SOME RESULTS ON FINITENESS OF RADICAL ALGEBRAS

AHMAD MIRBAGHERI
(Received 6 January 1969; revised 19 March 1969)
Communicated by G. B. Preston

1. Introduction

R denotes always a radical algebra over a field Φ. A left ring ideal of R which is also a subvector space over Φ is called a left algebra ideal of $R . R$ is said to be left algebra noetherian if it satisfies the ascending chain condition for left algebra ideals. If $\operatorname{dim} R<\infty$, then
(i) R is finitely generated
(ii) R is left algebra noetherian
(iii) R is algebraic.

Since the radical of an algebraic algebra is nil ([4] $P .19$), conditions (i), (ii), (iii) are also sufficient for R to be finite-dimensional.

Amitsur has conjectured that the radical of a finitely generated Φ-algebra is nil (see [1]). This brings finitely generated radical Φ-algebra close to being nilpotent and hence of finite dimension. We are therefore led to restrict our investigation to radical algebras and to various conditions that imply that $\operatorname{dim} R<\infty$. It seems probable that the following conjecture is true:
R is finite-dimensional radical algebra if and only if (i) R is finitely generated and (ii) R is left algebra noetherian.

Observe that the Ievitzki theorem "in a left noetherian ring any nil left ideal is nilpotent" may be extended to algebras, namely, if R is a left algebra noetherian algebra over Φ, then every nil left algebra ideal is nilpotent (see [3]). Using this result we can easily see that the conditions of the conjecture cannot be weakened. An example is given by Golod (see [2]) of a finitely generated nil algebra over any field Φ which is not of finite dimension.

The purpose of this paper is to prove the conjecture under some additional assumptions on the radical algebra R.

2. Preliminaries

A left algebra ideal L of R is said to be finitely generated if there exists a finite number of elements u_{1}, \cdots, u_{n} such that

$$
L=\Phi u_{1}+R u_{1}+\cdots+\Phi u_{n}+R u_{n}
$$

Lemma 2.1. Let R be a radical Φ-algebra and L be a non-zero left algebra ideal generated by a finite number of elements. Then $R L \varsubsetneqq L$.

Proof. See [4] p. 200.
Theorem 2.2. Let R be a radical, finitely generated and left algebra noetherian over Φ. If R satisfies a polynomial identity then $\operatorname{dim} R<\infty$.

Proof. It is known that the radical of a finitely generated algebra satisfying a polynomial identity is nil (see [1]). So R is nilpotent. Since R is also finitely generated, $\operatorname{dim} R<\infty$.

Corollary 2.3. If R is a commutative, finitely generated radical algebra and if R is left algebra noetherian then $\operatorname{dim} R<\infty$.

Notation. If $S \subset R$ then by $(S)^{l}$ we mean the left annihilator ideal of S. Similarly $(S)^{r}$ is defined.

3.

In all the theorems of this section, except 3.1 , let R be a radical algebra satisfying the following conditions:
(i) R is finitely generated
(ii) R is left algebra noetherian

If the field Φ is non-denumerable then (i) and (ii) are sufficient for R to be finitedimensional. Thus the remainder of the paper is only of interest for countable fields.

Theorem 3.1. Let
(1) R be a radical algebra
(2) $R=\Phi\left(x_{1}, x_{2}\right)$
(3) $x_{1}^{2}=x_{2}^{2}=0$ and $\left(x_{1}\right)^{r} \cap\left(x_{2}\right)^{r} \neq 0$.

Then $\operatorname{dim} R<\infty$.
Proof. Let $y=x_{1} x_{2}$. We show that y is nilpotent. Note that $x_{1} y=y x_{2}=0$ and every element of R has the form

$$
z=P(y) x_{1}+x_{2} Q(y)+x_{2} S(y) x_{1}+y T(y)
$$

where P, Q, S, T are polynomials with coefficients in Φ and their constant terms need not be zero. It follows that

$$
\begin{aligned}
x_{1} z x_{1} x_{2} & =x_{1} x_{2} Q(y) x_{1} x_{2}=y^{2} Q(y) \\
x_{1} z x_{2} & =x_{1} x_{2} S(y) x_{1} x_{2}=y^{2} S(y) \\
x_{1} x_{2} z x_{1} x_{2} & \left.=x_{1} x_{2} y T(y) x_{1} x_{2}=y^{3} T y\right) \\
x_{1} x_{2} z x_{2} & =x_{1} x_{2} P(y) x_{1} x_{2}=y^{2} P(y)
\end{aligned}
$$

for $z \in R$. If $z \in\left(x_{1}\right)^{r} \cap\left(x_{2}\right)^{r}, z \neq 0$, then above observation implies that

$$
\alpha_{1} y^{k_{1}}+\alpha_{2} y^{k_{2}}+\cdots+\alpha_{s} y^{k_{s}}=0
$$

where $2 \leqq k_{1}<k_{2}<\cdots<k_{s}$. So if

$$
x=-\frac{\alpha_{2}}{\alpha_{1}} y^{k_{2}-k_{1}} \cdots-\frac{\alpha_{s}}{\alpha_{1}} y^{k_{r}-k_{1}}
$$

then

$$
y^{k_{1}}=y^{k_{1}} x
$$

So $y^{k_{1}}=0$, because x is a quasi-regular element. So $\operatorname{dim} R<\infty$, because the set $x_{i}, x_{i} x_{j}, x_{i} x_{j} x_{k}, \cdots$ is a finite set.

Theorem 3.2. If x_{1}, \cdots, x_{n} are generators of R such that
(1) x_{i} is nilpotent for all i
(2) $x_{i} R\left(\right.$ or $\left.R x_{i}\right)$ is an ideal for all ithen $\operatorname{dim} R<\infty$.

Proof. It suffices to show that R is nil. Suppose a is a non-nilpotent element in R. Let $S=\left\{B ; B\right.$ is an ideal of R such that $a^{k} \notin B$ for all $\left.k \geqq 1\right\}$. Then S has a maximal element, say C. Since C is a prime algebra ideal of $R, \bar{R}=R / C$ is a nonzero prime, finitely generated and left algebra noetherian radical algebra over Φ. Can assume $\bar{R}=\Phi\left(\bar{x}_{1}, \cdots, \bar{x}_{m}\right)$ where $\dot{m} \leqq n$. If $\bar{x}_{i} \bar{R}=0$ for all i then $\bar{x}_{i}=0$ for all i, because \bar{R} is a prime ring. This is a contradiction, because $C \neq R$. Let $T=\bar{x}_{i} \bar{R} \neq 0$ for some i. If \bar{x}_{i} is of index k then $\bar{x}^{k-1} T=0$ which is a contradiction. This completes the proof.

Example 3.3. Let R be the ring of all polynomials without constant terms, in two indeterminates x and y, over a field Φ of the form

$$
\sum \alpha_{i} x^{i}+\sum_{i_{1}, i_{2} \neq 0} \alpha_{i_{1} \cdots i_{k}} x^{i_{1}} y^{i_{2}} x^{i_{3}} \cdots+\sum_{j_{1}, j_{2} \neq 0} \alpha_{j_{1} \cdots j_{l}} y^{j_{1}} x^{j_{2}} y^{j_{3}} \cdots
$$

subject to the following conditions:
(1) $x^{k} y^{l}=y^{l} x^{k}$ for all $l \geqq 2$ and $x \geqq 1$ or $l \geqq 1$ and $k \geqq 2$ and $x y x=x^{2} y$ and
(2) $x^{m}=0,(x y)^{m}=0$, and $x y^{m}=0$ for all $m \geqq n$ when n is fixed and $n \geqq 3$. R is an algebra over Φ with $\left\{x, x^{i} y^{j}, y^{j} x^{i}, y^{i} x^{j} y^{k}\right\}_{i, j, k=1, \ldots, n-1}$ as a set of generators. Moreover, if t is a generator then $t R$ is an ideal of R.

Remark. Conditions (1) and (2) in theorem 3.2. can be replaced by
(1) $\alpha_{i j}=x_{i} x_{j}-x_{j} x_{i}$ is nilpotent for all i and j
(2) $\alpha_{i j} R$ (or $R \alpha_{i j}$) is an ideal for all i and j.

Proof. If we assume that R is not nil then let \bar{R} be as in theorem 3.2. If all $\bar{\alpha}_{i j} \bar{R}=0$ then $\alpha_{i j} \in C$ for all i and j. Then \bar{R} is a commutative ring. Use Corollary 2.3 to get \bar{R} is of finite dimension which implies that \bar{R} is nilpotent. But this is a contradiction to $C \neq R$. So $T=\bar{\alpha}_{i j} \bar{R} \neq 0$ for some i and j. The same argument as in theorem 3.2. leads to a contradiction. Hence $\operatorname{dim} R<\infty$.

Theorem 3.4. Let $R=\Phi\left(x_{1}, \cdots, x_{n}\right)$ and let $\alpha_{i j}=x_{i} x_{j}-x_{j} x_{i}$. Assume $R \alpha_{i j}\left(\right.$ or $\left.\alpha_{i j} R\right)$ is nil for all i and j. Then $\operatorname{dim} R<\infty$.

Proof. Let N be the sum of all nilpotent algebra ideals of R. Then N is the same as the sum of all nilpotent ring ideals of R. Since $R \alpha_{i j} \subseteq N$, we get $\bar{\alpha}_{i j}=0$ in $\bar{R}=R / N$ for all i and j. Hence \bar{R} is commutative. We apply Corollary 2.3 to get $R=N$. Thus R is nilpotent and hence frnite-dimensional.

Lemma 3.5. If R is a ring, $a \in R, a^{2}=0$ and $x a-a x$ is niipotent for all x in R, then $a R$ is nil.

Proof. $a(x a-a x)^{k} x=(a x)^{k+1}$ for $x \in R, k=1,2, \cdots$.
Lemma 3.6. If R is a ring, $a, b \in R, a^{2} b=0$ and $y a-a y$ is nilpotent for all y in $b R$, then $a b R$ is nil.

Proof. $a(b x a-a b x)^{k} b x=(a b x)^{k+1}$ for any $x \in R, k=1,2, \cdots$.
Lemma 3.7. If R is a ring and $a \in R$ such that a and $x a-a x$ are nilpotent for all x in R, then $a R$ is nil.

Proof. Suppose $a R$ is not nil, then there is an integer m such that $a^{m} R$ is nil, but $a^{m-1} R$ is not. Let $b=a^{m-2}$ and apply lemma 3.6. to get a contradiction.

Theorem 3.8. Let $R=\Phi\left(x_{1}, \cdots, x_{n}\right), \alpha_{i j}=x_{i} x_{j}-x_{j} x_{i}$ and let $\alpha_{i j}$ and $x \alpha_{i j}-\alpha_{i j} x$ be nilpotent for all i and j and for all $x \in R$. Then $\operatorname{dim} R<\infty$.

Proof. Lemma 3.7. implies that $\alpha_{i j} R$ is nil. Now we apply theorem 3.4.
Theorem 3.9. Let $R=\Phi\left(x_{1}, \cdots, x_{n}\right)$. Assume that x_{i} and $x x_{i}-x_{i} x$ are nilpotent for all i and all x in R. Then $\operatorname{dim} R<\infty$.

Proof. Lemma 3.7. implies that $x_{i} R$ is nil for all i. Since $\bar{x}_{i} \bar{R}=0$ in $\bar{R}=$ R / N, where N is the nilpotent radical of R, we get $\bar{x}_{i}=0$ and hence $R=N$.

Theorem 3.10. Let R satisfy the following two conditions:
(1) $\alpha_{i j}$ is a right zero divisor for all i and j
(2) If I is the intersection of all non-zero left algebra ideals of the form $R x$ or $(a)^{l}$ for x in R and a in R then $I \neq 0$.

Then $\operatorname{dim} R<\infty$.
Proof. If a is a right zero divisor then $0 \neq(a)^{l} \supseteq I$. So $a \in(I)^{r}$. In particular N, the nilpotent radical of R, is contained in $(I)^{r}:$ We show that $(I)^{r} \subseteq N$.

If $0 \neq t \in I$ and $x \in(I)^{r}$ then $t x=0$. The chain $(x)^{l} \subseteq\left(x^{2}\right)^{l} \subseteq \cdots$ terminates. So there exists a positive integer m such that $\left(x^{m}\right)^{l}=\left(x^{s}\right)^{l}$ for all $s \geqq m$. If $R x^{m} \neq 0$ then $t=y x^{m}$ for some y in R. Since $t x=0$ we get $y x^{m+1}=0$ and hence $y \in\left(x^{m+1}\right)^{l}=\left(x^{m}\right)^{l}$. So $t=y x^{m}=0$ which is not the case. So $R x^{m}=0$ and hence x is nilpotent. So $N=(I)^{r}$. This shows that $\bar{R}=R / N$ is a commutative ring. We use corollary 2.3. to get $R=N$. This completes the proof.

Corollary 3.11. If $\alpha_{i j}$ is a right zero divisor for all i and j and if the intersection of all non-zero left algebra ideals is not zero then $\operatorname{dim} R<\infty$.

Lemma 3.12. Let R be a ring satisfying the ascending chain condition for left annihilators. Then for any element $a \in R$ there exists a positive integer $k \geqq 1$ such that $(a)^{l} \cap R a^{k}=0$.

Proof. See [5] p. 297.
Theorem 3.13. Let $R=\Phi\left(x_{1}, \cdots, x_{n}\right)$ satisfy the followings:
(1) For some maximal algebra ideal T of R there exists an element $a \in R$ such that $T=R a$.
(2) x_{i} is nilpotent for all i.

Then $\operatorname{dim} R<\infty$.

Proof. As before we show that R is nil. Suppose $z \in R$ is a non-nilpotent element of R. Let C be a prime ideal of R which is maximal with respect to $z^{k} \notin C$ for all $k \geqq 1$. Lemma 2.1 implies that $0 \neq R^{2} \varsubsetneqq R$. If $R^{2} \neq T$, then $0 \neq(R / T)^{2}$ $\varsubsetneqq(R / T)$, by lemma 2.1 , which is a contradiction to maximality of T. So $R^{2} \subseteq T$ and hence $R^{2}=T=R a$. Since $\bar{R}=R / C$ is a prime ring and $\bar{R}^{2}=\bar{R} \bar{a}$ we get $(\bar{a})^{r}=0$. If $(\bar{a})^{l} \neq 0$ then $(\bar{a})^{l} \cap \bar{R} \bar{a}^{k}=0$ for some $k \geqq 1$, because of the lemma 3.12. But $\bar{R} \bar{a}^{k}=\bar{R}^{k} \neq 0$ and hence $\bar{R} \bar{a}^{k}$ is essential left ideal of \bar{R}. This contradiction shows that $(\bar{a})^{l}=0$ and hence \bar{a} is a regular element of \bar{R}. Clearly for some i, $\bar{x}_{i} \notin \bar{R}^{2}$. So $\Phi \bar{x}_{i}+\bar{R}^{2}=\bar{R}$ and $\Phi \bar{x}_{i}+\Phi \bar{x}_{i} \bar{a}+\bar{R} \bar{a}^{2}=\bar{R}$. This implies that there exist $\alpha, \beta \in \Phi$ and $\bar{r} \in \bar{R}$ such that $\bar{a}^{2}=\alpha \bar{x}_{i}+\beta \bar{x}_{i} \bar{a}+\bar{r} \bar{a}^{2}$. If $\alpha \neq 0$ then $\bar{x}_{i} \in \bar{R}^{2}$. So $\alpha=0$ and $\bar{a}=\beta \bar{x}_{i}+\bar{r} \bar{a}$, by regularity of \bar{a}. If \bar{x}_{i} is of index k then $\bar{y}=\bar{r} \bar{y}$ where $\bar{y}=\bar{a} \bar{x}_{i}^{k-1}$. So $\bar{y}=0$, because \bar{r} is a quasi-regular element. This contradiction completes the proof.

References

[1] S. Amitsur, 'A generalization of Hilbert's Nullstellensatz', Proc. Amer. Math. Soc. 8, (1957) 649-656.
[2] E. C. Golod, 'On nil algebras and finitely approximable p-groups', Izv. Akad. Nauk SSSR. Math. Ser. 28 (1964) 273-276.
[3] I. N. Herstein, Theory of rings (Chicago Univ. Mathematics lecture notes, 1961) 23-25.
[4] N. Jacobson, Structure of rings (Amer. Math. Soc. Colloquium Publications, vol. 37, 1956).
[5] R. E. Johnson, 'Principal right ideal rings', Canadian J. Math. 15 (1963), 297-301.

University of Nebraska

