n — (r — l)/2. The relation between the two

Eisenstein series Er and Er is given by the following

LEMMA 2.1. There exists a domain V c {s e C|Re(s) > n — (r — l)/2}

such that for all s e V

Er(s:g) = c £t(2s - 2n + r:g),

in which c is a non-zero constant given by

n—r r

c = J\J(2j)J\J(j).

THEOREM 2.2. Let

r [r/2]

<fr(s: g) = j] f(2s + 1 — 0 Π f ( 4 s — 2n+ 2r — 2ι)Έr(s:g).

For αnj ge G the function £r(s:g) is meromorphic in s on the entire com-

plex plane and holomorphίc for Re (s) > {2n — r + l)/2. It satisfies a
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functional equation

Sr(s:g) = $r(
2n-r + 1 -s'.g).

It has a simple pole ats = n — (r — l)/2 with residue

4 f l f O ) f f f ( 2 n 2 r + 2 7 + l).
2 J = 2 .7=1

Proof, In the Weyl group W consider an element w for which we

have wεj = εr+λ_] for 1 < j < r. Then our theorem follows from the func-

tional equation of the Eisenstein series E(λ(z): g) for w. For more details

see the proof of [3] Theorem 2'. Q.E.D.

If r > 2n — 2r + 1, then cancellations of elementary factors occur

and we can replace Sr(s:g) by

2ra-2r + l [r/2]

Π f(2s + 1 - 0 Π f ( 4 s - 2n + 2r - 2i)-Er(s:g).

Of course the resiaue at s = n — (r — l)/2 would be

1 2n-2r + l [r/2]

- i Π f 0") Π ξ(2n - 2r + 2/ + 1).
2 i-2 y=i

By definition Er(s:g) is right i£-invariant as a function on G. Hence

it may be considered as a function on the Siegel upper half plane. We

define a function E°r(s:τ) on Hn by

for all g eG. If we put τ = g(ilny, we have

(rw . _ / detlm(r) V

\ detlm(r22) /

in which we decompose τ into blocks (Γ l 1 Tί2\ with τneHr, T2ZeHn_r.
\r2i r22/

Therefore we have another expression for E°r(s: r):

E°r(s:τ)= Σ ( d e t I m ( r < Γ > ) Y.
r€rπPr\r V det Im (Γ<τ»22 /V det Im (r<τ»22

All the statements about Er in this section are easily reformulated in

terms of E°r.
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In the special where r == 1, we can say much more. For another

extreme case where r — n, see [3] Theorem 2'.

THEOREM 2.3. Let

For any geG, the function Sx{s:g) is holomorphic in s on the entire com-

plex plane except for simple poles at s — n and s = 0 with residues j , — | ,

respectively. It satisfies the functional equation

gx(s\g) = £x(n - s:g).

Proof. All we have to do is to prove that Sx(s\g) is holomorphic in

the half plane 0 <Re(s) except for simple pole at s = n. For that purpose

it suffices to consider the constant term <oχiP{s\g) is the Fourier expansion

of £x{s:g) relative to the Borel subgroup P (see [3] Lemma 2.3). It is

easy to see that for any aeA and m e M we have

: am) = ξ{2s) c(w:

where the summation is taken over the set of w e W such that u)a% < 0

for ί > 1,

c(w: s) = ]~] c{a, s),
aGΣ',wa<0

and

c(a, s) =

f (2s - τ ι + 1 )

ξ(2s -2n+j -
ξ(2s -2n+ j)

if a = ε, - ε,

if or = 6X + e i .

Now consider an element w in W such that IDOTJ < 0 for 2 < i < n. If

ifαj < 0, then such w — w0 is unique and woa < 0 for all a e 2. Therefore

in this case we have

c(wo.s) - 2ro

So let us assume that wax = w(ε1 — ε2) > 0. If w{2εx) < 0, then w(εί + εά)
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< 0 for all 1 < j < n. Suppose that 1 < j < k < n. Since εx — εk — fa — ε̂ )

+ fa — £&)> it is easy to see that if w(ε1 — εk) > 0, then w(ε1 — ε̂ ) > 0.

Take the largest integer k such that w{εx — εk) > 0, then we have

We note that the above condition determines the signatures of wa for

all possitive roots a, so such an element uh. in W is unique. Actually it

is given by uk = wk_t 0^1% where for I <i <k, wi denotes the reflec-

tion defined by the simple root at.

On the other hand, if w(2εί) > 0 then w(εx — ε̂ ) > 0 for all j . Similarly

take the largest integer k such that w(εx + εfc) < 0, then we have

c ( W : S ) .
ξ{2s)

Therefore we know that the singularities of (^Up(s:g) for Re(s) > n/2 are

at most simple poles at s = (n + j)/2, 0 < j < n. An easy calculation

shows that

ukλ(l - k, 1, , 1) - ι/fc+1A(l - A, 1, , 1)

= ωk- p.

Since ξ(s) has simple poles at s = 1 and 5 = 0 with residues 1 and —1

respectively, it follows that £XyF is holomorphic at s = n — k/2, l<k

< n. Similarly, by considering the element wn wxw^ we can show that

iUP is holomorphic at s = nj2. On the other hand, the functional equa-

tion shows that SlίPΛs holomorphic for 0 <Re(s) < n as well. Q.E.D.

§ 3. Rankin-Selberg convolution

Let F and H be Siegel cusp forms of weight I for Γn. We fix an

integer r, 1 < r < n> and consider the parabolic subgroup Pr. For any

positive definite half-integral matrix S e Symr(Q), we denote by fs and hs

the S-th Fourier-Jacobi coefficient relative to Pr of F and H, respectively

(see Section 1). We shall consider a Dirichlet series defined by

D (F H s) — Y1 * (/ h)

in which the summation is taken over the set of representatives of the

GL(rf Z)-equivalence class of positive definite half-integral symmetric

https://doi.org/10.1017/S0027763000003226 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003226


46 TADASHI YAMAZAKI

matrices and, for any such S, ε(S) denotes the order of its automorphism

group.

LEMMA 3.1. The series

Y 1 (fs, hs)
έri ε{S) (detS) s

converges absolutely for Re(s) > I + (r + l)/2 and represents a holomorphic

function there,

Proof. Since F and H are cusp forms we have

\fs\£cF>(det Sr\ \hs\<cH.(det S)^,

in which cF and cH are constants depending only on F and H, respectively.

Therefore we have \(fs, hs)\ < c det S\ with a positive constant c. On

the other hand it is well known that the series

y, 1 1
&> ε(S) (det S)s

is absolutely convergent for Re(s)> (r + l)/2 (see [9]). Q.E.D.

It is a general philosophy due to Rankin and Selberg, that the

analytic properties of Dr(F, H: s) follow from those of the Eisenstein series

Er via the convolution (FEr(s: *), H).

THEOREM 3.2. For Re(s) > n - I - (r - l)/2, we have

(FEr(s: *), fl) - c (4π)- r ( f + ί- n + (r-1)/2) Π r(s + I - n + A z

with a positive constant c.

Proof. Since i?r($: *) is an automorphic form in the sense of [2], and

since F and H are cusp forms, the integral (FEr(s: *), H) converges abso-

lutely if Re(s) is sufficiently large. It follows from the definition that

(FEr(s: *), H) = ί F(g)Er(s: g)Wg)dg
J r\G

F(g)φϊ\g)H{g)dg.
ΓΠPΛG
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Since G = PTK, we can normalize the Haar measures on G, Pr, and K

so that

dg = dpdk,

where d& is the Haar measure on K such that dk = 1 and dp is a left

Haar measure on Pr. The integrand F{g)φ(f)(g) H(g) is if-invariant on

the right, therefore we have

(FEr(s: *), H) = f F(p)φ^(p)H(p)dp .

Let Pr = UrAτMr be the Langlands decomposition of P r . It is well known

that a left Haar measure dp on Pτ is given by

dp = e~2pr(a)dudadm,

in which 2̂ oΓ = (2n — r + l)ωr is the sum of roots in 2V (see Section 2) and

du, dα, dm represent Haar measures on Ury Aτ and Mτ> respectively. We

shall change our notation slightly. Write an element p in Pr in the form

p = Ύjίv in which 9 e Gn_r,r, M̂  e GL(r, R) and iD = diag(u;, ln_ r,
 ία;"1, ln_ r).

Then, in terms of the new coordinates, we have

dp = \detw\-2n+r-^dw,

in which dη and diί; are the Haar measures on GTO_r,r and GL(r, R), re-

spectively. Also by definition we get ψ^iηvb) = |det wf\ Substitute the

Fourier-Jacobi expansions into the integrand. Concerning about the

Petersson inner product of Jacobi forms, we remark that (fT9 hτ) = (/s, hs)

if T and S are equivalent and (fT9 hs) = 0 if T Φ S. Therefore we have

(FEr(s:*),H)

= Σ - Λ v f |det u;|« +w-*»+r-i e-^trcβc^d u; f fsiyWMdy
S/~ ε(S) JθL{r,R) J Gm,r(Z)\Gm,r

Then our theorem follows from the following lemma.

LEMMA 3.3 ([6]). Let S be a positive definite symmetric matrix of

degree r. Then we have for Re(s) > r — 1

f |det w\'e-4*trw°Mw = cr (det S)-s/2(4π)~iΓ/2)s f[

where cr is a positive constant depending on the normalization of the Haar

measure.
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Combining Theorem 2.2 and Theorem 3.2 we obtain the following

THEOREM 3.4. Let

9r(F, H: s) = ( W r ( s + n - I - - ^ = - 1 :

Then @r(F, H: s) can be continued meromorphίcally to the entire complex
plane and holomorphic for Re(s)> I. It has a simple pole at s = /. It
satisfies a functional equation

®r(F, H: s) = 9r(F, H:2l-n + r^~1~ - s) .

Remark. Note that @r(F, H: s) is a constant multiple of

(4π)~rs f] r(s - λziλ)ξ(28 -2l + 2n+2-r-k)
Λ=l \ 2 /

[r/2]

X Π ξ(4s - 4Z + 2n + 2 - 2i) X Dr(F, H: s).

In the special case where r = 1, we have a better result by Theorem
2.3.

THEOREM 3.5. Assume that r = 1. ΪTien ^i(F, ί ί : s) is holomorphic
on C except for simple poles at s = I and s = I — n. The residue at s = I
is %(F,H). It satisfies the functional equation

&AF, H: s) = S,(F9 H:2l-n-s).
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