PROJECTIONS ON TREE-LIKE BANACH SPACES

A. D. ANDREW

1. In this paper, we investigate the ranges of projections on certain Banach spaces of functions defined on a diadic tree. The notion of a "tree-like" Banach space is due to James [4], who used it to construct the separable space $J T$ which has nonseparable dual and yet does not contain l_{1}. This idea has proved useful. In [3], Hagler constructed a hereditarily c_{0} tree space, $H T$, and Schechtman [6] constructed, for each $1 \leqq p \leqq \infty$, a reflexive Banach space, $S T_{p}$, with a 1-unconditional basis which does not contain l_{p}, yet is uniformly isomorphic to $\left(\sum_{i=1}^{n} \oplus S T_{p}\right)_{l_{p}^{\prime \prime}}$ for each n.

In [1] we showed that if U is a bounded linear operator on $J T$, then there exists a subspace $W \subset J T$, isomorphic to $J T$ such that either U or $(I-U)$ acts as an isomorphism on W and $U W$ or $(I-U) W$ is complemented in $J T$. In this paper, we establish this result for the Hagler and Schechtman tree spaces.

By arguments of Casazza and Lin [2], this implies that if X is either the Hagler or one of the Schechtman tree spaces, $X=Z \oplus W$, and either Z or W is isomorphic to its square, then either Z or W is itself isomorphic to X. Although in both this paper and in [1] and [2], great use is made of the symmetry properties of the unit vector basis, the arguments of [1] are not sufficient for analyzing the Hagler or Schechtman tree spaces. The new idea which is used is that of a banded subtree (see Definition 1), and in the case of these spaces, we show that the unit vector basis is equivalent to any subsequence of it which is supported on a banded subtree. Roughly speaking, bandedness means that for each n, when levels in the original tree are considered, the n-th subtree level is completed before the ($n+1$)-st subtree level is begun.

In Section 2, we present the terminology and elementary lemmas concerning trees, as well as the definitions of the tree-like spaces of Hagler and Schechtman. We analyze the spaces in Sections 3 and 4, respectively.

Our notation is standard in Banach space theory, as may be found in [5]. If A is a subset of a Banach space, we denote the closed linear span of A by [A]. The greatest integer function is also denoted by [•]. Standard results concerning perturbations of Schauder bases are used in several places.

[^0]2. The standard tree is
$$
\mathscr{T}=\left\{(n, i): 0 \leqq n<\infty, 0 \leqq i<2^{n}\right\} .
$$

The points (n, i) are called nodes, and we say (n, i) is on the n-th level of \mathscr{T}. We denote the level of a node t by lev t. We say that $(n+1,2 i)$ and $(n+1,2 i+1)$ are the successors of (n, i). A segment is a finite set $S=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ of nodes such that for each j, t_{j+1} is a successor of t_{j}. If $\operatorname{lev}\left(t_{1}\right)=m$ and $\operatorname{lev}\left(t_{k}\right)=n$, we say the segment $\left\{t_{1}, \ldots, t_{k}\right\}$ is an $m-n$ segment. A family of segments $\left\{S_{1}, \ldots, S_{r}\right\}$ is admissible if the segments are mutually disjoint and there exist integers m and n such that each S_{i} is an $m-n$ segment. \mathscr{T} is partially ordered by the relation $<$ defined by $t_{1}<t_{2}$ if and only if $t_{1} \neq t_{2}$ and there is a segment with first element t_{1} and last element t_{2}. If $t_{2} \geqq t_{1}$, we say t_{2} is a follower of t_{1}. A sequence of nodes $\left\{t_{i}\right\}$ is strongly incomparable provided $i \neq j$ implies t_{i} and t_{j} are not comparable and no more than two of the t_{i} are contained in the segments of any admissible family. An n-branch is a totally ordered set $\left\{\left(m, l_{m}\right)\right\}_{m=n^{\prime}}^{\infty}$ and a branch is a set which is an n-branch for some n.

A tree is a partially ordered set \mathscr{S} which is order isomorphic to \mathscr{T}. If \mathscr{S}_{1} and \mathscr{S}_{2} are trees with $\mathscr{S}_{1} \subset \mathscr{S}_{2}$, we say that \mathscr{S}_{1} is a subtree of \mathscr{S}_{2}. If \mathscr{S} is a tree and $\psi: \mathscr{S} \rightarrow \mathscr{T}$ is an order isomorphism, we may use ψ to carry the above terminology from \mathscr{T} to \mathscr{S}. In particular, for $s \in \mathscr{S}$, we define

$$
\operatorname{lev}_{\mathscr{\mathscr { L }}}(s)=\operatorname{lev}(\psi(s))
$$

If $\mathscr{S} \subset \mathscr{T}$ is a subtree of \mathscr{T} and S is a segment of \mathscr{T} we say S is compatible with \mathscr{S} if there exist $s_{1}, s_{2} \in \mathscr{S}$ such that $s_{1} \leqq t \leqq s_{2}$ for all $t \in S$.

For ease of referral, we isolate the next notions in
Definition 1. Let $\left\{m_{i}\right\},\left\{n_{i}\right\}$ be sequences of natural numbers such that $m_{i} \leqq n_{i}<m_{i+1}$ for all i. We say the subtree $\mathscr{S} \subset \mathscr{T}$ is banded by $\left\{m_{i}\right\}$, $\left\{n_{i}\right\}$ (or banded) if

1. $\operatorname{lev}_{\mathscr{P}}(t)=i$ implies $m_{i} \leqq \operatorname{lev}(t) \leqq n_{i}$,
2. $\operatorname{lev}_{\mathscr{C}}(t)=i$ implies there is a unique $m_{i}-n_{i}$ segment S_{t} of \mathscr{T} which contains t and is compatible with \mathscr{S}, and
3. $\operatorname{lev}_{\mathscr{L}}(t)=i$ implies there exist precisely two $n_{i}-m_{i+1}$ segments S_{j}, which are compatible with \mathscr{S} and such that $s \in S_{j}$ implies $t \leqq s$.

We shall omit the proofs of the following propositions. Proposition 4 is a strengthened version of Proposition 5 of [1].

Proposition 2. If \mathscr{S} is a tree and A is a subset of \mathscr{S}, then there exists a subtree $\mathscr{S}_{1} \subset \mathscr{S}$ such that either $\mathscr{S}_{1} \subset A$ or $\mathscr{S}_{1} \subset \bar{A}$.

Proposition 3. Each subtree of \mathscr{T} contains a banded subtree.
Proposition 4. Let f be bounded real valued function on a tree. Then for any $\epsilon>0$, there exists a subtree \mathscr{S} such that
a. for any branch B of \mathscr{S}

$$
\lim _{\substack{t \rightarrow \infty \\ t \in B}} f(t)=L_{B} \text { exists, and }
$$

b. if, for each $t \in \mathscr{S}, B_{t}$ is a branch of \mathscr{S} containing t, then

$$
\sum_{t \in \mathscr{H}}\left|F(t)-L_{B_{t}}\right|<\epsilon .
$$

Let L denote the space of finitely nonzero functions on \mathscr{T}. The unit vectors are

$$
x_{t}(s)= \begin{cases}1 & s=t \\ 0 & s \neq t\end{cases}
$$

and we denote the sequence of biorthogonal functionals by $\left\{x_{t}^{*}\right\}$. We shall use the projections and functionals on L, or any completion of L, defined by the following formulas. In these, N is a natural number, S is either a segment or a branch, and t is a node.

$$
\begin{aligned}
& \left\langle S^{*}, x\right\rangle=\sum_{t \in S}\left\langle x_{t}^{*}, x\right\rangle, \\
& P_{S} x=\sum_{t \in S}\left\langle x_{t}^{*}, x\right\rangle x_{t}, \\
& P_{t} x=\sum_{s \geqq t}\left\langle x_{t}^{*}, x\right\rangle x_{t}, \\
& P_{N}=\sum_{t}\left\langle x_{t}^{*}, x\right\rangle x_{t}, \quad \text { and } \\
& \operatorname{lev}(t) \leqq N \\
& Q_{N}=\sum_{\operatorname{lev}(t) \geqq N} P_{t}=I-P_{N-1} .
\end{aligned}
$$

The Hagler tree space, $H T$, is the completion of L with respect to the norm

$$
\|x\|=\sup \sum_{i=1}^{r}\left|\left\langle S_{i}^{*}, x\right\rangle\right|,
$$

where the supremum is taken over all r and all admissible families $\left\{S_{1}, \ldots, S_{r}\right\}$. The unit vectors, in the order $x_{0,0}, x_{1,0}, x_{1,1}, x_{2,0}, \ldots$, are a Schauder basis for $H T$. We shall discuss this space in Section 3.

The spaces $S T_{p}$ were constructed by Schechtman after an analysis of several tree spaces. For $\lambda>1$, define a sequence of norms on L by

$$
\begin{aligned}
& \|x\|_{0}=\|x\|_{l} \\
& \|x\|_{m}=\inf \left\{\left\|x_{0}\right\|_{m-1}+\lambda \sum_{k=1}^{K} \max _{0 \leqq i<2^{k}}\left\|P_{k, i} x_{k}\right\|_{m-1}\right\}
\end{aligned}
$$

where the infinum is taken over all K and all sequences x_{0}, \ldots, x_{K} in L such that

$$
\sum_{k=0}^{K} x_{k}=x \quad \text { and } \quad Q_{k} x_{k}=x_{k} \quad \text { for } k=0, \ldots, K
$$

Let

$$
\|x\|=\lim _{m \rightarrow \infty}\|x\|_{m},
$$

and denote by Y_{m} and Y the completions of L with respect to the norms $\left\|\|_{m}\right.$ and $\| \|$, respectively. The norms dual to these are

$$
\begin{aligned}
& |x|_{0}=\|x\|_{c_{0}} \\
& |x|_{m}=\max \left\{|x|_{m-1}, \lambda^{-1} \max _{1 \leqq k<\infty} \sum_{i=0}^{2^{k}-1}\left|P_{k, i} x\right|_{m-1}\right\}
\end{aligned}
$$

and

$$
|x|=\lim _{m \rightarrow \infty}|x|_{m} .
$$

We shall denote by Z_{m} and Z the completions of L with respect to these norms.

The space $S T_{\infty}$ is then the completion of L with respect to

$$
\left\|\sum a_{n, i} x_{n, i}\right\|=\left\|\sum\left|a_{n, i}\right|^{2} x_{n, i}\right\|_{Y}^{1 / 2} .
$$

To define $S T_{p}$ for $1 \leqq p<\infty$, let $\left\{x_{t}\right\}$ be the unit vector basis in $S T_{\infty}$, and let $\left\{x_{t}^{*}\right\}$ be the biorthogonal sequence in $S T_{\infty}^{*}$. Take $S T_{1}=S T_{\infty}^{*}$, and for $1<p<\infty$, let $S T_{p}$ be the completion of L under the norm

$$
\left\|\sum a_{n, i} x_{n, i}\right\|=\|\left.\sum\left|a_{n, i}\right|^{p} x_{n, i}^{*}\right|_{S T_{1}} ^{1 / p} .
$$

3. In this section, we prove

Theorem 5. Let $U: H T \rightarrow H T$ be a bounded linear operator. Then there exists a subspace $X \subset H T$ such that X is isomorphic to $H T, U \mid X$ (or $(I-U) \mid X)$ is an isomorphism, and $U X($ or $(I-U) X)$ is complemented in HT.

We prepare for the proof of this theorem with several propositions.

Proposition 6. Let \mathscr{S} be a banded subtree of \mathscr{T}, and let

$$
X=\left[\left\{x_{s}: s \in \mathscr{S}\right\}\right]
$$

Then X is isomorphic to HT and complemented in $H T$.
Proof. Let \mathscr{S} be banded by $\left\{m_{i}\right\}$ and $\left\{n_{i}\right\}$, let $\phi: \mathscr{S} \rightarrow \mathscr{T}$ be an order isomorphism, and for each $t=(i, j) \in \mathscr{T}$, let S_{t} be the unique $m_{i}-n_{i}$ segment of \mathscr{T} containing $\phi^{-1}(t)$, and compatible with \mathscr{S}.

If $\left\{a_{t}\right\}$ is a finite set of scalars, and $x=\sum a_{t} x_{t}$, let $\left\{S_{1}, \ldots, S_{r}\right\}$ be an admissible family such that

$$
\|x\|=\sum_{i=1}^{r}\left|\left\langle S_{i}^{*}, x\right\rangle\right| .
$$

Since $\left\{S_{1}, \ldots, S_{r}\right\}$ is admissible, there exist p, q such that each S_{i} is a $p-q$ segment. If S_{i}^{\prime} is the unique $m_{p}-n_{q}$ segment of \mathscr{T} which contains all of the $\phi^{-1}(t)$ for $t \in S_{i}$ and is compatible with \mathscr{S}, then $\left\{S_{i}^{\prime}\right\}_{i=1}^{r}$ is an admissible family, and

$$
\sum_{i=1}^{r}\left|\left\langle S_{i}^{\prime *}, \sum a_{t} x_{\phi^{-1}(t)}\right\rangle\right|=\sum_{i=1}^{r}\left|\left\langle S_{i}^{*}, x\right\rangle\right|=\|x\| .
$$

Hence

$$
\left\|\sum a_{t} x_{t}\right\| \leqq\left\|\sum a_{t} x_{\phi}^{-1}(t)\right\| .
$$

For the reverse inequality, let S_{1}, \ldots, S_{r} be $p-q$ segments with

$$
\left\|\sum a_{t} x_{\phi}^{-1}(t)\right\|=\sum_{i=1}^{r}\left|\left\langle S_{i}^{*}, \sum a_{t} x_{\phi^{-1}(t)}\right\rangle\right| .
$$

Since \mathscr{S} is banded, we may assume there exist i and j such that $m_{i} \leqq p \leqq n_{i}$ and $m_{j} \leqq q \leqq n_{j}$, and with

$$
y=\sum a_{t} x_{\phi}^{-1}(t)
$$

we have

$$
\begin{aligned}
\sum_{i=1}^{r}\left|\left\langle S_{i}^{*}, y\right\rangle\right| & =\sum_{i=1}^{r} \mid\left\langle S_{i}^{*}, P_{n_{i}} y+\left(P_{m_{j}}-P_{n_{i}}\right) y\right. \\
& \left.+\left(I-P_{m_{j}}\right) y\right\rangle \mid \leqq 3\left\|\sum a_{t} x_{t}\right\| .
\end{aligned}
$$

It follows that the basic sequence $\left\{x_{s}\right\}_{s \in \mathscr{P}}$ is equivalent to $\left\{x_{t}\right\}$, and hence, that X is isomorphic to $S T$.

For each $t=\phi^{-1}(n, i) \in \mathscr{S}$, let S_{t} be the unique $\left(n_{i-1}+1\right)-n_{i}$ segment containing t and compatible with \mathscr{S}. Define

$$
P x=\sum_{t \in \mathscr{P}}\left\langle S_{t}^{*}, x\right\rangle x_{t}
$$

It is apparent that P is a projection onto X and that $\|P\| \leqq 2$.
Proposition 7. Let $U: H T \rightarrow H T$ be a bounded linear operator, $\epsilon>0, N$ an integer, $\mathscr{S} \subset \mathscr{T}$ a subtree and $t_{0} \in \mathscr{S}$. Then there exists $t_{1} \in \mathscr{S}, t_{1}>t_{0}$, such that

$$
\left\|P_{N} U x_{t_{1}}\right\|<\epsilon
$$

Proof. If no such t_{1} exists, then for any follower $t \in \mathscr{S}$ of t_{0}, there exists $t^{\prime}, \operatorname{lev}\left(t^{\prime}\right) \leqq N$ with
(4) $\left|\left\langle x_{t^{\prime}}^{*}, P_{N} U_{x_{t}}\right\rangle\right| \geqq \epsilon / K$,
where $K=2^{N+1}-1$. Thus, for any L and any collection $\left\{t_{l}\right\}_{l=1}^{L}$ of followers in \mathscr{S} of $t_{0},[L / K]$ of the t_{l} satisfy (4) for the same node t^{\prime}. Hence there is a choice of signs $\left\{\theta_{i}= \pm 1\right\}$ such that

$$
\begin{equation*}
\left|\left|\sum_{l=1}^{L} P_{N} U\left(\theta_{l} x_{t_{l}}\right)\right|\right| \geqq\left\langle x_{t^{\prime}}^{*}, \sum_{l=1}^{L} U\left(\theta_{l} x_{t_{l}}\right)\right\rangle \geqq \frac{\epsilon}{K}\left[\frac{L}{K}\right] \tag{5}
\end{equation*}
$$

If, however, the $\left\{t_{l}\right\}$ are chosen to be strongly noncomparable, we have

$$
\left|\left|\sum_{l=1}^{L} P_{N} U\left(\theta_{l} x_{t_{l}}\right)\right|\right| \leqq\|U\|\left\|\sum \theta_{l} x_{t_{l}}\right\| \leqq 2\|U\|
$$

Since L is arbitrary, (5) is contradicted.
Proposition 8. Let $U: H T \rightarrow H T$ be a bounded linear operator, $\epsilon>0, N$ an integer, \mathscr{S} a subtree of \mathscr{T}, and t_{0}, \ldots, t_{k} mutually noncomparable nodes of \mathscr{S}. Then there exists $t>t_{0}, t \in \mathscr{S}, M \in \mathbf{N}, N_{1} \geqq N$, and $N_{1}-(M+1)$ segments $S_{i}, i=1, \ldots, k$, of \mathscr{T} having the properties:
a. $\left\|P_{N} U x_{t}\right\|<\epsilon$,
b. $\left\|\left(I-P_{M}\right) U x_{t}\right\|<\epsilon$,
c. For each i, there exists $t_{i}^{\prime} \in \mathscr{S}$ such that $t_{i} \leqq s<t_{i}^{\prime}$ for all $s \in S_{i}$,
d. For each $i,\left|\left\langle S^{*}, U x_{t}\right\rangle\right|<\epsilon$ for each segment $S \supset S_{i}$.

Proof. Let K satisfy

$$
2^{-K}\|U\|<\epsilon / 3
$$

and let

$$
N_{1} \geqq \max \left(N, \operatorname{lev}\left(t_{i}\right)\right)
$$

be such that for each $i=1, \ldots, k$ there are 2^{K} branches of \mathscr{S} which contains t_{i} and pass through distinct nodes in the N_{1}-th level of \mathscr{T}. Then there exists $t>t_{0}$ such that $t \in \mathscr{S}$ and

$$
\left\|P_{N_{1}} U x_{t}\right\|<\epsilon / 3 .
$$

Hence a. is satisfied. To satisfy b., choose $M>N_{1}$ such that

$$
\left\|\left(I-P_{M}\right) U x_{t}\right\|<\epsilon / 3
$$

Now for $i=1, \ldots, K$, let $S_{i}^{1}, \ldots, S_{i}^{2^{K}}$ be disjoint $N_{1}-(M+1)$ segments satisfying c. For fixed i, if no S_{i}^{j} satisfies

$$
\left|\left\langle S_{i}^{j *}, U x_{t}\right\rangle\right|<\epsilon / 3,
$$

it follows that

$$
\begin{aligned}
\frac{\epsilon}{3} 2^{K} & \leqq \sum_{j=1}^{2^{K}}\left|\left\langle S_{i}^{j *}, U x_{t}\right\rangle\right| \\
& \leqq\left\|U x_{t}\right\| \leqq\|U\|<\frac{\epsilon}{3} 2^{K}
\end{aligned}
$$

a contradiction. Hence for each i, there exists $S_{i}=S_{i}^{j}$ such that

$$
\left|\left\langle S_{i}^{*}, U x_{t}\right\rangle\right|<\epsilon / 3 .
$$

Now, if $S \supset S_{i}$,

$$
\begin{aligned}
\left|\left\langle S^{*}, U x_{t}\right\rangle\right| & \leqq\left|\left\langle S^{*}, P_{N_{1}-1} U x_{t}\right\rangle\right|+\left|\left\langle S_{i}^{*}, U x_{t}\right\rangle\right| \\
& +\left|\left\langle S^{*},\left(I-P_{M+1}\right) U x_{t}\right\rangle\right|<\epsilon .
\end{aligned}
$$

We are now ready for the
Proof of Theorem 5. Let $0<\gamma<1 / 2$. Using standard perturbation arguments, Propositions 2, 3, 4, 7, 8, and the arguments of [1], we may assume the existence of a subtree $\mathscr{S}=\{t(n, i)\} \subset \mathscr{T}$ banded by sequences $\left\{m_{i}\right\}$ and $\left\{n_{i}\right\}$ such that for each $t \in \mathscr{S}$ and each $n_{i}-m_{j}$ segment S of \mathscr{T} which is compatible with \mathscr{S}, we have

$$
\left\langle S^{*}, V x_{t}\right\rangle= \begin{cases}\gamma_{t} & t \in S \\ 0 & t \notin S\end{cases}
$$

where $\gamma \leqq \gamma_{t} \leqq\|V\|$, where V is either U or $(I-U)$. We shall assume that $V=U$, and show that $U(H T)$ contains a complemented isomorph of $H T$. Furthermore, we may assume that along each branch B of \mathscr{S},

$$
\lim _{\substack{t \rightarrow \infty \\ t \in B}} \gamma_{t}=\gamma_{B} \text { exists }
$$

and that if $\gamma_{t}^{\prime}=\gamma_{B_{t}}$ for some branch containing t, then

$$
\sum_{t \in \mathscr{S}}\left|\gamma_{t}-\gamma_{t}^{\prime}\right|<\frac{\gamma}{6}
$$

Let $X=\left[\left\{x_{t}\right\}_{t \in \mathscr{C}}\right]$. By Proposition 6, X is isomorphic to $H T$, and we shall now show that $\left\{U x_{t}\right\}_{t \in \mathscr{S}}$ is a basic sequence equivalent to $\left\{x_{t}\right\}_{t \in \mathscr{P}}$. It will follow that $U \mid X$ is an isomorphism.
Since U is bounded, if $\left\{a_{n, i}\right\}$ is a finite set of scalars,

$$
\left\|\sum a_{n, i} U x_{t(n, i)}\right\| \leqq\|U\|\left\|\sum a_{n, i} x_{t(n, i)}\right\|
$$

For the reverse inequality, let

$$
x=\sum a_{n, i} x_{t(n, i)},
$$

and notice that there exist disjoint $m_{p}-n_{q}$ segments S_{1}, \ldots, S_{k} of \mathscr{T} and branches $B_{j} \supset S_{j}$ such that

$$
\begin{aligned}
\|x\| & \leqq 3 \sum_{j=1}^{k}\left|\left\langle S_{j}^{*}, x\right\rangle\right| \\
& \leqq \frac{3}{\gamma} \sum_{j=1}^{k} \gamma_{B_{j}}\left|\sum_{t(n, i) \in S_{j}} a_{n, i}\right| \\
& =\frac{3}{\gamma}\langle f, x\rangle
\end{aligned}
$$

where $f \in H T^{*}$ is defined by

$$
f=\sum_{j=1}^{k} \gamma_{B_{j}} \operatorname{sgn}\left\langle S_{j}^{*}, x\right\rangle S_{j}^{*} .
$$

Let $\epsilon_{j}=\operatorname{sgn}\left\langle S_{j}^{*}, x\right\rangle$, and let

$$
\tilde{\gamma}_{s}= \begin{cases}\gamma_{t} & t \in \mathscr{S} \cap B_{j} \\ \gamma_{B_{j}} & t \in B_{j} \backslash \mathscr{S},\end{cases}
$$

and define $g \in H T^{*}$ by

$$
g=\sum_{j=1}^{k} \epsilon_{j} \sum_{s \in S_{j}} \widetilde{\gamma}_{s} x_{s}^{*}
$$

Then

$$
\|g-f\| \leqq \sum_{j=1}^{k} \sum_{t \in S_{j} \cap \mathscr{S}}\left|\gamma_{t}-\gamma_{B_{j}}\right|<\frac{\gamma}{6},
$$

so for any $y \in H T$,

$$
\langle f, y\rangle \leqq\langle g, y\rangle+\frac{\gamma}{6}\|y\| .
$$

In particular,

$$
\begin{aligned}
\|x\| & \leqq \frac{3}{\gamma}\langle f, x\rangle \leqq \frac{3}{\gamma}\left[\langle g, x\rangle+\frac{\gamma}{6}\|x\|\right] \\
& \leqq \frac{3}{\gamma} \sum_{j=1}^{k} \epsilon_{j} \sum_{t(n, i) \in S_{j}} \gamma_{n, i} a_{n, i}+\frac{1}{2}\|x\|,
\end{aligned}
$$

so

$$
\begin{aligned}
\|x\| & \leqq \frac{6}{\gamma} \sum_{j=1}^{k} \epsilon_{j} \sum_{t(n, i) \in S_{j}} \gamma_{n, i} a_{n, i} \\
& \leqq \frac{6}{\gamma} \sum_{j=1}^{k}\left|\left\langle S_{j}^{*}, U x\right\rangle\right| \leqq \frac{6}{\gamma}\|U x\| .
\end{aligned}
$$

Thus, $U \mid X$ is an isomorphism, and to see that $U X$ is complemented, observe first that the preceding argument may be used to show that the multiplier operator M on X defined by $M x_{t}=\gamma_{t} x_{t}$ is bounded and invertible. Denoting by P the projection onto X constructed in the proof of Proposition 6, we see that $U X$ is complemented by $Q=(U \mid X) M^{-1} P$.
4. This section is devoted to proving

Theorem 9. If X is one of the Schechtman tree spaces Y, Z or $S T_{p}$, $1 \leqq p \leqq \infty$, and U is a bounded linear operator on X, then there is a subspace $W \subset X$ such that $U \mid W(\operatorname{or}(I-U) \mid W)$ is an isomorphism and $U W(\operatorname{or}(I-U) W)$ is complemented in X.

In [6], Schechtman proved that $\left\{x_{n, i}\right\}$ is a 1-unconditional basis for Y_{m} and for Y, and that c_{0} does not embed in Y. From this we easily obtain

Proposition 10. 1. $\left\{x_{n, i}\right\}$ is a boundedly complete basis for Y.
2. $Z^{*}=Y$ and $\left\{x_{n, i}\right\}$ is a shrinking basis for Z.
3. $\left\{x_{n, i}\right\}$ is a 1-unconditional basis for Z_{m} and for Z.
4. $\left\{x_{n, i}\right\}$ converges weakly to zero in Z.

Proposition 11. Let $\mathscr{S}=\{t(n, i)\}$ be a banded subtree of \mathscr{T}. Then [$\left\{x_{t}\right\}_{t \in S}$] in Z is isometric to Z and $\left[\left\{x_{t}\right\}_{t \in S}\right]$ in Y is isometric to Y.

Proof. We first consider the unit vectors in Z and show that for any finite scalar sequence $\left\{a_{n, i}\right\}$,

$$
\left|\sum a_{n, i} x_{n, i}\right|=\left|\sum a_{n, i} x_{t(n, i)}\right| .
$$

The proof is by induction and passage to the limit. Since $|\cdot|_{0}=\|\cdot\|_{c_{0}}$, we have that

$$
\left|\sum a_{n, i} x_{n, l_{0}}=\left|\sum a_{n, i} x_{t(n, i)}\right|_{0}\right.
$$

for any banded subtree $\mathscr{S}=\{t(n, i)\}$ and any sequence of scalars $\left\{a_{n, i}\right\}$. Assume that for any banded subtree $\mathscr{S}=\{t(n, i)\}$,

$$
\left|\sum a_{n, i} x_{n, i}\right|_{m-1}=\left|\sum a_{n, i} x_{t(n, i)}\right|_{m-1}
$$

for all scalar sequences $\left\{a_{n, i}\right\}$. Now let \mathscr{S} be banded by $\left\{m_{i}\right\},\left\{n_{i}\right\}$, and let

$$
x=\sum a_{n, i} x_{t(n, i)} .
$$

We have

$$
\begin{aligned}
|x|_{m} & \geqq \max \left\{|x|_{m-1}, \lambda^{-1} \max _{m_{k}}^{2^{m_{k}-1}} \sum_{i=0}\left|P_{m_{k}, i} x\right|_{m-1}\right\} \\
& =\max \left\{\left|\sum a_{n, i} x_{n, i}\right|_{m-1}, \lambda^{-1} \max _{k} \sum_{i=0}^{2^{k}-1}\left|P_{k, i}\left(\sum a_{n, i} x_{n, i}\right)\right|_{m-1}\right\} \\
& =\left|\sum a_{n, i} x_{n, i}\right|_{m^{\prime}}
\end{aligned}
$$

by the induction hypothesis. For the other inequality, we consider two cases:
(1) $|x|_{m}=\left|\sum a_{n, i} x_{t(n, i)}\right|_{m-1}$ and
(2) $|x|_{m}=\lambda^{-1} \max _{1 \leqq k<\infty} \sum_{i=0}^{2^{k}-1}\left|P_{k, i} x\right|_{m-1}$.

In the first case, the induction hypothesis implies that

$$
|x|_{m}=|x|_{m-1}=\left|\sum a_{n, i} x_{n, i}\right|_{m-1} \leqq\left|\sum a_{n, i} x_{n, i}\right|_{m} .
$$

In the second case, there exists K such that

$$
|x|_{m}=\lambda^{-1} \sum_{i=0}^{2^{K}-1}\left|P_{K, i} x\right|_{m-1}
$$

and let j be the largest integer such that $m_{j} \leqq K$. If $m_{j} \leqq K<n_{j}$, then there exists l such that

$$
P_{K, i} x=P_{K, i} P_{m_{j}, l} x,
$$

and by the 1 -unconditionality in $\left|\left.\right|_{m-1}\right.$,

$$
\left|P_{K, i} x\right|_{m-1} \leqq\left.\left|P_{m_{r},}\right| x\right|_{m-1}
$$

Hence

$$
|x|_{m}=\lambda^{-1} \sum_{i=0}^{2^{K}-1}\left|P_{K, i} x\right|_{m-1} \leqq\left.\lambda^{-1} \sum_{l}\left|P_{m_{l}, l}\right| x\right|_{m-1}
$$

$$
=\lambda^{-1} \sum_{l}\left|P_{j, l} \sum a_{n, i} x_{n, i}\right|_{m-1} \leqq\left|\sum a_{n, i} x_{n, i}\right|_{m}
$$

On the other hand, if $n_{j} \leqq K<m_{j+1}$, then for each i, either there exist l_{1} and I_{2} such that

$$
P_{K, i} x=P_{m_{j+1}, l_{1}} x+P_{m_{j+1}, l_{2}} x
$$

or there exists l such that

$$
P_{K, l} x=P_{m_{j+1}, 1} x
$$

In either case, using the triangle inequality, we have

$$
\begin{aligned}
|x|_{m} & =\lambda^{-1} \sum_{i=0}^{2^{K}-1}\left|P_{K, i} x\right|_{m-1} \\
& \leqq \lambda^{-1} \sum_{l}\left|P_{m_{j+1}, l} x\right|_{m-1} \\
& =\lambda^{-1} \sum_{l}\left|P_{j+1,1}\left(\sum a_{n, i} x_{n, i}\right)\right| \\
& \leqq \mid \sum a_{n, i} x_{n, i} l_{m} .
\end{aligned}
$$

The equivalence of $\left\{x_{t}\right\}_{t \in \mathscr{T}}$ and $\left\{x_{t}\right\}_{t \in \mathscr{S}}$ in the space Y follows from the equivalence in Z and the fact that $Z^{*}=Y$.

Proof of Theorem 9. As in the proof of Theorem 5, the argument may be carried out for one of U or $(I-U)$. We shall call that operator U, and show that $U X$ contains a complemented isomorph of X.

If U is a bounded operator on $Z,\left\{U x_{n, i}\right\}$ converges weakly to zero since $\left\{x_{n, i}\right\}$ converges weakly to zero, and we may assume there exists a banded subtree $\mathscr{S}=\{t(n, i)\}$ such that $t \in \mathscr{S}$ implies

$$
\left|\left\langle x_{t}^{*}, U x_{t}\right\rangle\right| \geqq 1 / 2,
$$

and that the $U x_{t}$ are disjointly supported. With $W=\left[\left\{x_{t}\right\}_{t \in \mathscr{G}}\right], W$ is isometric to Z, and the unconditionality of $\left\{x_{n, i}\right\}$ implies that $U \mid W$ is an isomorphism. Again by the unconditionality, the operator M defined by

$$
M x_{t}= \begin{cases}\left\langle x_{t}^{*}, U x_{t}\right\rangle^{-1} x_{t} & t \in \mathscr{S} \\ 0 & t \notin \mathscr{S}\end{cases}
$$

is bounded, and $U W$ is complemented by the projection $U M$.
In the case of the space Y, the unit vectors do not tend weakly to zero, and if U is a bounded linear operator on Y, in order to obtain a sequence $\left\{f_{n, i}\right\}$ for which $\left\{U f_{n, i}\right\}$ is disjointly supported, we use differences of unit vectors. To this end, select a subtree $\mathscr{S} \subset \mathscr{T}$ such that $t \in \mathscr{S}$ implies

$$
\left\langle x_{t}^{*}, U x_{t}\right\rangle \geqq 1 / 2
$$

and inductively choose sequences $\left\{m_{i}\right\},\left\{n_{j}\right\}$ and nodes $t^{1}(n, i), t^{2}(n, i)$ of \mathscr{S} such that
a. $t^{1}(n, i)<t^{2}(n, i)$
b. $t^{2}(n, i)<t^{1}(n+1,2 i)$ and $t^{2}(n, i)<t^{1}(n+1,2 i+1)$
c. $\left\{t^{l}(n, i)\right\}$ is banded by $\left\{m_{j}\right\}$ and $\left\{n_{j}\right\}$, for $l=1,2$
d. $\left\langle x_{t^{2}(n, i)}^{*}, U x_{t^{1}(n, i)}\right\rangle=0$, and
e. with $f_{n, i}=x_{t^{2}(n, i)}-x_{t^{\prime}(n, i)}$, the $U f_{n, i}$ are disjointly supported.

Now, let $W=\left[\left\{f_{n, i}\right\}\right]$. Then

$$
\begin{aligned}
\left\|\sum a_{n, i} x_{n, i}\right\| & =\left\|\sum a_{n, i} x_{t^{2}(n, i)}\right\| \\
& \leqq\left\|\sum a_{n, i} f_{n, i}\right\| \quad \text { by d } \\
& \leqq 2\left\|\sum a_{n, i} x_{n, i}\right\|,
\end{aligned}
$$

so W is isomorphic to Y. Furthermore, since

$$
\left\langle x_{t^{*}}, U x_{t}\right\rangle \geqq 1 / 2,
$$

by the unconditionality of $\left\{x_{n, i}\right\}$ and e ,

$$
\begin{aligned}
\left\|\sum a_{n, i} f_{n, i}\right\| & \leqq 2\left\|\sum a_{n, i} x_{n, i}\right\| \\
& =2\left\|\sum a_{n, i} x_{t^{2}(n, i)}\right\| \\
& \leqq 4\left\|\sum a_{n, i} U f_{n, i}\right\| \\
& \leqq 4\|U\|\left\|a_{n, i} f_{n, i}\right\| .
\end{aligned}
$$

It is easily seen that $U W$ is complemented in Y.
As for the spaces $S T_{p}, 1 \leqq p \leqq \infty$, it follows from Proposition 11 and the definitions of the norms that whenever \mathscr{S} is a bounded subtree of $\mathscr{T},\left\{x_{t}\right\}_{t \in \mathscr{T}}$ is isometrically equivalent to $\left\{x_{t}\right\}_{t \in \mathscr{C}}$. Since these spaces are reflexive, the unit vector basis is shrinking, and thus converges weakly to zero. Thus, the argument used for the space Z also proves the theorem for $S T_{p}, 1 \leqq p \leqq \infty$.
5. A consequence of Theorems 5 and 9 is that if X is either the Hagler tree space or one of the Schechtman tree spaces, and W is complemented in X, then W contains a complemented isomorph of X. Since these spaces are isomorphic to their Cartesian squares, the arguments of [2] show

Corollary 10. If $X=H T, Z, Y$, or $S T_{p}, 1 \leqq p \leqq \infty, X=W \oplus V$, and $W \approx W \oplus W$ or $V \approx V \oplus V$, then either $W \approx X$ or $V \approx X$.

References

1. A. D. Andrew, The Banach space JT is primary, Pacific J. Math. 108(1983), 9-17.
2. P. G. Casazza and B. L. Lin, Projections on Banach spaces with symmetric bases, Studia Math. 52 (1974), 189-193.
3. J. Hagler, A counterexample to several questions about Banach spaces, Studia Math. 60 (1977), 289-308
4. R. C. James, A separable somewhat reflexive Banach space with non-separable dual, Bull. A.M.S. 80 (1974), 738-743.
5. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I (Springer-Verlag, New York, 1977).
6. G. Schechtman, A tree-like Tsirelson space, Pacific J. Math. 83 (1979), 523-530.

Georgia Institute of Technology, Atlanta, Georgia

[^0]: Received June 15, 1983 and in revised form August 17, 1984.

