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PROJECTIONS ON TREE-LIKE BANACH SPACES 

A. D. ANDREW 

1. In this paper, we investigate the ranges of projections on certain 
Banach spaces of functions defined on a diadic tree. The notion of a 
"tree-like" Banach space is due to James [4], who used it to construct the 
separable space JT which has nonseparable dual and yet does not contain 
/,. This idea has proved useful. In [3], Hagler constructed a hereditarily c0 

tree space, HT, and Schechtman [6] constructed, for each 1 ^ p = oo, 
a reflexive Banach space, ST with a 1-unconditional basis which does not 

contain / yet is uniformly isomorphic to I 2 © ST I for each n. 
\ = i ' p 

In [1] we showed that if U is a bounded linear operator on JT, then there 
exists a subspace W c JT, isomorphic to JT such that either U or (I — U) 
acts as an isomorphism on W and UW or (/ — U)W is complemented in 
JT. In this paper, we establish this result for the Hagler and Schechtman 
tree spaces. 

By arguments of Casazza and Lin [2], this implies that if X is either the 
Hagler or one of the Schechtman tree spaces, X = Z © W, and either Z or 
W is isomorphic to its square, then either Z or W is itself isomorphic to X. 
Although in both this paper and in [1] and [2], great use is made of the 
symmetry properties of the unit vector basis, the arguments of [1] are not 
sufficient for analyzing the Hagler or Schechtman tree spaces. The new 
idea which is used is that of a banded subtree (see Definition 1), and in the 
case of these spaces, we show that the unit vector basis is equivalent to any 
subsequence of it which is supported on a banded subtree. Roughly 
speaking, bandedness means that for each n, when levels in the original 
tree are considered, the n-i\\ subtree level is completed before the 
(n + l)-st subtree level is begun. 

In Section 2, we present the terminology and elementary lemmas 
concerning trees, as well as the definitions of the tree-like spaces of 
Hagler and Schechtman. We analyze the spaces in Sections 3 and 4, 
respectively. 

Our notation is standard in Banach space theory, as may be found in [5]. 
If A is a subset of a Banach space, we denote the closed linear span of A by 
[A]. The greatest integer function is also denoted by [•]. Standard results 
concerning perturbations of Schauder bases are used in several places. 
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BANACH SPACES 909 

2. The standard tree is 

y = {(n, i):0 ^ n < oo, 0 ^ z < 2"}. 

The points («, /') are called nodes, and we say (n, i) is on the n-th level of 
ST We denote the level of a node / by lev /. We say that {n+ 1, 2/) 
and (n -f 1,2/+ 1) are the successors of («, /'). A segment is a finite set 
S = {/,, t2, . . . , tk } of nodes such that for eachy, /• +, is a successor of ry-. If 
lev(/j) = m and lev(^) = n, we say the segment {/,, . . . , tk) is an m — n 
segment. A family of segments {£,, . . . , Sr] is admissible if the segments 
are mutually disjoint and there exist integers m and n such that each S, is 
an m — n segment. ^ is partially ordered by the relation < defined by 
/j < t2 if and only if t] =/= t2 and there is a segment with first element r, 
and last element t2. H t2 = /,, we say /2 is & follower of / j . A sequence of 
nodes {/,} is strongly incomparable provided /' ^ 7 implies /, and /• are not 
comparable and no more than two of the /, are contained in the 
segments of any admissible family. An n-branch is a totally ordered set 
{ (ra, lm) }™=n> and a branch is a set which is an «-branch for some n. 

A tree is a partially ordered set ^ which is order isomorphic to ^7 If ^ 
and «5*2 a r e trees with ^ c ^ , we say that yj is a subtree of ^ If y is a 
tree and :̂<5̂  —* ^ is an order isomorphism, we may use \p to carry the 
above terminology from y to 5^ In particular, for 5 G ^ we define 

levy>(s) = \ev(\p(s) ). 

If Sf c ^ i s a subtree of ^ a n d S is a segment of ^7 we say S is compatible 
with 6^if there exist 5,, J2

 G ^ s u c h that 5, ^ / ^ s2
 f o r a11 ' G ^. 

For ease of referral, we isolate the next notions in 

Definition 1. Let {w,}, {«,} be sequences of natural numbers such that 
mi ^ nt < mi+] for all /'. We say the subtree S? c ^"is banded by {w,}, 
{«,} (or banded) if 

1. lev^(/) = / implies w, ^ lev(/) ^ /?,, 
2. lev r(r) = / implies there is a unique ra, — nt segment St of ^ which 

contains t and is compatible with «5̂  and 
3. lev^(7) = / implies there exist precisely two nl — mi+] segments 5-, 

which are compatible with Sf and such that s e S- implies t ^ s. 
We shall omit the proofs of the following propositions. Proposition 4 is 

a strengthened version of Proposition 5 of [1]. 

PROPOSITION 2. If Sf is a tree and A is a subset of ^ then there exists a 
subtree Sf\ c y such that either 6r\ a A or ¥\ c A. 

PROPOSITION 3. Each subtree of \Tcontains a banded subtree. 

PROPOSITION 4. Let f be bounded real valued function on a tree. Then for 
any c > 0, there exists a subtree Sf such that 

a. for any branch B of * Sf 
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910 A. D. ANDREW 

lim f(t) = LB exists, and 

b. if for each t e </>, Bt is a branch of Sf containing t, then 

2 \F(t) - LB\<e. 

Let L denote the space of finitely nonzero functions on £T The unit 
vectors are 

X^=U s*t, 
and we denote the sequence of biorthogonal functionals by {xf }. We shall 
use the projections and functionals on L, or any completion of L, defined 
by the following formulas. In these, TV is a natural number, S is either a 
segment or a branch, and / is a node. 

(S\ x) = 2 (x* JC>, 
teS 

Psx = 2 (x* x)xr 
teS 

Ptx = 2J (X* x)xr 
s^t 

PN = 2 (x* x)xp and 
t 

\c\(t)^N 

QN= 2 P, = I - PN-V 
\ev(t)^N 

The Hagler tree space, HT, is the completion of L with respect to the 
norm 

r 

IMI = sup 2 \{S*x)\, 
i=\ 

where the supremum is taken over all r and all admissible families 
{S,, . . . , Sr}. The unit vectors, in the order JC00, x]0, .X] h x2,0' • • • ' a r e a 

Schauder basis for HT. We shall discuss this space in Section 3. 
The spaces STp were constructed by Schechtman after an analysis of 

several tree spaces. For X > 1, define a sequence of norms on L by 
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= \\X\ 

\\x\\m = inf j | |x0IL-i + A 2 max \\Pkfy\\m_] \ 

where the infinum is taken over all K and all sequences JC0, . . . , xK in L 
such that 

K 

2 xk = x and Qkxk = JCA. for A: = 0, . . . , AT. 
*=o 

Let 

11*11 = lim \\x\\m, 
m—»oo 

and denote by ^ and y the completions of L with respect to the norms 
|| ||m and || ||, respectively. The norms dual to these are 

i*io = \m\c0 

e 2*-i 

max] Ulw - i , A j niax 
l ^A:<oo / = 

and 

\x\ = lim \x\m. 

2 I^L-ih 
/=o / 

We shall denote by Zm and Z the completions of L with respect to these 
norms. 

The space ST^ is then the completion of L with respect to 

\Van,lxJ\ = \\2\aJxnj\\
[<2. 

To define STp for 1 ^ p < oo, let {x,} be the unit vector basis in ST^, and 
let {x* } be the biorthogonal sequence in ST^. Take ST, = ST^, and for 
1 < p < oo, let ST be the completion of L under the norm 

112 «„,,*„,,ll = \\1\ajx*nj\\^, 

3. In this section, we prove 

THEOREM 5. Let U.HT —> HT be a bounded linear operator. Then there 
exists a subspace X c HT such that X is isomorphic to HT, U\X (or 
(I — U)\X) is an isomorphism, and UX (or (I — U)X) is complemented in 
HT. 

We prepare for the proof of this theorem with several propositions. 
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912 A. D. ANDREW 

PROPOSITION 6. Let Sf be a banded subtree of 3^ and let 

X = [ {xs:s G y) ]. 

Then X is isomorphic to HT and complemented in HT. 

Proof. Let Sf be banded by {ra,} and {«,}, let §\Sf —» ^ be an order 
isomorphism, and for each / = (/, y) e ^ let St be the unique m, — ni 

segment of ^containing <j>~\t), and compatible with St 
If {at} is a finite set of scalars, and x = 2 #,*,, let {S,, . . . , Sr} be an 

admissible family such that 

r 

IWI - 2 I (s* x) |. 

Since {5,, . . . , Sr} is admissible, there exist /?, g such that each S, is a 
p — q segment. If S- is the unique m — H segment of y which contains all 
of the <j>~\t) for / e S, and is compatible w i t h ^ then {S,

i}
r
i=] is an ad

missible family, and 

r r 

2 I (S'*, 2 a^-ilt)) | = 2 l<5f, x> | = ||*||. 
/ = 1 ; = 1 

Hence 

| | 2 atxt\\ ^ | | 2 fl^-i(0||. 

For the reverse inequality, let Sx, . . . , 5 r be/? — g segments with 

r 

112 tf^-i^H = 2 I (Sf, 2 apc^-\{t)) |. 
/ = i 

Since <yis banded, we may assume there exist / and y such that mx1k p Ik nl 

and m- Ik q Ik rip and with 

>> = 2 fl^-i(/), 

we have 

r r 

2 I (S?,y) | = 2 I (Sf, P„^ + (P - P„)y 

+ (/ - ^)y) | ^ 3 US flfx,||. 

It follows that the basic sequence {*5}jG^is equivalent to {*,}, and hence, 
that X is isomorphic to ST. 

For each t = <!>~l(n, i) e St, let S, be the unique (nf_} - h i ) — nt 

segment containing / and compatible with St. Define 
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Px = 2 (S* x) xr 

It is apparent that P is a projection onto X and that | |P|| ^ 2. 

PROPOSITION 7. Lef U\HT-> HT be a bounded linear operator, e > 0, N 
an integer, Sf c ^Ta subtree and t0 

such that 
y. Then there exists /, X u > ta. 

\\PNUx,, < £. 

Proof. If no such t\ exists, then for any follower ( e y o f /0, there exists 
t', lev(/') ê N with 

(4) | (xp, PNUX) | i£ e/tf, 

where K ,N+\ 1. Thus, for any L and any collection {t/}/=\ of fol
lowers in ^ of /0, [L / /L ] of the t/ satisfy (4) for the same node t'. Hence 
there is a choice of signs {6i = ± 1 } such that 

(5) 
L M L r r -I 

2 P t f i / ^ s <x?, 2 i/(^r/)> s p I-1 

If, however, the {/,} are chosen to be strongly noncomparable, we have 

L | | 

2 / V [ / ( f e ) =ë III/IIII2 W ^ 2||£/||. 
/ = i ' ' 

Since L is arbitrary, (5) is contradicted. 

PROPOSITION 8. Let U:HT—> HT be a bounded linear operator, e > 0, N 
an integer, S^a subtree of ^ and /0, . . . , tk mutually noncomparable nodes of 
Se. Then there exists t > t0, t e ^ M G N, N] ^ N, and N] - (M + 1) 
segments Sh i = 1, . . . , k, of ZT having the properties: 

a. \\PNUxt\\ < €, 
b. | | ( / - PM)Uxt\\ < € , 
c. For each i, there exists t\ e ¥ such that t{1k s < t\for all s e Sh 

d. For e#c/z /', | (S*, Uxt) \ < efor each segment S D St. 

Proof Let K satisfy 

2~K\\U\\ < c/3, 

and let 

JV, ^ max(W, lev(/,)) 

be such that for each / = 1 , . . . , k there are 2K branches of Sf which 
contains /, and pass through distinct nodes in the iV rth level of X Then 
there exists t > /0 such that t e </> and 
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914 A. D. ANDREW 

\\PNUx,\\ < e/3. 

Hence a. is satisfied. To satisfy b., choose M > Ni such that 

|| (/ - PM)Ux,\\ < £ / 3 . 

Now for / = \,...,K, let s],...,sf be disjoint N} - (M + 1) 
segments satisfying c. For fixed /', if no S-j satisfies 

| (SJ*, to,) | < e/3, 

it follows that 

2K 

V ^ 2 i <s/*, to,> i 
3 7 = 1 

ê ||to,|| ^ Hf/ll < V , 

a contradiction. Hence for each /, there exists 5, = SJ
t such that 

1 (S*, Ux,) | < £/3. 

Now, if S 3 S,, 

I <S*, to,) | ^ | <S*, PNi-XUxt) | + | (5*, to,) | 

+ \(S*,(I - PM+x)Uxt)\ <€. 

We are now ready for the 

Proof of Theorem 5. Let 0 < y < 1/2. Using standard perturbation 
arguments, Propositions 2, 3, 4, 7, 8, and the arguments of [1], we may 
assume the existence of a sub t ree^ = {t(n, i) } c ^"banded by sequences 
{mt} and {«,-} such that for each / e ^ a n d each «#- — m- segment S of ^ 
which is compatible with <9̂  we have 

where y ^ y, ^ ||K||, where Fis either Uor (I — U). We shall assume that 
F = U, and show that U(HT) contains a complemented isomorph of HT. 
Furthermore, we may assume that along each branch B of 6^ 

lim yt = yB exists 
f—»00 
/ G f i 

and that if y't = yB for some branch containing /, then 

2 IY, - y',\ < l 
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Let X = [ {xt}t^cf\. By Proposition 6, X'\s isomorphic to HT, and we shall 
now show that {Uxt}t^^ is a basic sequence equivalent to {*,}, £=,/>• It will 
follow that U\X is an isomorphism. 

Since U is bounded, if {ani} is a finite set of scalars, 

For the reverse inequality, let 

x = 2* atuiXt(n,iy 

and notice that there exist disjoint mp — nq segments £,, . . . , Sk of ̂ a n d 
branches B- D S- such that 

k 

11*11 ^ 3 l | ( 5 * x ) | 
7 = 1 

s - 2 y s, 2 ani 
t(n,i)^Sj 

= - a x) 
Y 

vhere/ e 7/71* is defined by 

k 

/ = 2 yB.sffL(Sf,x)Sf. 
7 = 1 7 

Let €• = sgn(5y|e, x) , and let 

and define g e / / r * by 

A-

g = 2 *,- 2 Y,** 

#, 

7 = 1 ^ S y 

Then 

I l g - / l l ë 2 2 ly, - Y * . I < > 
7 = 1 rG57n.^ J o 

so for any j> G / / 7 , 

</,>>> ë (g, y) +h\y\\-

In particular, 
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||*|| ê -< / , X) ^ -
y y 

<&x) +{\\x\ 

^ - 2 €• 2 yfUlafUl + - ||x||, 
Y 7 = 1 t(nj)GSj 2 

so 

6 A 

Ik II = - 2 €/ 2 y„flni 
Y 7 = 1 HnJ)<=Sj 

6 k 6 
^ - 2 l<s;, i/*>| =i-|| i /*| | . 

Y 7 = 1 Y 

Thus, U\X is an isomorphism, and to see that UX is complemented, 
observe first that the preceding argument may be used to show that the 
multiplier operator M on X defined by Mxt = ytxt is bounded 
and invertible. Denoting by P the projection onto X constructed in 
the proof of Proposition 6, we see that UX is complemented by 
Q = (U\X) M'XP. 

4. This section is devoted to proving 

THEOREM 9. If X is one of the Schechtman tree spaces Y, Z or ST 
1 = p = oo, and U is a bounded linear operator on X, then there is a 
subspace W c X such that U\W (or (I — U) \W) is an isomorphism and 
UW (or (I — U)W) is complemented in X. 

In [6], Schechtman proved that {xni} is a 1-unconditional basis for Ym 

and for Y, and that c0 does not embed in Y. From this we easily obtain 

PROPOSITION 10. 1. {xni} is a boundedly complete basis for Y. 
2. Z* = Y and {xn J is a shrinking basis for Z. 
3. [xn i) is a \~unconditional basis for Zm and for Z. 
4. {xn ;} converges weakly to zero in Z. 

PROPOSITION 11. Let Sf = {t(n, i) } be a banded subtree of 3T Then 
[ [x{}((=s] in Z is isometric to Z and [ [xt}t^s] in Y is isometric to Y. 

Proof We first consider the unit vectors in Z and show that for any 
finite scalar sequence {an •}, 

12 anlxni\ = | 2 anixt{nl)\. 

The proof is by induction and passage to the limit. Since | | 0 = ||-||c., we 
have that 

12 a
n,i

XnJo — 12 <*nj
xt(nj >'0 
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BANACH SPACES 917 

for any banded subtree y7 = {/(«, /) } and any sequence of scalars {ani}. 
Assume that for any banded subtree y = {/(«, /) }, 

1 ^ an,ixnj\m-\ ~ \^ anjxt(nj )\m-\ 

for all scalar sequences {ani}. Now let y be banded by {w,-}, {«,-}, and 
let 

X ~ 2J an,ixt(n,i)' 

We have 

2"h - 1 

x\m ^ max] W w _ „ A ' max 2 I ^ ^ L - i I 
V mA / = 0 / 

= max] | 2 a txni\m_^ A - 1 max 2 |P* .(2 a,,,/*,,,,-) L - i f 
V k / = o ' 

1^ an,iXnJm' 

by the induction hypothesis. For the other inequality, we consider two 
cases: 

(1) | *L = 12 anixt(ni)\m_] and 

2 * - l 

(2) |*|m = A - 1 max 2 l^,-*L-i-
l ^ A < œ / = o 

In the first case, the induction hypothesis implies that 

M m = W m - 1 = 1 ^ anJXnJm-\ = ' ^ anjXnJm' 

In the second case, there exists K such that 

2K-\ 

\x\m = A-1 2 | / ^ L _ „ 
/ = 0 

and let j be the largest integer such that m- ^ Â . If m. = K < rip then 
there exists / such that 

PKJX = ^KJ^nijJX^ 

and by the 1-unconditionality in Hw_i, 

\^KJx\m-\ — \Pmrl
X\m-\-

Hence 

2K-\ 

Mm = x"1 2 \pKJx\m-\ ^ *"' 2 l ^ L - , 
i = 0 / y 
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— X 2a \P;j 2J anJ
Xnj\m-\ — ' ^ anJXnJm' 

I 

On the other hand, if n- ^ K < wy + ,, then for each /, either there exist /, 
and I2 such that 

or there exists / such that 

PKJX = Pmj+]J
X' 

In either case, using the triangle inequality, we have 

2 A ' - 1 

i = 0 

= A"1 2 \Pj+\/2<*njXnJ\ 
t 

= 1^ an,iXnJm' 

The equivalence of { J C , } ^ ^ and {X/^e.^in the space y follows from the 
equivalence in Z and the fact that Z* = Y. 

Proof of Theorem 9. As in the proof of Theorem 5, the argument may be 
carried out for one of U or (I — U). We shall call that operator £/, and 
show that UX contains a complemented isomorph of X. 

If U is a bounded operator on Z, {Uxni} converges weakly to zero since 
{-*//,/} converges weakly to zero, and we may assume there exists a banded 
subtree S? = {/(>, /") } such that / e ^ impl ies 

| <JC* Uxt) | ^ 1/2, 

and that the Uxt are disjointly supported. With W = [ {•*,},G,^], W is 
isometric to Z, and the unconditionality of {xn,} implies that £/| W is an 
isomorphism. Again by the unconditionality, the operator M defined by 

is bounded, and LW is complemented by the projection UM. 
In the case of the space y, the unit vectors do not tend weakly to zero, 

and if U is a bounded linear operator on Y9 in order to obtain a sequence 
{fni} for which {Ufni} is disjointly supported, we use differences of unit 
vectors. To this end, select a sub t r ee^ c ^ s u c h that / e ^ impl ies 

(x* Uxt) ^ 1/2, 
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and inductively choose sequences {w,}, {n^} and nodes t\n, /'), t2(n, i) of 
Sf such that 

a. t\n, i) < t2(n, i) 
b. t2(n, i) < t\n + 1, 2/) and /2(«, /') < t\n + 1, 2/ + 1) 
c. {7 («, /) } is banded by {m-} and {«•}, for / = 1,2 

e. with/w / = xt2(ni) - xt\(ni)9 the £//„, are disjointly supported. 
Now, let W = [ {/„,} ]. Then 

112 anJx„j\\ = | | 2 anixt2(ni)\\ 

^ H 2 f l # w / J I byd, 

^ 2 | |2 anjcj\, 

so W is isomorphic to Y. Furthermore, since 

<*,•, Uxt) ^ 1/2, 

by the unconditionality of {xn •} and e, 

| | 2 </„,,/,JI ^ 2 | |2 attJxJ\ 

= 2||2 a„,,x,2(,M)|| 

ë 4 | |2 aaJUfJ\ 

^ 4\\U\\ \\^ a„JJ\. 

It is easily seen that UW is complemented in Y. 
As for the spaces ST 1 ^ p ^ oo, it follows from Proposition 11 and 

the definitions of the norms that whenever S? is a bounded subtree of 
«̂ 7 {xt}tŒ^r is isometrically equivalent to {x r} rGt^. Since these spaces are 
reflexive, the unit vector basis is shrinking, and thus converges weakly to 
zero. Thus, the argument used for the space Z also proves the theorem for 
STp9 1 ^ p ^ oo. 

5. A consequence of Theorems 5 and 9 is that if X is either the Hagler 
tree space or one of the Schechtman tree spaces, and W is complemented 
in X, then W contains a complemented isomorph of X. Since these spaces 
are isomorphic to their Cartesian squares, the arguments of [2] show 

COROLLARY 10. If X = HT, Z, 7, or STp, 1 ^ p ^ oo, X = W® K, and 

W^W®WorV**V®V, then either W ^ X or V ^ X. 
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