PROJECTIONS ON TREE-LIKE BANACH SPACES

A. D. ANDREW

1. In this paper, we investigate the ranges of projections on certain Banach spaces of functions defined on a diadic tree. The notion of a "tree-like" Banach space is due to James [4], who used it to construct the separable space JT which has nonseparable dual and yet does not contain l_1 . This idea has proved useful. In [3], Hagler constructed a hereditarily c_0 tree space, HT, and Schechtman [6] constructed, for each $1 \le p \le \infty$, a reflexive Banach space, ST_p , with a 1-unconditional basis which does not

contain l_p , yet is uniformly isomorphic to $\left(\sum_{i=1}^n \oplus ST_p\right)_{l_p^n}$ for each *n*.

In [1] we showed that if U is a bounded linear operator on JT, then there exists a subspace $W \subset JT$, isomorphic to JT such that either U or (I - U) acts as an isomorphism on W and UW or (I - U)W is complemented in JT. In this paper, we establish this result for the Hagler and Schechtman tree spaces.

By arguments of Casazza and Lin [2], this implies that if X is either the Hagler or one of the Schechtman tree spaces, $X = Z \oplus W$, and either Z or W is isomorphic to its square, then either Z or W is itself isomorphic to X. Although in both this paper and in [1] and [2], great use is made of the symmetry properties of the unit vector basis, the arguments of [1] are not sufficient for analyzing the Hagler or Schechtman tree spaces. The new idea which is used is that of a banded subtree (see Definition 1), and in the case of these spaces, we show that the unit vector basis is equivalent to any subsequence of it which is supported on a banded subtree. Roughly speaking, bandedness means that for each n, when levels in the original tree are considered, the n-th subtree level is completed before the (n + 1)-st subtree level is begun.

In Section 2, we present the terminology and elementary lemmas concerning trees, as well as the definitions of the tree-like spaces of Hagler and Schechtman. We analyze the spaces in Sections 3 and 4, respectively.

Our notation is standard in Banach space theory, as may be found in [5]. If A is a subset of a Banach space, we denote the closed linear span of A by [A]. The greatest integer function is also denoted by $[\cdot]$. Standard results concerning perturbations of Schauder bases are used in several places.

Received June 15, 1983 and in revised form August 17, 1984.

2. The standard tree is

$$\mathcal{T} = \{ (n, i) : 0 \leq n < \infty, 0 \leq i < 2^n \}.$$

The points (n, i) are called *nodes*, and we say (n, i) is on the *n*-th level of \mathcal{T} . We denote the level of a node t by lev t. We say that (n + 1, 2i) and (n + 1, 2i + 1) are the successors of (n, i). A segment is a finite set $S = \{t_1, t_2, \ldots, t_k\}$ of nodes such that for each j, t_{j+1} is a successor of t_j . If lev $(t_1) = m$ and lev $(t_k) = n$, we say the segment $\{t_1, \ldots, t_k\}$ is an m - n segment. A family of segments $\{S_1, \ldots, S_r\}$ is admissible if the segments are mutually disjoint and there exist integers m and n such that each S_i is an m - n segment \mathcal{T} is partially ordered by the relation < defined by $t_1 < t_2$ if and only if $t_1 \neq t_2$ and there is a segment with first element t_1 and last element t_2 . If $t_2 \ge t_1$, we say t_2 is a follower of t_1 . A sequence of nodes $\{t_i\}$ is strongly incomparable provided $i \neq j$ implies t_i and t_j are not comparable and no more than two of the t_i are contained in the segments of any admissible family. An *n*-branch is a totally ordered set $\{(m, l_m)\}_{m=n'}^{\infty}$ and a branch is a set which is an *n*-branch for some *n*.

A tree is a partially ordered set \mathscr{S} which is order isomorphic to \mathscr{T} . If \mathscr{S}_1 and \mathscr{S}_2 are trees with $\mathscr{S}_1 \subset \mathscr{S}_2$, we say that \mathscr{S}_1 is a subtree of \mathscr{S}_2 . If \mathscr{S} is a tree and $\psi:\mathscr{S} \to \mathscr{T}$ is an order isomorphism, we may use ψ to carry the above terminology from \mathscr{T} to \mathscr{S} . In particular, for $s \in \mathscr{S}$, we define

$$\operatorname{lev}_{\mathscr{S}}(s) = \operatorname{lev}(\psi(s)).$$

If $\mathscr{S} \subset \mathscr{T}$ is a subtree of \mathscr{T} and S is a segment of \mathscr{T} , we say S is *compatible* with \mathscr{S} if there exist $s_1, s_2 \in \mathscr{S}$ such that $s_1 \leq t \leq s_2$ for all $t \in S$.

For ease of referral, we isolate the next notions in

Definition 1. Let $\{m_i\}$, $\{n_i\}$ be sequences of natural numbers such that $m_i \leq n_i < m_{i+1}$ for all *i*. We say the subtree $\mathscr{S} \subset \mathscr{T}$ is banded by $\{m_i\}$, $\{n_i\}$ (or banded) if

1. $\operatorname{lev}_{\mathscr{S}}(t) = i$ implies $m_i \leq \operatorname{lev}(t) \leq n_i$,

2. $\text{lev}_{\mathscr{S}}(t) = i$ implies there is a unique $m_i - n_i$ segment S_t of \mathscr{T} which contains t and is compatible with \mathscr{S} , and

3. $\text{lev}_{\mathscr{S}}(t) = i$ implies there exist precisely two $n_i - m_{i+1}$ segments S_j , which are compatible with \mathscr{S} and such that $s \in S_j$ implies $t \leq s$.

We shall omit the proofs of the following propositions. Proposition 4 is a strengthened version of Proposition 5 of [1].

PROPOSITION 2. If \mathscr{S} is a tree and A is a subset of \mathscr{S} , then there exists a subtree $\mathscr{S}_1 \subset \mathscr{S}$ such that either $\mathscr{S}_1 \subset A$ or $\mathscr{S}_1 \subset \widetilde{A}$.

PROPOSITION 3. Each subtree of \mathcal{T} contains a banded subtree.

PROPOSITION 4. Let f be bounded real valued function on a tree. Then for any $\epsilon > 0$, there exists a subtree S such that

a. for any branch B of \mathcal{S}

$$\lim_{\substack{t \to \infty \\ t \in B}} f(t) = L_B \text{ exists, and}$$

b. if, for each $t \in \mathcal{S}$, B_t is a branch of \mathcal{S} containing t, then

$$\sum_{t \in \mathscr{S}} |F(t) - L_{B_t}| < \epsilon.$$

Let L denote the space of finitely nonzero functions on \mathcal{T} . The unit vectors are

$$x_t(s) = \begin{cases} 1 & s = t \\ 0 & s \neq t, \end{cases}$$

and we denote the sequence of biorthogonal functionals by $\{x_t^*\}$. We shall use the projections and functionals on *L*, or any completion of *L*, defined by the following formulas. In these, *N* is a natural number, *S* is either a segment or a branch, and *t* is a node.

$$\langle S^*, x \rangle = \sum_{t \in S} \langle x_t^*, x \rangle,$$

$$P_S x = \sum_{t \in S} \langle x_t^*, x \rangle x_t,$$

$$P_t x = \sum_{s \ge t} \langle x_t^*, x \rangle x_t,$$

$$P_N = \sum_{\substack{t \\ \text{lev}(t) \le N}} \langle x_t^*, x \rangle x_t, \text{ and}$$

$$Q_N = \sum_{\substack{t \\ \text{lev}(t) \ge N}} P_t = I - P_{N-1}.$$

The Hagler tree space, HT, is the completion of L with respect to the norm

$$||x|| = \sup \sum_{i=1}^{r} |\langle S_i^*, x \rangle|,$$

where the supremum is taken over all r and all admissible families $\{S_1, \ldots, S_r\}$. The unit vectors, in the order $x_{0,0}, x_{1,0}, x_{1,1}, x_{2,0}, \ldots$, are a Schauder basis for *HT*. We shall discuss this space in Section 3.

The spaces ST_p were constructed by Schechtman after an analysis of several tree spaces. For $\lambda > 1$, define a sequence of norms on L by

$$||x||_{0} = ||x||_{l_{1}},$$

$$||x||_{m} = \inf \left\{ ||x_{0}||_{m-1} + \lambda \sum_{k=1}^{K} \max_{0 \le i < 2^{k}} ||P_{k,i}x_{k}||_{m-1} \right\}$$

where the infinum is taken over all K and all sequences x_0, \ldots, x_K in L such that

$$\sum_{k=0}^{K} x_k = x \quad \text{and} \quad Q_k x_k = x_k \quad \text{for } k = 0, \dots, K.$$

Let

$$||x|| = \lim_{m \to \infty} ||x||_m,$$

and denote by Y_m and Y the completions of L with respect to the norms $|| ||_m$ and || ||, respectively. The norms dual to these are

$$|x|_{0} = ||x||_{c_{0}}$$

$$|x|_{m} = \max\left\{|x|_{m-1}, \lambda^{-1} \max_{1 \leq k < \infty} \sum_{i=0}^{2^{k}-1} |P_{k,i}x|_{m-1}\right\},\$$

and

$$|x| = \lim_{m \to \infty} |x|_m.$$

We shall denote by Z_m and Z the completions of L with respect to these norms.

The space ST_{∞} is then the completion of L with respect to

$$\|\sum a_{n,i}x_{n,i}\| = \|\sum |a_{n,i}|^2 x_{n,i}\|_Y^{1/2}$$

To define ST_p for $1 \le p < \infty$, let $\{x_t\}$ be the unit vector basis in ST_{∞} , and let $\{x_t^*\}$ be the biorthogonal sequence in ST_{∞}^* . Take $ST_1 = ST_{\infty}^*$, and for $1 , let <math>ST_p$ be the completion of L under the norm

$$\|\sum a_{n,i}x_{n,i}\| = \|\sum |a_{n,i}|^p x_{n,i}^*\|_{ST_1}^{1/p}.$$

3. In this section, we prove

THEOREM 5. Let $U:HT \rightarrow HT$ be a bounded linear operator. Then there exists a subspace $X \subset HT$ such that X is isomorphic to HT, U|X (or (I - U)|X) is an isomorphism, and UX (or (I - U)X) is complemented in HT.

We prepare for the proof of this theorem with several propositions.

PROPOSITION 6. Let \mathscr{S} be a banded subtree of \mathscr{T} , and let

 $X = [\{x_s : s \in \mathcal{S}\}].$

Then X is isomorphic to HT and complemented in HT.

Proof. Let \mathscr{S} be banded by $\{m_i\}$ and $\{n_i\}$, let $\phi:\mathscr{S} \to \mathscr{T}$ be an order isomorphism, and for each $t = (i, j) \in \mathscr{T}$, let S_t be the unique $m_i - n_i$ segment of \mathscr{T} containing $\phi^{-1}(t)$, and compatible with \mathscr{S} .

If $\{a_t\}$ is a finite set of scalars, and $x = \sum a_t x_t$, let $\{S_1, \ldots, S_r\}$ be an admissible family such that

$$||x|| = \sum_{i=1}^{r} |\langle S_i^*, x \rangle|.$$

Since $\{S_1, \ldots, S_r\}$ is admissible, there exist p, q such that each S_i is a p - q segment. If S'_i is the unique $m_p - n_q$ segment of \mathcal{T} which contains all of the $\phi^{-1}(t)$ for $t \in S_i$ and is compatible with \mathcal{S} , then $\{S'_i\}_{i=1}^r$ is an admissible family, and

$$\sum_{i=1}^{r} |\langle S_i^{\prime *}, \sum a_i x_{\phi^{-1}(i)} \rangle| = \sum_{i=1}^{r} |\langle S_i^{*}, x \rangle| = ||x||.$$

Hence

$$\|\sum a_t x_t\| \leq \|\sum a_t x_{\phi^{-1}(t)}\|.$$

For the reverse inequality, let S_1, \ldots, S_r be p - q segments with

$$||\sum a_{t}x_{\phi^{-1}(t)}|| = \sum_{i=1}^{r} |\langle S_{i}^{*}, \sum a_{t}x_{\phi^{-1}(t)}\rangle|.$$

Since \mathscr{S} is banded, we may assume there exist *i* and *j* such that $m_i \leq p \leq n_i$ and $m_i \leq q \leq n_i$, and with

$$y = \sum a_t x_{\phi^{-1}(t)},$$

we have

$$\sum_{i=1}^{r} |\langle S_{i}^{*}, y \rangle| = \sum_{i=1}^{r} |\langle S_{i}^{*}, P_{n_{i}}y + (P_{m_{j}} - P_{n_{i}})y + (I - P_{m_{j}})y \rangle| \leq 3 ||\Sigma a_{i}x_{i}||.$$

It follows that the basic sequence $\{x_s\}_{s \in \mathscr{S}}$ is equivalent to $\{x_t\}$, and hence, that X is isomorphic to ST.

For each $t = \phi^{-1}(n, i) \in \mathcal{S}$, let S_t be the unique $(n_{i-1} + 1) - n_i$ segment containing t and compatible with \mathcal{S} . Define

$$Px = \sum_{t \in \mathscr{S}} \langle S_t^*, x \rangle x_t.$$

It is apparent that P is a projection onto X and that $||P|| \leq 2$.

PROPOSITION 7. Let $U:HT \to HT$ be a bounded linear operator, $\epsilon > 0$, N an integer, $\mathscr{S} \subset \mathscr{T}$ a subtree and $t_0 \in \mathscr{S}$. Then there exists $t_1 \in \mathscr{S}, t_1 > t_0$, such that

$$\|P_N U x_{t_1}\| < \epsilon.$$

Proof. If no such t_1 exists, then for any follower $t \in \mathscr{S}$ of t_0 , there exists t', $lev(t') \leq N$ with

(4)
$$|\langle x_{t'}^*, P_N U_{x_t} \rangle| \geq \epsilon/K$$
,

where $K = 2^{N+1} - 1$. Thus, for any L and any collection $\{t_l\}_{l=1}^{L}$ of followers in \mathscr{S} of t_0 , [L/K] of the t_l satisfy (4) for the same node t'. Hence there is a choice of signs $\{\theta_i = \pm 1\}$ such that

(5)
$$\left| \left| \sum_{l=1}^{L} P_{N} U(\theta_{l} x_{t_{l}}) \right| \right| \geq \langle x_{t'}^{*}, \sum_{l=1}^{L} U(\theta_{l} x_{t_{l}}) \rangle \geq \frac{\epsilon}{K} \left[\frac{L}{K} \right].$$

If, however, the $\{t_i\}$ are chosen to be strongly noncomparable, we have

$$\left| \left| \sum_{l=1}^{L} P_N U(\theta_l x_{t_l}) \right| \right| \leq ||U|| ||\Sigma |\theta_l x_{t_l}|| \leq 2 ||U||.$$

Since L is arbitrary, (5) is contradicted.

PROPOSITION 8. Let $U:HT \to HT$ be a bounded linear operator, $\epsilon > 0$, N an integer, \mathscr{S} a subtree of \mathscr{T} , and t_0, \ldots, t_k mutually noncomparable nodes of \mathscr{S} . Then there exists $t > t_0$, $t \in \mathscr{S}$, $M \in \mathbb{N}$, $N_1 \ge N$, and $N_1 - (M + 1)$ segments S_i , $i = 1, \ldots, k$, of \mathscr{T} having the properties:

a. $||P_N Ux_t|| < \epsilon$, b. $||(I - P_M) Ux_t|| < \epsilon$, c. For each i, there exists $t'_i \in \mathscr{S}$ such that $t_i \leq s < t'_i$ for all $s \in S_i$, d. For each i, $|\langle S^*, Ux_t \rangle| < \epsilon$ for each segment $S \supset S_i$.

Proof. Let K satisfy

$$2^{-\kappa}\|U\|<\epsilon/3,$$

and let

$$N_1 \geq \max(N, \operatorname{lev}(t_i))$$

be such that for each i = 1, ..., k there are 2^{K} branches of \mathscr{S} which contains t_{i} and pass through distinct nodes in the N_{1} -th level of \mathscr{T} . Then there exists $t > t_{0}$ such that $t \in \mathscr{S}$ and

 $\|P_{N_1}Ux_t\| < \epsilon/3.$

Hence a. is satisfied. To satisfy b., choose $M > N_1$ such that

 $\|(I-P_M)Ux_t\|<\epsilon/3.$

Now for i = 1, ..., K, let $S_i^1, ..., S_i^{2^K}$ be disjoint $N_1 - (M + 1)$ segments satisfying c. For fixed *i*, if no S_i^j satisfies

$$|\langle S_i^{J*}, Ux_i \rangle| < \epsilon/3,$$

it follows that

$$\frac{\epsilon}{3} 2^{K} \leq \sum_{j=1}^{2^{K}} |\langle S_{i}^{j*}, Ux_{t} \rangle|$$
$$\leq ||Ux_{t}|| \leq ||U|| < \frac{\epsilon}{3} 2^{K}$$

a contradiction. Hence for each *i*, there exists $S_i = S'_i$ such that

 $|\langle S_i^*, Ux_i \rangle| < \epsilon/3.$

Now, if $S \supset S_i$,

$$\begin{split} |\langle S^*, Ux_t \rangle| &\leq |\langle S^*, P_{N_1-1}Ux_t \rangle| + |\langle S^*_i, Ux_t \rangle| \\ &+ |\langle S^*, (I - P_{M+1})Ux_t \rangle| < \epsilon. \end{split}$$

We are now ready for the

Proof of Theorem 5. Let $0 < \gamma < 1/2$. Using standard perturbation arguments, Propositions 2, 3, 4, 7, 8, and the arguments of [1], we may assume the existence of a subtree $\mathscr{S} = \{t(n, i)\} \subset \mathscr{T}$ banded by sequences $\{m_i\}$ and $\{n_i\}$ such that for each $t \in \mathscr{S}$ and each $n_i - m_j$ segment S of \mathscr{T} which is compatible with \mathscr{S} , we have

$$\langle S^*, Vx_t \rangle = \begin{cases} \gamma_t & t \in S \\ 0 & t \notin S, \end{cases}$$

where $\gamma \leq \gamma_t \leq ||V||$, where V is either U or (I - U). We shall assume that V = U, and show that U(HT) contains a complemented isomorph of HT. Furthermore, we may assume that along each branch B of \mathcal{S} ,

$$\lim_{\substack{t \to \infty \\ t \in B}} \gamma_t = \gamma_B \text{ exists}$$

and that if $\gamma'_t = \gamma_{B_t}$ for some branch containing t, then

$$\sum_{t\in\mathscr{S}}|\gamma_t-\gamma'_t|<\frac{\gamma}{6}.$$

Let $X = [\{x_t\}_{t \in \mathscr{S}}]$. By Proposition 6, X is isomorphic to HT, and we shall now show that $\{Ux_t\}_{t \in \mathscr{S}}$ is a basic sequence equivalent to $\{x_t\}_{t \in \mathscr{S}}$. It will follow that U|X is an isomorphism.

Since U is bounded, if $\{a_{n,i}\}$ is a finite set of scalars,

$$\|\sum a_{n,i} U x_{t(n,i)}\| \leq \|U\| \|\sum a_{n,i} x_{t(n,i)}\|.$$

For the reverse inequality, let

$$x = \sum a_{n,i} x_{t(n,i)},$$

and notice that there exist disjoint $m_p - n_q$ segments S_1, \ldots, S_k of \mathcal{T} and branches $B_j \supset S_j$ such that

$$||x|| \leq 3 \sum_{j=1}^{k} |\langle S_{j}^{*}, x \rangle|$$
$$\leq \frac{3}{\gamma} \sum_{j=1}^{k} |\gamma_{B_{j}}| \sum_{t(n,i) \in S_{j}} a_{n,i}|$$
$$= \frac{3}{\gamma} \langle f, x \rangle$$

where $f \in HT^*$ is defined by

$$f = \sum_{j=1}^{k} \gamma_{B_j} \operatorname{sgn} \langle S_j^*, x \rangle S_j^*.$$

Let $\epsilon_i = \operatorname{sgn}\langle S_i^*, x \rangle$, and let

$$\widetilde{\gamma}_{s} = \begin{cases} \gamma_{t} & t \in \mathscr{S} \cap B_{j} \\ \gamma_{B_{j}} & t \in B_{j} \backslash \mathscr{S}, \end{cases}$$

and define $g \in HT^*$ by

$$g = \sum_{j=1}^{k} \epsilon_j \sum_{s \in S_j} \widetilde{\gamma}_s x_{s}^*$$

Then

$$\|g - f\| \leq \sum_{j=1}^{k} \sum_{t \in S_j \cap \mathscr{S}} |\gamma_t - \gamma_{B_j}| < \frac{\gamma}{6}$$

so for any $y \in HT$,

$$\langle f, y \rangle \leq \langle g, y \rangle + \frac{\gamma}{6} ||y||.$$

In particular,

$$\begin{aligned} ||x|| &\leq \frac{3}{\gamma} \langle f, x \rangle \leq \frac{3}{\gamma} \bigg[\langle g, x \rangle + \frac{\gamma}{6} ||x|| \bigg] \\ &\leq \frac{3}{\gamma} \sum_{j=1}^{k} \epsilon_j \sum_{t(n,i) \in S_j} \gamma_{n,i} a_{n,i} + \frac{1}{2} ||x||, \end{aligned}$$

so

$$|x|| \leq \frac{6}{\gamma} \sum_{j=1}^{k} \epsilon_j \sum_{t(n,i) \in S_j} \gamma_{n,i} a_{n,i}$$
$$\leq \frac{6}{\gamma} \sum_{j=1}^{k} |\langle S_j^*, Ux \rangle| \leq \frac{6}{\gamma} ||Ux||$$

Thus, U|X is an isomorphism, and to see that UX is complemented, observe first that the preceding argument may be used to show that the multiplier operator M on X defined by $Mx_t = \gamma_t x_t$ is bounded and invertible. Denoting by P the projection onto X constructed in the proof of Proposition 6, we see that UX is complemented by $Q = (U|X) M^{-1}P$.

4. This section is devoted to proving

THEOREM 9. If X is one of the Schechtman tree spaces Y, Z or ST_p , $1 \leq p \leq \infty$, and U is a bounded linear operator on X, then there is a subspace $W \subset X$ such that U|W (or (I - U)|W) is an isomorphism and UW (or (I - U)W) is complemented in X.

In [6], Schechtman proved that $\{x_{n,i}\}$ is a 1-unconditional basis for Y_m and for Y, and that c_0 does not embed in Y. From this we easily obtain

PROPOSITION 10. 1. $\{x_{n,i}\}$ is a boundedly complete basis for Y. 2. $Z^* = Y$ and $\{x_{n,i}\}$ is a shrinking basis for Z.

3. $\{x_{n,i}\}$ is a 1-unconditional basis for Z_m and for Z.

4. $\{x_{n,i}\}$ converges weakly to zero in Z.

PROPOSITION 11. Let $\mathscr{S} = \{t(n, i)\}$ be a banded subtree of \mathscr{T} . Then $[\{x_t\}_{t \in S}]$ in Z is isometric to Z and $[\{x_t\}_{t \in S}]$ in Y is isometric to Y.

Proof. We first consider the unit vectors in Z and show that for any finite scalar sequence $\{a_{n,i}\}$,

 $|\sum a_{n,i} x_{n,i}| = |\sum a_{n,i} x_{t(n,i)}|.$

The proof is by induction and passage to the limit. Since $|\cdot|_0 = ||\cdot||_{c_0}$, we have that

$$|\sum a_{n,i}x_{n,i}|_0 = |\sum a_{n,i}x_{t(n,i)}|_0$$

for any banded subtree $\mathscr{S} = \{t(n, i)\}$ and any sequence of scalars $\{a_{n,i}\}$. Assume that for any banded subtree $\mathscr{S} = \{t(n, i)\}$,

$$|\sum a_{n,i}x_{n,i}|_{m-1} = |\sum a_{n,i}x_{t(n,i)}|_{m-1}$$

for all scalar sequences $\{a_{n,i}\}$. Now let \mathscr{S} be banded by $\{m_i\}, \{n_i\}$, and let

$$x = \sum a_{n,i} x_{t(n,i)}.$$

We have

$$\begin{aligned} |x|_{m} &\geq \max\left\{ |x|_{m-1}, \lambda^{-1} \max_{m_{k}} \sum_{i=0}^{2^{m_{k}-1}} |P_{m_{k},i}x|_{m-1} \right\} \\ &= \max\left\{ |\sum a_{n,i}x_{n,i}|_{m-1}, \lambda^{-1} \max_{k} \sum_{i=0}^{2^{k}-1} |P_{k,i}(\sum a_{n,i}x_{n,i})|_{m-1} \right\} \\ &= |\sum a_{n,i}x_{n,i}|_{m'} \end{aligned}$$

by the induction hypothesis. For the other inequality, we consider two cases:

(1)
$$|x|_{m} = |\sum a_{n,i}x_{t(n,i)}|_{m-1}$$
 and
(2) $|x|_{m} = \lambda^{-1} \max_{1 \le k < \infty} \sum_{i=0}^{2^{k}-1} |P_{k,i}x|_{m-1}.$

In the first case, the induction hypothesis implies that

$$|x|_m = |x|_{m-1} = |\sum a_{n,i}x_{n,i}|_{m-1} \le |\sum a_{n,i}x_{n,i}|_m.$$

In the second case, there exists K such that

$$|x|_{m} = \lambda^{-1} \sum_{i=0}^{2^{K}-1} |P_{K,i}x|_{m-1},$$

and let j be the largest integer such that $m_j \leq K$. If $m_j \leq K < n_j$, then there exists l such that

$$P_{K,i}x = P_{K,i}P_{m_i,l}x,$$

and by the 1-unconditionality in $|\cdot|_{m-1}$,

$$|P_{K,i}x|_{m-1} \leq |P_{m_{i},i}x|_{m-1}.$$

Hence

$$|x|_{m} = \lambda^{-1} \sum_{i=0}^{2^{K}-1} |P_{K,i}x|_{m-1} \leq \lambda^{-1} \sum_{l} |P_{m,l}x|_{m-1}$$

$$= \lambda^{-1} \sum_{l} |P_{j,l} \sum a_{n,i} x_{n,i}|_{m-1} \leq |\sum a_{n,i} x_{n,i}|_{m}$$

On the other hand, if $n_j \leq K < m_{j+1}$, then for each *i*, either there exist l_1 and l_2 such that

$$P_{K,i}x = P_{m_{j+1},l_1}x + P_{m_{j+1},l_2}x$$

or there exists *l* such that

$$P_{K,l}x = P_{m_{l+1},l}x.$$

In either case, using the triangle inequality, we have

$$\begin{aligned} |x|_{m} &= \lambda^{-1} \sum_{i=0}^{2^{K}-1} |P_{K,i}x|_{m-1} \\ &\leq \lambda^{-1} \sum_{l} |P_{m_{j+1},l}x|_{m-1} \\ &= \lambda^{-1} \sum_{l} |P_{j+1,l}(\sum a_{n,i}x_{n,i}) \\ &\leq |\sum a_{n,i}x_{n,i}|_{m}. \end{aligned}$$

The equivalence of $\{x_t\}_{t \in \mathscr{T}}$ and $\{x_t\}_{t \in \mathscr{S}}$ in the space Y follows from the equivalence in Z and the fact that $Z^* = Y$.

Proof of Theorem 9. As in the proof of Theorem 5, the argument may be carried out for one of U or (I - U). We shall call that operator U, and show that UX contains a complemented isomorph of X.

If U is a bounded operator on Z, $\{Ux_{n,i}\}$ converges weakly to zero since $\{x_{n,i}\}$ converges weakly to zero, and we may assume there exists a banded subtree $\mathscr{S} = \{t(n, i)\}$ such that $t \in \mathscr{S}$ implies

$$|\langle x_t^*, Ux_t \rangle| \geq 1/2,$$

and that the Ux_t are disjointly supported. With $W = [\{x_t\}_{t \in \mathscr{S}}], W$ is isometric to Z, and the unconditionality of $\{x_{n,i}\}$ implies that U|W is an isomorphism. Again by the unconditionality, the operator M defined by

$$Mx_{t} = \begin{cases} \langle x_{t}^{*}, Ux_{t} \rangle^{-1} x_{t} & t \in \mathscr{S} \\ 0 & t \notin \mathscr{S} \end{cases}$$

is bounded, and UW is complemented by the projection UM.

In the case of the space Y, the unit vectors do not tend weakly to zero, and if U is a bounded linear operator on Y, in order to obtain a sequence $\{f_{n,i}\}$ for which $\{Uf_{n,i}\}$ is disjointly supported, we use differences of unit vectors. To this end, select a subtree $\mathscr{S} \subset \mathscr{T}$ such that $t \in \mathscr{S}$ implies

$$\langle x_t^*, Ux_t \rangle \geq 1/2,$$

and inductively choose sequences $\{m_i\}, \{n_j\}$ and nodes $t^1(n, i), t^2(n, i)$ of \mathscr{S} such that

a. $t^{1}(n, i) < t^{2}(n, i)$ b. $t^{2}(n, i) < t^{1}(n + 1, 2i)$ and $t^{2}(n, i) < t^{1}(n + 1, 2i + 1)$ c. $\{t^{l}(n, i)\}$ is banded by $\{m_{j}\}$ and $\{n_{j}\}$, for l = 1, 2d. $\langle x_{l^{2}(n,i)}^{*}, Ux_{l^{1}(n,i)} \rangle = 0$, and e. with $f_{n,i} = x_{l^{2}(n,i)} - x_{l^{1}(n,i)}$, the $Uf_{n,i}$ are disjointly supported. Now, let $W = [\{f_{n,i}\}]$. Then

$$\begin{aligned} \|\sum a_{n,i} x_{n,i}\| &= \|\sum a_{n,i} x_{t^2(n,i)}\| \\ &\leq \|\sum a_{n,i} f_{n,i}\| \quad \text{by d} \\ &\leq 2\|\sum a_{n,i} x_{n,i}\|, \end{aligned}$$

so W is isomorphic to Y. Furthermore, since

$$\langle x_{t^*}, Ux_t \rangle \geq 1/2,$$

by the unconditionality of $\{x_{n,i}\}$ and e,

$$\begin{aligned} ||\sum a_{n,i}f_{n,i}|| &\leq 2||\sum a_{n,i}x_{n,i}|| \\ &= 2||\sum a_{n,i}x_{t^{2}(n,i)}|| \\ &\leq 4||\sum a_{n,i}Uf_{n,i}|| \\ &\leq 4||U|| ||\sum a_{n,i}f_{n,i}||. \end{aligned}$$

It is easily seen that UW is complemented in Y.

As for the spaces ST_p , $1 \le p \le \infty$, it follows from Proposition 11 and the definitions of the norms that whenever \mathscr{S} is a bounded subtree of \mathscr{T} , $\{x_t\}_{t\in\mathscr{T}}$ is isometrically equivalent to $\{x_t\}_{t\in\mathscr{S}}$. Since these spaces are reflexive, the unit vector basis is shrinking, and thus converges weakly to zero. Thus, the argument used for the space Z also proves the theorem for ST_p , $1 \le p \le \infty$.

5. A consequence of Theorems 5 and 9 is that if X is either the Hagler tree space or one of the Schechtman tree spaces, and W is complemented in X, then W contains a complemented isomorph of X. Since these spaces are isomorphic to their Cartesian squares, the arguments of [2] show

COROLLARY 10. If X = HT, Z, Y, or ST_p , $1 \le p \le \infty$, $X = W \oplus V$, and $W \approx W \oplus W$ or $V \approx V \oplus V$, then either $W \approx X$ or $V \approx X$.

REFERENCES

^{1.} A. D. Andrew, The Banach space JT is primary, Pacific J. Math. 108(1983), 9-17.

P. G. Casazza and B. L. Lin, Projections on Banach spaces with symmetric bases, Studia Math. 52 (1974), 189-193.

A. D. ANDREW

- 3. J. Hagler, A counterexample to several questions about Banach spaces, Studia Math. 60 (1977), 289-308.
- 4. R. C. James, A separable somewhat reflexive Banach space with non-separable dual, Bull. A.M.S. 80 (1974), 738-743.
- 5. J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces I* (Springer-Verlag, New York, 1977).
- 6. G. Schechtman, A tree-like Tsirelson space, Pacific J. Math. 83 (1979), 523-530.

Georgia Institute of Technology, Atlanta, Georgia