47A30, 46B25

BULL. AUSTRAL. MATH. SOC. VOL. 35 (1987) 27-33

ISOMETRIC RESULTS ON A MEASURE OF

NON-COMPACTNESS FOR OPERATORS ON BANACH SPACES

S.J. DILWORTH

For each $\lambda \geq 1$ a class of Banach spaces ϕ_{λ} is defined. Isometric results are obtained on the equivalence between a measure of non-compactness and the essential norm of a linear operator defined on a ϕ_{λ} space. Best values of λ for the classical Banach spaces and for spaces with unconditional basis are investigated. For the space c of convergent sequences the non-existence of a λ -unconditional basis with $\lambda < 2$ is deduced.

Recall that a Banach space E is said to be a π_{λ} space $(1 \le \lambda < \infty)$ if for every finite dimensional subspace G of E and for each $\epsilon > 0$ there exist a finite-dimensional subspace $H \ge G$ and a projection P from E onto H with $||P|| \le \lambda + \varepsilon$ (see [6]). We need the following dual notion.

DEFINITION 1. Suppose that $1 \le \lambda < \infty$. A Banach space E will be said to be a ϕ_{λ} space if for every closed subspace M of finite codimension in E and for each $\varepsilon > 0$ there exist a closed subspace

Received 7 February 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/87 \$A2.00 + 0.00.

 $N \subseteq M$ of finite codimension and a projection P from E onto N with $||P|| \leq \lambda + \epsilon$.

The following proposition is essentially known (see [4]), but we indicate a short proof.

PROPOSITION 2. (a) If E* is a π_λ space then E is a $\phi_{1+\lambda}$ space.

(b) If E is a ϕ_{λ} space then E* is a $\pi_{1+\lambda}$ space.

Proof. (a) Let M be a closed subspace of finite codimension in E and let $\varepsilon > 0$ be given. By a consequence of the principle of local reflexivity (see [6]) there exists a finite dimensional subspace H containing $M = \{f \in E^* : f(x) = 0 \text{ for all } x \in M\}$ and a weak*-continuous projection P from E^* onto H with $||P|| \le \lambda + \varepsilon$. Then $(I - P^*)|_E$ is a projection whose range is a subspace of finite codimension contained in M and $||I - P^*|| \le 1 + \lambda + \varepsilon$. So E is a $\phi_{1+\lambda}$ space.

(b) This is a simple duality argument and will be omitted:

Let $T: E \to F$ be a bounded operator between Banach spaces E and F. The essential norm of T, denoted $||T||_e$, is defined by $||T||_e = \inf\{||T + K|| : K : E \to F$ is a compact operator $\}$. Following [7] we define a measure of non-compactness of T, denoted c(T), by $c(T) = \inf\{||T|_M|| : \operatorname{codim}(M) < \infty\}$. The familiar Kuratowski measure of non-compactness, $\gamma(T)$, which is defined by $\gamma(T) = \inf\{r : \text{the image of the unit ball of } E$ is covered by finitely many balls in F of radius $r\}$, is related to c(T) by the inequalities $\frac{1}{2}c(T) \leq \gamma(T) \leq 2c(T)$ (see [7]).

PROPOSITION 3. Suppose that E is a ϕ_{λ} space and that $T : E \rightarrow F$ is a bounded operator. Then $||T||_{e} \leq \lambda c(T)$; in particular, $||T||_{e} \leq \lambda ||T^{*}||_{e}$.

Proof. Suppose that $K : E \neq F$ is any compact operator and let $\varepsilon > 0$ be given. Then c(K) = 0 and so there exists a closed subspace L of finite codimension such that $||K|_L|| < \varepsilon$. Let M be any closed subspace of finite codimension. Since E is a ϕ_{λ} space there exists a closed subspace $N \subseteq L \cap M$ of finite codimension in E and a

Operators on Banach Spaces

projection P from E onto N with $||P|| \leq \lambda + \varepsilon$. Then (T + K)P is a compact perturbation of T and $||(T + K)P|| \leq (\lambda + \varepsilon)(||T|_M|| + \varepsilon)$. Since ε and M are arbitrary it follows that $||T||_e \leq \lambda c(T)$. We obviously have $c(T^{**}) \leq ||T^{**}||_e \leq ||T^*||_e$, while $c(T^{**}) \geq c(T)$ follows easily from the definition of the measure of non-compactness $c(\cdot)$. Combining these inequalities gives $||T||_e \leq \lambda ||T^*||_e$.

Remark 4. It is not known whether there exists a constant K such that $||T||_e \leq K ||T^*||_e$ for all Banach spaces E and F and operators $T: E \neq F$. The unpublished folklore result $a_n(T) \leq 3a_n(T^*)$, where $a_n(T)$ denotes the n^{th} approximation number of T, shows that $||T||_e \leq 3||T^*||_e$ provided E^* has the approximation property, and so the second statement in Proposition 3 is good only for $\lambda < 3$.

COROLLARY 5. Suppose that E is a classical Banach space and that $T: E \rightarrow F$ is a bounded operator. Then $||T||_e \leq 2c(T)$ (and so $||T||_e \leq 2||T^*||_e$).

Proof. E^* is a π_1 -space, and so the result follows from Propositions 2 and 3.

Remark 6. The constant 2 is best possible (see Corollary 10(a) below). Results related to Proposition 3 are obtained in [7] under the assumption that F has the compact approximation property but without any assumption on E. In [1] the Banach spaces for which $\gamma(T)$ and $||T||_{\rho}$ are equivalent semi-norms are characterized.

Now suppose that E is a Banach space with a Schauder basis $(e_k)_{k=1}^{\infty}$. The basis constant μ is defined by $\mu = \sup\{||P_n|| : n \ge 1\}$, where P_n is the natural projection from E onto $\begin{bmatrix} e_k \end{bmatrix}_{k=1}^n$ (the closed linear span of e_1, e_2, \ldots, e_n). The basis is said to be shrinking if $||f| \begin{bmatrix} e_k \end{bmatrix}_{k=n}^{\infty} || \to 0$ as $n \to \infty$ for every $f \in E^*$. Further, the basis is said to be λ -unconditional if $||\sum_{1}^{n} \pm a_k e_k|| \le \lambda ||\sum_{1}^{\infty} a_k e_k||$ for all $n \ge 1$, for all scalars $(a_k)_{k=1}^{\infty}$, and for all choices of signs. It

S.J. Dilworth

follows from Proposition 2 that if E has a shrinking basis, with basis constant μ , then E is a $\phi_{1+\mu}$ space. We have the following refinement for spaces with a λ -unconditional shrinking basis.

PROPOSITION 7. Suppose that E has a λ -unconditional shrinking basis. Then E is a ϕ_{λ} space.

Proof. For each $x = \sum_{1}^{\infty} a_k e_k$ in E we define $|||x||| = \sup ||\sum_{1}^{\infty} t a_k e_k||$, where the supremum is taken over all choices of signs. Since $||x|| \le |||x||| \le \lambda ||x|||$ it is sufficient to prove the proposition for the norm $||| \cdot |||$, for which $(e_k)_{k=1}^{\infty}$ is a 1-unconditional basis; so we may assume that $\lambda = 1$. Suppose that $\varepsilon > 0$ and that M is any closed subspace of codimension one in E. We prove the claim that there exists a subspace $N \in M$ of finite codimension in E which is $(1 + \varepsilon) -$ complemented in E and which possesses a $(1 + \varepsilon)$ -unconditional shrinking basis. There exists $f \in E^*$ such that ||f|| = 1 and $M = \{x \in E : f(x) = 0\}$. We may choose $x \in E$ and a positive integer n_0 such that f(x) = 1, $||x|| \le 2$, and $x = \sum_{k=1}^{n_0} x_k e_k$. Given n > 0 there exists $n_1 > n_0$ such that $||f| = \frac{1}{e_k} = \frac{1}{k=n_1}$ and for all scalars a_{n_1}, \ldots, a_m . We have

$$(1 - 2n) || \sum_{n_1}^m a_k e_k || \leq || \sum_{n_1}^m a_k f_k || \leq (1 + 2n) || \sum_{n_1}^m a_k e_k || ,$$

where $f_k = e_k - f(e_k)x$. Let *P* be the natural projection from *E* onto $\begin{bmatrix} e_k \end{bmatrix}_{k=n_1}^{\infty}$ (which is a contraction because the basis is 1-unconditional); then *P* is an isomorphism from $\begin{bmatrix} f_k \end{bmatrix}_{k=n_1}^{\infty}$ onto $\begin{bmatrix} e_k \end{bmatrix}_{k=n_1}^{\infty}$ with

 $||P|| ||P^{-1}|| \le \frac{1+2\eta}{1-2\eta}$. Moreover,

$$Q = \left(P \mid \left[f_{\underline{k}} \right]_{k=n_1}^{\infty} \right)^{-1} \circ P$$

is a projection from E onto $\left[f_{k}\right]_{k=n_{1}}^{\infty}$ with $\left|\left|Q\right|\right| \leq \frac{1+2n}{1-2n}$. The claim

now follows by taking η sufficiently small. The general result for a closed subspace M of arbitrary finite codimension is obtiined by applying the claim finitely many times and by considering a subspace of codimension one at each stage of the argument.

Remark 8. Say that a Schauder basis $(e_k)_{k=1}^{\infty}$ is λ -bimonotone if $\sup\{||P_n||, ||I-P_n|| : n \ge 1\} \le \lambda$. Then the proof of Proposition 7 shows that E is a ϕ_{λ} space if $(e_k)_{k=1}^{\infty}$ is a λ -bimonotone shrinking basis of E.

Let c denote the space of convergent sequences $x = (x_k)_{k=1}^{\infty}$ with the norm $||x|| = \sup |x_k|$, and let c_0 be the subspace of sequences which tend to zero; let lp $(1 \le p < \infty)$ denote the space of sequences for which

$$\||x||_{p} = \left(\sum_{1}^{\infty} |x_{k}|^{p}\right)^{1/p} < \infty$$

COROLLARY 9. The Banach spaces $c_{\rm o}$ and 1p (1 \infty) are ϕ_1 spaces.

COROLLARY 10. (a) c and ${}^{l}l_{1}$ are ϕ_{2} spaces but are not ϕ_{λ} spaces for any $\lambda<2$.

(b) Let $(e_k)_{k=1}^{\infty}$ be a λ -unconditional basis for c. Then $\lambda \geq 2$; in particular, the Banach-Mazur distance from c to any space with a 1-unconditional basis is at least 2.

Proof. (a) Let $I: l_1 \rightarrow c_0$ be the formal identity operator and let $j: c_0 \rightarrow c$ be the natural inclusion. Let $(e_k)_{k=1}^{\infty}$ be the standard basis of l_1 and define $K: l_1 \rightarrow c$ by $K(e_k) = u(k \ge 1)$, where u is the sequence which has every term equal to one. Then $||jI - \frac{1}{2}K|| = \frac{1}{2}$, and so $c(I) \le \frac{1}{2}$; it now follows from Proposition 3 that l_1 is not a ϕ_{λ} space for any $\lambda < 2$. Let M be any subspace of finite codimension contained in c_0 and let P be a projection on c whose range is M.

Then $P(I - \frac{1}{2}K)$ is a compact perturbation of I, and so $||P(jI - \frac{1}{2}K)|| \ge 1$. It follows that $||P|| \ge 2$, and so c is not a ϕ_{λ} space for any $\lambda < 2$. The fact that c and ℓ_1 are ϕ_2 spaces is a consequence of Proposition 2.

(b) Any unconditional basis of c_0 (and hence of c) is equivalent to the standard basis (see for example [8, p.71]), and so must be shrinking. The result now follows from (a) and Proposition 7.

Remark 11. C.V. Hutton ([5]) discussed the formal identity from ℓ_1 to c_0 as an example of an operator T with the property that $a_n(T) \neq a_n(T^*)$.

Remark 12. Banach ([2, p.242]) asked whether c and c_0 were almost isometric. Cambern proved in [3] that the Banach-Mazur distance from c to c_0 is 3.

It is very easy to prove, in fact, that it is not possible to imbed an infinite-dimensional C(K) space almost isometrically into c_0 , as the following lemma shows.

LEMMA 13. Let K be an infinite compact Hausdorff space and let $T : C(K) \rightarrow c_o$ be a Banach isomorphism onto a subspace of c_o . Then $||T|| ||T^{-1}|| \ge 2$.

Proof. We may assume that ||T|| = 1; let $(e_k^*)_{k=1}^{\infty}$ denote the functionals biorthogonal to the standard basis of c_0 . Given $\varepsilon > 0$ there exists n_0 such that $|e_k^*T(1)| < \varepsilon$ for all $k > n_0$, where $1 \in C(K)$ is the constant one function. Select $y \in C(K)$ such that ||y|| = 1 and $e_k^*(Ty) = 0$ for $1 \le k \le n_0$. Then $\max(||x + y||, ||x - y||) = 2$, whereas $\max(||Tx + Ty||, ||Tx - Ty||) \le 1 + \varepsilon$, and it follows that $||T^{-1}|| \ge 2$.

Remark 14. Say that E has the distortion property (see [9]) if, given $\varepsilon > 0$, a Banach space F will contain a $(1 + \varepsilon)$ -isomorphic copy of E whenever E and F are isomorphic. It is well known that c_{c} and l_1 share this property, but since c and c_0 are isomorphic the previous lemma shows (taking C(K) = c) that c coes not.

References

- [1] K. Astala and H.-O. Tylli, "On bounded compactness property and measures of non-compactness", J. Funct. Anal. (to appear).
- [2] S. Banach, Théorie des Opérations Linéaries (Second Edition), Chelsea Publishing Company, New York, 1978.
- [3] M. Cambern, "On mappings of sequence spaces", Studia Math. 30 (1968), 73-77.
- [4] W.J. Davis, "Remarks on finite rank projections", J. Approx. Theory 9 (1973), 205-211.
- [5] C.V. Hutton, "On the approximation numbers of an operator and its adjoint", Math. Ann. 210 (1974), 277-280.
- [6] W.B. Johnson, H.P. Rosenthal and M. Zippin, "On bases, finite dimensional decompositions and weaker structures in Banach spaces", *Israel J. Math.* 9 (1971), 488-506.
- [7] A. Lebow and M. Schechter, "Semigroups of operators and measure of non-compactness", J. Funct. Anal. 7 (1971), 1-26.
- [8] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer-Verlag, 1977.
- [9] J. Lindenstrauss and A. Pelczyński, "Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249.

Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712 United States of America.