ISOMETRIC RESULTS ON A MEASURE OF

NON-COMPACTNESS FOR OPERATORS ON BANACH SPACES

S.J. Dilworth

```
For each \(\lambda \geq 1\) a class of Banach spaces \(\phi_{\lambda}\) is defined.
Isometric results are obtained on the equivalence between a measure of non-compactness and the essential norm of a linear operator defined on a \(\phi_{\lambda}\) space. Best values of \(\lambda\) for the classical Banach spaces and for spaces with unconditional basis are investigated. For the space \(c\) of convergent sequences the non-existence of a \(\lambda\)-unconditional basis with \(\lambda<2\) is deduced.
```

Recall that a Banach space E is said to be a π_{λ} space $(1 \leq \lambda<\infty)$ if for every finite dimensional subspace G of E and for each $\epsilon>0$ there exist a finite-dimensional subspace $H \supseteq G$ and a projection P from E onto H with $||P|| \leq \lambda+\varepsilon$ (see [6]). We need the following dual notion.

DEFINITION 1. Suppose that $1 \leq \lambda<\infty$. A Banach space E will be said to be a ϕ_{λ} space if for every closed subspace M of finite codimension in E and for each $\varepsilon>0$ there exist a closed subspace

Received 7 February 1986.

[^0]$N \subseteq M$ of finite codimension and a projection P from E onto N with $||P|| \leq \lambda+\varepsilon$.

The following proposition is essentially known (see [4]), but we indicate a short proof.

PROPOSITION 2. (a) If E^{*} is $a \pi_{\lambda}$ space then E is a $\phi_{1+\lambda}$ space.
(b) If E is a ϕ_{λ} space then E^{*} is a $\pi_{1+\lambda}$ space.

Proof. (a) Let M be a closed subspace of finite codimension in E and let $E>0$ be given. By a consequence of the principle of local reflexivity (see [6]) there exists a finite dimensional subspace H containing $M \perp=\left\{f \in E^{\star}: f(x)=0\right.$ for all $\left.x \in M\right\}$ and a weak*continuous projection P from E^{\star} onto H with $\|P\| \leq \lambda+\varepsilon$. Then $\left.\left(I-P^{*}\right)\right|_{E}$ is a projection whose range is a subspace of finite codimension contained in M and $||I-P \star|| \leq 1+\lambda+\varepsilon$. So E is a $\phi_{1+\lambda}$ space.
(b) This is a simple duality argument and will be omitted:

Let $T: E \rightarrow F$ be a bounded operator between Banach spaces E and F. The essential norm of T, denoted $||T||_{e}$, is defined by $\left.\|T\|\right|_{e}=\inf \{| | T+K| |: K: E \rightarrow F$ is a compact operator\} . Following [7] we define a measure of non-compactness of T, denoted $c(T)$, by $c(T)=\inf \left\{\left.| | T\right|_{M} \|: \operatorname{codim}(M)<\infty\right\}$. The familiar Kuratowski measure of non-compactness, $\gamma(T)$, which is defined by $\gamma(T)=\inf \{r$: the image of the unit ball of E is covered by finitely many balls in F of radius $r\}$, is related to $c(T)$ by the inequalities $\frac{1}{2} c(T) \leq \gamma(T) \leq 2 c(T)$ (see [7]).

PROPOSITION 3. Suppose that E is a ϕ_{λ} space and that $T: E \rightarrow F$ is a bounded operator. Then $\left|\mid T \|_{e} \leq \lambda c(T) ;\right.$ in particular, $||T||_{e} \leq \lambda| | T^{*} \mid \|_{e}$.

Proof. Suppose that $K: E \rightarrow F$ is any compact operator and let $\varepsilon>0$ be given. Then $c(K)=0$ and so there exists a closed subspace L of finite codimension such that $\left||K|_{L}\right| \mid<\varepsilon$. Let M be any closed subspace of finite codimension. Since E is a ϕ_{λ} space there exists a closed subspace $N \subseteq L \cap M$ of finite codimension in E and a
projection P from E onto N with $\|P\| \leq \lambda+\varepsilon$. Then $(T+K) P$ is a compact perturbation of T and $||(T+K) P|| \leq(\lambda+\varepsilon)\left(\left.| | T\right|_{M}| |+\varepsilon\right)$. Since ε and M are arbitrary it follows that $\|T\|_{e} \leq \lambda c(T)$. We obviously have $c(T * *) \leq\left||T * *|_{e} \leq| | T * \|_{e}\right.$, while $c\left(T^{* *}\right) \geq c(T)$ follows easily from the definition of the measure of non-compactness $c(\cdot)$. Combining these inequalities gives $\|T\|_{e} \leq \lambda| | T * \|_{e}$.

Remark 4, It is not known whether there exists a constant K such that $\left||T|_{e} \leq K\|T *\|\right|_{e}$ for all Banach spaces E and F and operators $T: E \rightarrow F$. The unpublished folklore result $a_{n}(T) \leq 3 a_{n}\left(T^{*}\right)$, where $a_{n}(T)$ denotes the $n^{\text {th }}$ approximation number of T, shows that $\left||T|_{e} \leq 3\right| \mid T^{*} \|_{e}$ provided E^{*} has the approximation property, and so the second statement in Proposition 3 is good only for $\lambda<3$.

COROLLARY 5. Suppose that E is a classical Banach space and that $T: E \rightarrow F$ is a bounded operator. Then $\|T\|_{e} \leq 2 c(T)$ (and so $\left.\left||T|_{e} \leq 2\right|\left|T^{*}\right|\right|_{e}{ }^{\prime}$

Proof. E^{*} is a π_{1}-space, and so the result follows from Propositions 2 and 3.

Remark 6. The constant 2 is best possible (see Corollary 10 (a) below). Results related to Proposition 3 are obtained in [7] under the assumption that F has the compact approximation property but without any assumption on E. In [1] the Banach spaces for which $\gamma(T)$ and $\|T\|_{e}$ are equivalent semi-norms are characterized.

Now suppose that E is a Banach space with a Schauder basis $\left(e_{k}\right)_{k=1}^{\infty}$. The basis constant μ is defined by $\mu=\sup \left\{| | P_{n}| |: n \geq 1\right\}$, where P_{n} is the natural projection from E onto $\left[e_{k}\right]_{k=1}^{n}$ (the closed linear span of $\left.e_{1}, e_{2}, \ldots, e_{n}\right)$. The basis is said to be shrinking if $\left||f|_{\left[e_{k}\right]_{k=n}^{\infty}}^{\infty}\right| \mid \rightarrow 0$ as $n \rightarrow \infty$ for every $f \in E^{*}$. Further, the basis is said to be λ-unconditional if $\left\|\sum_{1}^{n} \pm a_{k} e_{k}\right\| \leq \lambda| | \sum_{1}^{\infty} a_{k} e_{k}| |$ for all $n \geq 1$, for all scalars $\left(a_{k}\right)_{k=1}^{\infty}$, and for all choices of signs. It
follows from Proposition 2 that if E has a shrinking basis, with basis constant μ, then E is a $\phi_{1+\mu}$ space. We have the following refinement for spaces with a λ-unconditional shrinking basis.

PROPOSITION 7. Suppose that E has a λ-unconditional shminking basis. Then E is a ϕ_{λ} space.

Proof. For each $x=\sum_{1}^{\infty} a_{k} e_{k}$ in E we define $\left\|||x \|=\sup || \sum_{1}^{\infty}\right.$ $\pm a_{k} e_{k}| |$, where the supremum is taken over all choices of signs. Since $||x|| \leq|||x||| \leq \lambda| | x| |$ it is sufficient to prove the proposition for the norm $\|\|\cdot\|\|$, for which $\left(e_{k}\right)_{k=1}^{\infty}$ is a l-unconditional basis; so we may assume that $\lambda=1$. Suppose that $\varepsilon>0$ and that M is any closed subspace of codimension one in E. We prove the claim that there exists a subspace $N \subset M$ of finite codimension in E which is ($1+\varepsilon$)complemented in E and which possesses a ($1+\varepsilon$)-unconditional shrinking basis. There exists $f \in E^{*}$ such that $\|f\|=1$ and $M=\{x \in E$: $f(x)$ $=0\}$. We may choose $x \in E$ and a positive integer n_{0} such that $f(x)=1,||x|| \leq 2$, and $x=\sum_{k=1}^{n_{0}} x_{k} e_{k}$. Given $n>0$ there exists $n_{1}>n_{o}$ such that $\left||f|\left[e_{k}\right]_{k=n_{1}}^{\infty}\right| \mid \leq n$. Then for any $m \geq n_{1}$ and for all scalars $a_{n_{1}}, \ldots, a_{m}$. we have

$$
(1-2 \eta)\left|\left|\left|\sum _ { n _ { 1 } } ^ { m } a _ { k } e _ { k } \left\|\left|\leq\left\|\left|\left|\sum _ { n _ { 1 } } ^ { m } a _ { k } f _ { k } \left\|| | \leq(1+2 n)| |\left|\sum_{n_{1}}^{m} a_{k} e_{k} \|\right|\right.\right.\right.\right.\right.\right.\right.\right.\right.
$$

where $f_{k}=e_{k}-f\left(e_{k}\right) x$. Let P be the natural projection from E onto $\left[e_{k}\right]_{k=n_{1}}^{\infty}$ (which is a contraction because the basis is l-unconditional); then P is an isomorphism from $\left[f_{k}\right]_{k=n_{1}}^{\infty}$ onto $\left[e_{k}\right]_{k=n_{1}}^{\infty}$ with $||P||\left|\left|p^{-1}\right|\right| \leq \frac{1+2 \eta}{1-2 \eta}$. Moreover,

$$
Q=\left(P \mid\left[f_{k}\right]_{k=n_{1}}^{\infty}\right)^{-1} \circ P
$$

is a projection from E onto $\left[f_{k}\right]_{k=n_{1}}^{\infty}$ with $||Q|| \leq \frac{1+2 n}{1-2 n}$. The claim
now follows by taking η sufficiently small. The general result for a closed subspace M of arbitrary finite codimension is obatined by applying the claim finitely many times and by considering a subspace of codimension one at each stage of the argument.

Remark 8. Say that a schauder basis $\left(e_{k}\right)_{k=1}^{\infty}$ is λ-bimonotone if $\sup \left\{\left|\left|P_{n}\right|\right|, \| I-P_{n}| |: n \geq 1\right\} \leq \lambda$. Then the proof of proposition 7 shows that E is a ϕ_{λ} space if $\left(e_{k}\right)_{k=1}^{\infty}$ is a λ-bimonotone shrinking basis of E.

Let c denote the space of convergent sequences $x=\left(x_{k}\right)_{k=1}^{\infty}$ with the norm $||x||=\sup \left|x_{k}\right|$, and let c_{0} be the subspace of sequences which tend to zero; let $\ell p(1 \leq p<\infty)$ denote the space of sequences for which

$$
||x||_{p}=\left(\sum_{1}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p}<\infty
$$

COROLLARY 9. The Banach spaces c_{0} and $\ell p(1<p<\infty)$ are ϕ_{1} spaces.

COROLLARY 10. (a) c and ℓ_{1} are ϕ_{2} spaces but are not ϕ_{λ} spaces for any $\lambda<2$.
(b) Let $\left(e_{k}\right)_{k=1}^{\infty}$ be a λ-inconditional basis for c. Then $\lambda \geq 2$; in particular, the Banach-Mazur distance from c to any space with a 1-unconditional basis is at least 2.

Proof. (a) Let $I: \ell_{1} \rightarrow c_{0}$ be the formal identity operator and let $j: c_{0} \rightarrow c$ be the natural inclusion. Let $\left(e_{k}\right)_{k=1}^{\infty}$ be the standard basis of ℓ_{1} and define $K: \ell_{1} \rightarrow c$ by $K\left(e_{k}\right)=u(k \geq 1)$, where u is the sequence which has every term equal to one. Then $\left|\left|j I-\frac{1}{2} K\right|\right|=\frac{3}{2}$, and so $c(I) \leq \frac{1}{2}$; it now follows from Proposition 3 that ℓ_{1} is not a ϕ_{λ} space for any $\lambda<2$. Let M be any subspace of finite codimension contained in c_{0} and let P be a projection on c whose range is M.

Then $P\left(I-\frac{1}{2} K\right)$ is a compact perturbation of I, and so $\| P\left(j I-\frac{1}{2} K\right)| | \geq 1$. It follows that $||P|| \geq 2$, and so c is not a $\phi \lambda$ space for any $\lambda<2$. The fact that c and ℓ_{1} are ϕ_{2} spaces is a consequence of Proposition 2.
(b) Any unconditional basis of c_{0} (and hence of c) is equivalent to the standard basis (see for example [8, p.71]), and so must be shrinking. The result now follows from (a) and Proposition 7.

Remark 11. C.V. Hutton ([5]) discussed the formal identity from ℓ_{1} to c_{0} as an example of an operator T with the property that $a_{n}(T) \neq a_{n}\left(T^{*}\right)$.

Remark 12. Banach ([2, p.242]) asked whether c and c_{0} were almost isometric. Cambern proved in [3] that the Banach-Mazur distance from c to c_{0} is 3 .

It is very easy to prove, in fact, that it is not possible to imbed an infinite-dimensional $C(K)$ space almost isometrically into c_{0}, as the following lemma shows.

LEMMA 13. Let K be an infinite compact Hausdorff space and let $T: C(K) \rightarrow c_{0}$ be a Banach isomorphism onto a subspace of c_{0}. Then $||T||\left|T^{-1}\right| \mid \geq 2$.

Proof. We may assume that $\|T\|=1$; let $\left(e_{k}^{*}\right)_{k=1}^{\infty}$ denote the functionals biorthogonal to the standard basis of c_{0}. Given $\varepsilon>0$ there exists n_{0} such that $\left|e_{k} T(1)\right|<\varepsilon$ for all $k>n_{o}$, where $1 \in C(K)$ is the constant one function. Select $y \in C(K)$ such that $||y||=1$ and $e_{k}^{*}(T y)=0$ for $1 \leq k \leq n_{0}$. Then $\max (\| x+y| |$, $\| x-y| |\rangle=2$, whereas $\max (||T x+T y\|\| T x-,T y| \| \leq 1+\varepsilon$, and it follows that $\left|\left|T^{-1}\right|\right| \geq 2$.

Remark 14. Say that E has the distortion property (see [9]) if, given $\varepsilon>0$, a Banach space F will contain a ($1+\varepsilon$)-isomorphic copy of E whenever E and F are isomorphic. It is well known that c_{0}
and ℓ_{1} share this property, but since c and c_{0} are isomorphic the previous leman shows (taking $C(K)=c$) that c coes not.

References

[1] K. Astala and H.-O. Tylli, "On bounded compactness property and measures of non-compactness", J. Funct. Anal. (to appear).
[2] S. Banach,Theorie des Operations Linearies (Second Edition), Chelsea Publishing Company, New York, 1978.
[3] M. Cambern, "On mappings of sequence spaces", Studia Math. 30 (1968), 73-77.
[4] W.J. Davis, "Remarks on finite rank projections", J. Approx. Theory 9 (1973), 205-211.
[5] C.V. Hutton, "On the approximation numbers of an operator and its adjoint", Math. Ann. 210 (1974), 277-280.
[6] W.B. Johnson, H.P. Rosenthal and M. Zippin, "On bases, finite dimensional decompositions and weaker structures in Banach spaces", Israel J. Math. 9 (1971), 488-506.
[7] A. Lebow and M. Schechter, "Semigroups of operators and measure of non-compactness", J. Fronct. Anal. 7 (1971), 1-26.
[8] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer-Verlag, 1977.
[q] J. Lindenstrauss and A. Pelczynski, "Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249.

Department of Mathematics,
The University of Texas at Austin,
Austin,
Texas 78712
United States of America.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/87 $\$ 22.00+0.00$.

