SOME RESULTS ON FINITENESS OF RADICAL ALGEBRAS

AHMAD MIRBAGHERI

(Received 6 January 1969; revised 19 March 1969)

Communicated by G. B. Preston

1. Introduction

R denotes always a radical algebra over a field Φ . A left ring ideal of *R* which is also a subvector space over Φ is called a left algebra ideal of *R*. *R* is said to be left algebra noetherian if it satisfies the ascending chain condition for left algebra ideals. If dim $R < \infty$, then

- (i) R is finitely generated
- (ii) R is left algebra noetherian
- (iii) R is algebraic.

Since the radical of an algebraic algebra is nil ([4] P. 19), conditions (i), (ii), (iii) are also sufficient for R to be finite-dimensional.

Amitsur has conjectured that the radical of a finitely generated Φ -algebra is nil (see [1]). This brings finitely generated radical Φ -algebra close to being nilpotent and hence of finite dimension. We are therefore led to restrict our investigation to radical algebras and to various conditions that imply that dim $R < \infty$. It seems probable that the following conjecture is true:

R is finite-dimensional radical algebra if and only if (i) R is finitely generated and (ii) R is left algebra noetherian.

Observe that the Levitzki theorem "in a left noetherian ring any nil left ideal is nilpotent" may be extended to algebras, namely, if R is a left algebra noetherian algebra over Φ , then every nil left algebra ideal is nilpotent (see [3]). Using this result we can easily see that the conditions of the conjecture cannot be weakened. An example is given by Golod (see [2]) of a finitely generated nil algebra over any field Φ which is not of finite dimension.

The purpose of this paper is to prove the conjecture under some additional assumptions on the radical algebra R.

2. Preliminaries

A left algebra ideal L of R is said to be finitely generated if there exists a finite number of elements u_1, \dots, u_n such that

291

Ahmad Mirbagheri

$$L = \Phi u_1 + Ru_1 + \cdots + \Phi u_n + Ru_n.$$

LEMMA 2.1. Let R be a radical Φ -algebra and L be a non-zero left algebra ideal generated by a finite number of elements. Then $RL \subsetneq L$.

PROOF. See [4] p. 200.

THEOREM 2.2. Let R be a radical, finitely generated and left algebra noetherian over Φ . If R satisfies a polynomial identity then dim $R < \infty$.

PROOF. It is known that the radical of a finitely generated algebra satisfying a polynomial identity is nil (see [1]). So R is nilpotent. Since R is also finitely generated, dim $R < \infty$.

COROLLARY 2.3. If R is a commutative, finitely generated radical algebra and if R is left algebra noetherian then dim $R < \infty$.

NOTATION. If $S \subset R$ then by $(S)^l$ we mean the left annihilator ideal of S. Similarly $(S)^r$ is defined.

3.

In all the theorems of this section, except 3.1, let R be a radical algebra satisfying the following conditions:

(i) R is finitely generated

(ii) R is left algebra noetherian

If the field Φ is non-denumerable then (i) and (ii) are sufficient for R to be finitedimensional. Thus the remainder of the paper is only of interest for countable fields.

THEOREM 3.1. Let

- (1) R be a radical algebra
- (2) $R = \Phi(x_1, x_2)$
- (3) $x_1^2 = x_2^2 = 0$ and $(x_1)^r \cap (x_2)^r \neq 0$.

Then dim $R < \infty$.

PROOF. Let $y = x_1 x_2$. We show that y is nilpotent. Note that $x_1 y = y x_2 = 0$ and every element of R has the form

$$z = P(y)x_1 + x_2Q(y) + x_2S(y)x_1 + yT(y)$$

where P, Q, S, T are polynomials with coefficients in Φ and their constant terms need not be zero. It follows that

$$x_{1}zx_{1}x_{2} = x_{1}x_{2}Q(y)x_{1}x_{2} = y^{2}Q(y)$$

$$x_{1}zx_{2} = x_{1}x_{2}S(y)x_{1}x_{2} = y^{2}S(y)$$

$$x_{1}x_{2}zx_{1}x_{2} = x_{1}x_{2}yT(y)x_{1}x_{2} = y^{3}Ty)$$

$$x_{1}x_{2}zx_{2} = x_{1}x_{2}P(y)x_{1}x_{2} = y^{2}P(y)$$

for $z \in R$. If $z \in (x_1)^r \cap (x_2)^r$, $z \neq 0$, then above observation implies that

$$\alpha_1 y^{k_1} + \alpha_2 y^{k_2} + \cdots + \alpha_s y^{k_s} = 0$$

where $2 \leq k_1 < k_2 < \cdots < k_s$. So if

$$x = -\frac{\alpha_2}{\alpha_1} y^{k_2-k_1} \cdots - \frac{\alpha_s}{\alpha_1} y^{k_r-k_1}$$

then

$$y^{k_1} = y^{k_1} x.$$

So $y^{k_1} = 0$, because x is a quasi-regular element. So dim $R < \infty$, because the set $x_i, x_i x_j, x_i x_j x_k, \cdots$ is a finite set.

THEOREM 3.2. If x_1, \dots, x_n are generators of R such that

- (1) x_i is nilpotent for all i
- (2) $x_i R(or Rx_i)$ is an ideal for all i then dim $R < \infty$.

PROOF. It suffices to show that R is nil. Suppose a is a non-nilpotent element in R. Let $S = \{B; B \text{ is an ideal of } R \text{ such that } a^k \notin B \text{ for all } k \ge 1\}$. Then S has a maximal element, say C. Since C is a prime algebra ideal of R, $\overline{R} = R/C$ is a non-zero prime, finitely generated and left algebra noetherian radical algebra over Φ . Can assume $\overline{R} = \Phi(\overline{x}_1, \dots, \overline{x}_m)$ where $m \le n$. If $\overline{x}_i \overline{R} = 0$ for all i then $\overline{x}_i = 0$ for all i, because \overline{R} is a prime ring. This is a contradiction, because $C \ne R$. Let $T = \overline{x}_i \overline{R} \ne 0$ for some i. If \overline{x}_i is of index k then $\overline{x}^{k-1}T = 0$ which is a contradiction. This completes the proof.

EXAMPLE 3.3. Let R be the ring of all polynomials without constant terms, in two indeterminates x and y, over a field Φ of the form

$$\sum \alpha_{i} x^{i} + \sum_{i_{1}, i_{2} \neq 0} \alpha_{i_{1} \cdots i_{k}} x^{i_{1}} y^{i_{2}} x^{i_{3}} \cdots + \sum_{j_{1}, j_{2} \neq 0} \alpha_{j_{1} \cdots j_{l}} y^{j_{1}} x^{j_{2}} y^{j_{3}} \cdots$$

subject to the following conditions:

(1) $x^k y^l = y^l x^k$ for all $l \ge 2$ and $x \ge 1$ or $l \ge 1$ and $k \ge 2$ and $xyx = x^2y$ and

(2) $x^m = 0$, $(xy)^m = 0$, and $xy^m = 0$ for all $m \ge n$ when n is fixed and $n \ge 3$.

R is an algebra over Φ with $\{x, x^i y^j, y^j x^i, y^i x^j y^k\}_{i,j,k=1,\dots,n-1}$ as a set of generators. Moreover, if *t* is a generator then *tR* is an ideal of *R*.

REMARK. Conditions (1) and (2) in theorem 3.2. can be replaced by

- (1)' $\alpha_{ii} = x_i x_i x_i x_i$ is nilpotent for all *i* and *j*
- (2)' $\alpha_{ij} R$ (or $R\alpha_{ij}$) is an ideal for all *i* and *j*.

PROOF. If we assume that R is not nil then let \overline{R} be as in theorem 3.2. If all $\overline{\alpha}_{ij}\overline{R} = 0$ then $\alpha_{ij} \in C$ for all i and j. Then \overline{R} is a commutative ring. Use Corollary 2.3 to get \overline{R} is of finite dimension which implies that \overline{R} is nilpotent. But this is a contradiction to $C \neq R$. So $T = \overline{\alpha}_{ij}\overline{R} \neq 0$ for some i and j. The same argument as in theorem 3.2. leads to a contradiction. Hence dim $R < \infty$.

THEOREM 3.4. Let $R = \Phi(x_1, \dots, x_n)$ and let $\alpha_{ij} = x_i x_j - x_j x_i$. Assume $R\alpha_{ij}$ (or $\alpha_{ij}R$) is nil for all i and j. Then dim $R < \infty$.

PROOF. Let N be the sum of all nilpotent algebra ideals of R. Then N is the same as the sum of all nilpotent ring ideals of R. Since $R\alpha_{ij} \subseteq N$, we get $\bar{\alpha}_{ij} = 0$ in $\bar{R} = R/N$ for all *i* and *j*. Hence \bar{R} is commutative. We apply Corollary 2.3 to get R = N. Thus R is nilpotent and hence finite-dimensional.

LEMMA 3.5. If R is a ring, $a \in R$, $a^2 = 0$ and xa - ax is nilpotent for all x in R, then aR is nil.

PROOF. $a(xa-ax)^{k}x = (ax)^{k+1}$ for $x \in R, k = 1, 2, \cdots$.

LEMMA 3.6. If R is a ring, $a, b \in R$, $a^2b = 0$ and ya - ay is nilpotent for all y in bR, then abR is nil.

PROOF. $a(bxa-abx)^k bx = (abx)^{k+1}$ for any $x \in R$, $k = 1, 2, \cdots$.

LEMMA 3.7. If R is a ring and $a \in R$ such that a and xa - ax are nilpotent for all x in R, then a R is nil.

PROOF. Suppose aR is not nil, then there is an integer m such that $a^m R$ is nil, but $a^{m-1}R$ is not. Let $b = a^{m-2}$ and apply lemma 3.6. to get a contradiction.

THEOREM 3.8. Let $R = \Phi(x_1, \dots, x_n)$, $\alpha_{ij} = x_i x_j - x_j x_i$ and let α_{ij} and $x\alpha_{ij} - \alpha_{ij}x$ be nilpotent for all i and j and for all $x \in R$. Then dim $R < \infty$.

PROOF. Lemma 3.7. implies that $\alpha_{ii}R$ is nil. Now we apply theorem 3.4.

THEOREM 3.9. Let $R = \Phi(x_1, \dots, x_n)$. Assume that x_i and $xx_i - x_ix$ are nilpotent for all i and all x in R. Then dim $R < \infty$.

PROOF. Lemma 3.7. implies that $x_i R$ is nil for all *i*. Since $\overline{x}_i \overline{R} = 0$ in $\overline{R} = R/N$, where N is the nilpotent radical of R, we get $\overline{x}_i = 0$ and hence R = N.

THEOREM 3.10. Let R satisfy the following two conditions:

(1) α_{ij} is a right zero divisor for all i and j

(2) If I is the intersection of all non-zero left algebra ideals of the form Rx or $(a)^l$ for x in R and a in R then $I \neq 0$.

Then dim $R < \infty$.

PROOF. If a is a right zero divisor then $0 \neq (a)^l \supseteq I$. So $a \in (I)^r$. In particular N, the nilpotent radical of R, is contained in $(I)^r$: We show that $(I)^r \subseteq N$.

If $0 \neq t \in I$ and $x \in (I)^r$ then tx = 0. The chain $(x)^l \subseteq (x^2)^l \subseteq \cdots$ terminates. So there exists a positive integer m such that $(x^m)^l = (x^s)^l$ for all $s \geq m$. If $Rx^m \neq 0$ then $t = yx^m$ for some y in R. Since tx = 0 we get $yx^{m+1} = 0$ and hence $y \in (x^{m+1})^l = (x^m)^l$. So $t = yx^m = 0$ which is not the case. So $Rx^m = 0$ and hence x is nilpotent. So $N = (I)^r$. This shows that $\overline{R} = R/N$ is a commutative ring. We use corollary 2.3. to get R = N. This completes the proof.

COROLLARY 3.11. If α_{ij} is a right zero divisor for all i and j and if the intersection of all non-zero left algebra ideals is not zero then dim $R < \infty$.

LEMMA 3.12. Let R be a ring satisfying the ascending chain condition for left annihilators. Then for any element $a \in R$ there exists a positive integer $k \ge 1$ such that $(a)^l \cap Ra^k = 0$.

PROOF. See [5] p. 297.

THEOREM 3.13. Let $R = \Phi(x_1, \dots, x_n)$ satisfy the followings:

- (1) For some maximal algebra ideal T of R there exists an element $a \in R$ such that T = Ra.
- (2) x_i is nilpotent for all i.

Then dim $R < \infty$.

PROOF. As before we show that R is nil. Suppose $z \in R$ is a non-nilpotent element of R. Let C be a prime ideal of R which is maximal with respect to $z^k \notin C$ for all $k \ge 1$. Lemma 2.1 implies that $0 \ne R^2 \subsetneqq R$. If $R^2 \notin T$, then $0 \ne (R/T)^2 \rightleftharpoons (R/T)$, by lemma 2.1, which is a contradiction to maximality of T. So $R^2 \subseteq T$ and hence $R^2 = T = Ra$. Since $\overline{R} = R/C$ is a prime ring and $\overline{R}^2 = \overline{Ra}$ we get $(\overline{a})^r = 0$. If $(\overline{a})^l \ne 0$ then $(\overline{a})^l \cap \overline{Ra}^k = 0$ for some $k \ge 1$, because of the lemma 3.12. But $\overline{Ra}^k = \overline{R}^k \ne 0$ and hence \overline{Ra}^k is essential left ideal of \overline{R} . This contradiction shows that $(\overline{a})^l = 0$ and hence \overline{a} is a regular element of \overline{R} . Clearly for some i, $\overline{x}_i \notin \overline{R}^2$. So $\Phi \overline{x}_i + \overline{R}^2 = \overline{R}$ and $\Phi \overline{x}_i + \Phi \overline{x}_i \overline{a} + \overline{Ra}^2 = \overline{R}$. This implies that there exist $\alpha, \beta \in \Phi$ and $\overline{r} \in \overline{R}$ such that $\overline{a}^2 = \alpha \overline{x}_i + \beta \overline{x}_i \overline{a} + \overline{ra}^2$. If $\alpha \ne 0$ then $\overline{x}_i \in \overline{R}^2$. So $\alpha = 0$ and $\overline{a} = \beta \overline{x}_i + \overline{ra}$, by regularity of \overline{a} . If \overline{x}_i is of index k then $\overline{y} = \overline{ry}$ where $\overline{y} = \overline{ax}_i^{k-1}$. So $\overline{y} = 0$, because \overline{r} is a quasi-regular element. This contradiction completes the proof.

References

- S. Amitsur, 'A generalization of Hilbert's Nullstellensatz', Proc. Amer. Math. Soc. 8, (1957) 649-656.
- [2] E. C. Golod, 'On nil algebras and finitely approximable p-groups', Izv. Akad. Nauk SSSR. Math. Ser. 28 (1964) 273-276.
- [3] I. N. Herstein, Theory of rings (Chicago Univ. Mathematics lecture notes, 1961) 23-25.
- [4] N. Jacobson, Structure of rings (Amer. Math. Soc. Colloquium Publications, vol. 37, 1956).
- [5] R. E. Johnson, 'Principal right ideal rings', Canadian J. Math. 15 (1963), 297-301.

University of Nebraska